1. 31 Aug, 2025 1 commit
    • Lei Wang's avatar
      [Reducer] Introduce `alloc_reducer` to separate inter and intra warp reduction (#757) · 8eab7755
      Lei Wang authored
      
      
      * [Enhancement] Introduce finalize_reducer operator and layout reducer support
      
      - Added `FinalizeReducer` operator to handle reduction finalization in the TileLang framework, allowing for efficient reduction operations.
      - Implemented layout inference for local.reducer buffers, enhancing the handling of layout mappings and reducing complexity in buffer management.
      - Updated `setup.py` to include logging for build directory paths, improving build process visibility.
      - Enhanced atomic operations with new functions for atomic max, min, load, and store, providing more robust atomicity control in memory operations.
      - Refactored parallel loop handling to incorporate reducer information, ensuring proper management of reduction operations in parallel contexts.
      - Cleaned up test cases by removing unnecessary cache disabling and optimizing test parameters for better performance.
      
      * Refactor code formatting and improve readability in multiple files
      
      - Cleaned up whitespace in `setup.py` to enhance logging clarity.
      - Reformatted `AtomicMax` and `AtomicMin` functions in `common.h` for better alignment and readability.
      - Adjusted `debug_print_var` function in `debug.h` to improve code structure and maintainability.
      - Enhanced readability of the `atomic_add` function in `customize.py` by breaking long lines for better clarity.
      
      * Remove debug print statements from `copy.cc` and `inject_tma_barrier.cc` to enhance code clarity and maintainability.
      
      * [Enhancement] Disable reuse of small arrays in shared memory allocation
      
      - Added logic to prevent the reuse of small arrays (<= 32 bits) in `merge_shared_memory_allocations.cc`, ensuring they are lowered to registers in LLVM for improved performance and memory management.
      
      * Refactor `setup.py` to remove duplicate logging statements and enhance clarity. Update `finalize_reducer` function documentation in `reduce.py` to include detailed parameter and return descriptions, improving code readability and maintainability.
      
      * Refactor `finalize_reducer` and `reduce` functions to remove redundant target checks. Simplified conditionals by retaining only the `TargetIsHopper` check, enhancing code clarity and maintainability.
      
      * bug fix
      
      * Add thread checks workaround for replicated cases
      
      * Remove the is_one check
      
      * fix lint error
      
      * lint fix
      
      * Update autotune tests to use smaller matrix sizes for improved performance and reliability
      
      * [Refactor] Update FinalizeReducer to FinalizeReducerOp and adjust related methods
      
      - Refactored FinalizeReducer class to FinalizeReducerOp, updating constructor and method signatures for consistency with the new TileOperator structure.
      - Enhanced layout inference and cloning methods in FinalizeReducerOpNode.
      - Updated test_example_flash_attention.py to call test_example_gqa_bwd instead of tilelang.testing.main.
      - Adjusted header inclusions for improved organization and clarity across multiple files.
      
      * [Refactor] Update atomic operations in common.h and modify test_example_flash_attention.py
      
      - Enhanced atomic operations (Add, Min, Max) in common.h to handle half and bfloat16 types more efficiently.
      - Updated test_example_flash_attention.py to call test_example_gqa_bwd instead of tilelang.testing.main, improving test organization.
      
      * [Refactor] Simplify CopyNode::LowerBulkCopy logic and update test execution
      
      - Removed redundant checks for contiguous memory access in CopyNode::LowerBulkCopy, streamlining the logic for TMA copy operations.
      - Updated test_tilelang_kernel_gemm.py to comment out the main testing function and call a specific test for i8i8i32 tensor operations instead, improving test focus.
      
      ---------
      Co-authored-by: default avatarHuanqi Cao <caohuanqi@deepseek.com>
      Co-authored-by: default avatarFreebase6912 <amid-gauze-racing@duck.com>
      8eab7755
  2. 23 Aug, 2025 1 commit
    • Lei Wang's avatar
      [Refactor] Merge ThreadPartialSync and ThreadStorageSync (#741) · 6b125028
      Lei Wang authored
      * Remove `thread_partial_sync.cc` and refactor `thread_storage_sync.cc` to streamline synchronization handling. Introduce `thread_sync_types.h` for thread-bound key definitions and reserved named barriers. Update related logic in `ThreadSyncInserter` and `TileLangThreadSync` for improved clarity and efficiency.
      
      * Remove `sync_thread_partial` references and related documentation from the codebase. Update CUDA and HIP code generation files to eliminate calls to the removed function. Refactor `__sync_thread_partial` to `sync_thread_partial` in CUDA common header for consistency.
      
      * Remove unused import of `bulk_copy.h` in `codegen_hip.cc` to enhance code clarity and maintainability.
      
      * Add import of `bulk_copy.h` in `codegen_hip.cc` to support new functionality.
      
      * typo fix
      
      * Update data type in reduce_sum tests from float16 to float32 for consistency and clarity. Remove redundant dtype tests and streamline run functions. Enhance reshape kernel compilation with pass configurations to address shared memory layout issues.
      
      * lint fix
      
      * test fix
      
      * Enhance CI configuration by adding verbose output to pip install command for better visibility during installation.
      
      * use ninja instead of make
      
      * Add CMake configuration step for Ninja build system in setup.py
      
      * Update pyproject.toml to include additional build dependencies: build, torch, tox, auditwheel, patchelf, and ninja.
      
      * Enhance CI configuration by adding verbose output to pytest commands for improved test visibility.
      
      * Update pyproject.toml to add Cython as a build dependency. Enhance thread storage synchronization in thread_storage_sync.cc by introducing new thread variable handling and improving index disjointness checks.
      
      * Update data type in cumulative sum tests from float16 to float32 for consistency. Modify run_cumsum function to utilize the updated dtype and enhance result validation with assertions. Adjust test cases accordingly.
      
      * Refactor storage access handling by introducing buffer data mapping in TileLangStorageAccessVisitor. Enhance access entry structure to include pointer access flag. Update thread storage synchronization to accommodate new buffer data mappings. Adjust quickstart example to print kernel source for debugging purposes.
      
      * Refactor linear index conversion in TileLangStorageAccessVisitor to utilize the analyzer for simplification. Update buffer index calculations to ensure consistent simplification of range expressions.
      
      * bugfix
      
      * Refactor buffer index calculation in TileLangStorageAccessVisitor to simplify access handling. Removed unused buffer mapping logic, ensuring consistent buffer index generation with a default ramp.
      
      * Refactor TileLangStorageAccessVisitor to replace buffer indices with buffer ranges for improved pointer access handling. Update AccessEntry structure to include buffer_ranges and adjust thread storage synchronization logic to account for pointer access conflicts.
      
      * Refactor thread storage synchronization to replace 'shared.dyn' with 'shared' for consistency in memory allocation. Update related test cases to reflect this change and ensure proper functionality.
      6b125028
  3. 22 Aug, 2025 1 commit
    • Lei Wang's avatar
      [Refactor] Merge bulk copy into copy and improve layout inference for bulk copy (#746) · 5c11d245
      Lei Wang authored
      * [Refactor] Merge bulk copy into copy and refactor layout inference for bulk copy
      
      * Deleted the `bulk_copy` operator implementation and its header file as it is no longer needed.
      * Introduced a new function `cuTensorMapType()` to return the data type for CUDA tensor mapping.
      * Updated related files to reflect these changes, ensuring that the codebase remains clean and maintainable.
      
      * lint fix
      
      * Fix typos in intrinsic names and remove unused print statement in block_sparse_attn_tilelang.py. Updated references from `ptx_ldmatirx` to `ptx_ldmatrix` across multiple files for consistency.
      
      * remove bulk copy
      
      * Refactor copy and atomic add operations to support TMA lower configuration
      
      - Updated `GetCopyInst` to accept a `disable_tma_lower` parameter, allowing for conditional usage of TMA in bulk load/store operations.
      - Modified `Lower` method in `Copy` to incorporate the new TMA configuration.
      - Refactored `AtomicAdd::Lower` to streamline layout inference and vectorization logic.
      - Removed unused `disable_tma_lower` field from `LowerArgs` structure for clarity.
      - Enhanced atomic add vectorization by replacing the buggy implementation with a more robust loop vectorization approach.
      
      * Enhance TMA bulk copy logic in `LowerBulkCopy` method
      
      - Added a condition to set `desc.swizzle` to `CU_TENSOR_MAP_SWIZZLE_NONE` when `shared_layout` matches `linear_layout`, improving clarity in layout handling.
      - Updated warning log to provide more detailed information about fallback scenarios, including source and destination buffer names and shapes, enhancing debugging capabilities.
      
      * lint fix
      
      * Remove fallback logging for non-swizzled global layout in `LowerBulkCopy` method to streamline the bulk copy logic. This change enhances code clarity by eliminating unnecessary warning messages related to inner box dimensions.
      
      * Enhance reshape kernel compilation in `run_reshape` and `run_reshape_smem_1d_2_2d` functions
      
      - Updated the `tl.compile` method to include `pass_configs` that disable TMA lower and warp specialization, addressing shared memory layout transformation limitations.
      - Added TODO comments to indicate the need for further improvements in shared memory handling.
      
      * Update `native_sparse_attention` function to include TMA configuration options
      
      - Added `pass_configs` to the JIT decorator to disable TMA lower and warp specialization, addressing potential issues with shared memory layout transformations.
      - Updated comments to clarify modifications in tensor shapes for inference, specifically setting `q` sequence length to 1.
      
      * Refactor JIT decorator formatting in `native_sparse_attention` function
      
      - Improved readability by reformatting the JIT decorator parameters for `native_sparse_attention`, ensuring consistent style across the codebase.
      - No functional changes were made; this update focuses on code clarity and maintainability.
      
      * Enhance thread management and logging in TileLang compilation
      
      - Added a method to check if printing is enabled during compilation, improving control over logging behavior.
      - Updated the JIT kernel class to utilize the new method for logging compilation status, ensuring consistent and clear output.
      - Added comments to clarify the purpose of changes and improve code readability.
      
      * Add warp specialization scope and refactor register management in TileLang
      
      - Introduced a new constant `kWarpSpecializationScope` in `builtin.h` for better attribute management.
      - Removed the `SetMaxNRegCollector` class and its related logic from `warp_specialized_rewriter.cc`, streamlining the warp specialization process.
      - Added functions `annotate_producer_reg_dealloc` and `annotate_consumer_reg_alloc` in `builtin.py` to facilitate register management.
      - Implemented `AnnotateWarpGroupRegAlloc` in `__init__.py` to inject register allocation calls into warp-specialized functions, enhancing the overall register handling in the compilation process.
      
      * Refactor test for InjectSetMaxNReg pass in TileLang
      
      - Improved readability by restructuring conditional checks and assertions in the test cases.
      - Enhanced clarity in the collection of `set_max_nreg` calls by simplifying the logic.
      - Ensured consistent formatting and spacing throughout the test functions for better maintainability.
      
      * Enhance bulk copy and store checks in `Copy` class
      
      - Updated scope validation for source and destination tensors in `CheckBulkLoad` and `CheckBulkStore` methods to include both `shared.dyn` and `shared` as valid options.
      - Modified `CheckLDSMCopy` and `CheckSTSMCopy` methods to accommodate the new scope validation, ensuring compatibility with shared memory configurations.
      - Improved logging in `LowerBulkCopy` to provide clearer warnings regarding unsupported swizzle layouts, including source and destination names for better debugging.
      
      * lint fix
      5c11d245
  4. 21 Aug, 2025 1 commit
    • Lei Wang's avatar
      [Refactor] Refactor barrier management (#744) · cb37bfef
      Lei Wang authored
      * Introduce Barrier
      
      * Enhance CUDA kernel with new barrier management and post-processing support
      
      - Added a new CUDA kernel implementation in `example_mla_decode.py` for improved performance with shared memory barriers.
      - Refactored barrier handling in `codegen_cuda.cc` and `codegen_hip.cc` to utilize a more flexible mbarrier structure.
      - Updated intrinsic definitions from `ptx_stmatirx` to `ptx_stmatrix` across multiple files for consistency.
      - Introduced additional print statements for debugging in the lowering phase of the TileLang engine.
      - Enhanced the overall structure and readability of the codebase.
      
      * Remove unused barrier handling code in CUDA and HIP code generators to streamline the implementation. This change enhances code clarity and reduces complexity in the barrier management logic.
      
      * Enhance barrier management in TileLang
      
      - Introduced a new intrinsic `allocate_barrier` for dynamic barrier allocation in the TileLang framework.
      - Updated CUDA code generation to support the new barrier structure, allowing for improved synchronization in shared memory.
      - Refactored existing barrier handling logic to accommodate the new intrinsic and streamline code.
      - Added print statements for debugging purposes in various examples and the lowering phase of the TileLang engine.
      - Removed deprecated memory scope handling code to enhance clarity and maintainability.
      
      * lint fix
      
      * lint fix
      
      * Remove `allocate_barrier` intrinsic and related code from TileLang to streamline barrier management. This includes updates to CUDA code generation and the removal of associated Python wrappers, enhancing code clarity and maintainability.
      
      * Refactor logging in JITKernel to improve kernel compilation tracking
      
      - Removed unused import of `torch.backends` in the example file.
      - Introduced logging for kernel compilation in `JITKernel`, replacing print statements with structured logging for better traceability and debugging.
      - Added an assertion to ensure the presence of the `global_symbol` attribute in the kernel function.
      
      * Refactor dequantization tests and update barrier function
      
      - Removed the test for `example_dequant_gemm_bf16_fp4_hopper_serial` to streamline the testing suite.
      - Updated the `mbarrier_cp_async_arrive` function to support both pointer and non-pointer types, enhancing flexibility in barrier management.
      
      * Update CI configuration to increase pytest parallelism from 4 to 8 threads for improved test execution speed.
      
      * Fix typos in rasterization parameters and update import path for cached module
      
      - Corrected the spelling of `enable_rasteration` to `enable_rasterization` in the matmul function and its usage.
      - Updated the import statement for the `cached` module to reflect the new path in the cache submodule.
      - Added `StridedTensor` import in the language module for enhanced tensor functionality.
      
      * Update ci.yml
      cb37bfef
  5. 17 Aug, 2025 1 commit
    • Lei Wang's avatar
      [Language] Introduce `StridedTensor` to support non contigious torch inputs (#722) · 1b308baf
      Lei Wang authored
      
      
      * Update submodule 'tvm' to commit e11521e6936a827efa334588d29571fbb4620107
      
      * Support strided tensors
      
      * Refactor target attribute helper functions for improved clarity
      
      * No code changes made in proxy.py and setup.py
      
      * lint fix
      
      * lint fix via gemini
      
      * lint fix
      
      * test fix
      
      * test fix
      
      * lint fix
      
      * Update wrapper.py
      
      * test fix
      
      * Enhance test for InjectSoftwarePipeline by adding LowerOpaqueBlock transformation and updating expected function signature to use match_buffer for better clarity.
      
      * lint fix
      
      ---------
      Co-authored-by: default avatarChenggang Zhao <chenggangz@deepseek.com>
      1b308baf
  6. 16 Aug, 2025 1 commit
    • Lei Wang's avatar
      [Refactor] Refactor CUDA code generation to simplify eviction policy handling (#721) · c369d690
      Lei Wang authored
      * Update submodule 'tvm' to commit e11521e6936a827efa334588d29571fbb4620107
      
      * Refactor CUDA code generation to simplify eviction policy handling
      
      - Updated `VisitExpr_` methods in `codegen_cuda.cc` to use default eviction policy for `tma_load`, `tma_load_im2col`, and `tma_store` functions, reducing complexity.
      - Removed conditional assembly code for `EVICT_NORMAL` in `copy_sm90.h`, streamlining the assembly calls for tensor memory operations.
      
      * lint fix
      c369d690
  7. 11 Aug, 2025 1 commit
    • Wenhao Xie's avatar
      [Enhancement] Add eviction policy support for TMA operations, enhance CUDA... · 6664d170
      Wenhao Xie authored
      [Enhancement] Add eviction policy support for TMA operations, enhance CUDA codegen, and introduce new pass config (#690)
      
      * Enhance TMA and barrier handling in CUDA code generation
      
      - Updated `CodeGenTileLangCUDA` to support eviction policies for TMA operations, allowing for more flexible memory management.
      - Introduced a new `CacheHintSm90` enum to define eviction strategies in `copy_sm90.h`.
      - Modified TMA load/store functions to accept eviction policies, improving performance on different architectures.
      - Enhanced `TmaBarrierCollector` and `TmaBarrierRewriter` to account for SIMT copies, ensuring correct barrier insertion.
      - Refactored thread synchronization logic to utilize barrier IDs, improving the efficiency of partial thread synchronization.
      - Updated Python interface for `copy` and `c2d_im2col` to include optional eviction policy parameters, enhancing usability.
      
      * update shuffle and elect optimization
      
      * fix bug
      
      * fix bug
      
      * fix potential bug
      
      * lint fix
      
      * lint fix
      
      * update shuffle_elect template
      
      * fix bug
      
      * fix bug
      
      * fix template
      
      * lint and fix
      
      * fix typo
      6664d170
  8. 05 Aug, 2025 1 commit
    • Lei Wang's avatar
      [Smem Reuse] Optimize to do memory alignment on identical buffers. (#693) · 17fafc1b
      Lei Wang authored
      * [Enhancement] Refactor GEMM operations for improved warp partitioning and target instruction handling
      
      - Introduced a new `GetGemmInst` method to determine the appropriate GEMM instruction based on block size and target architecture.
      - Updated `ComputeWarpPartition` to accept the GEMM instruction type, enhancing flexibility in warp partitioning logic.
      - Added `TargetGetWarpSize` utility to streamline warp size retrieval based on target architecture.
      - Refactored layout inference and lowering methods to utilize the new GEMM instruction handling, improving clarity and maintainability of the codebase.
      
      * bug fix
      
      * test fix
      
      * lint fix
      
      * phase out Canonialize
      
      * add option --expt-relaxed-constexpr
      
      * [Enhancement] Introduce tilelang intrinsic operations for GEMM
      
      - Added `tl_gemm` and `tl_gemm_sp` built-in operations to support general and sparse matrix multiplication in tilelang.
      - Updated the lowering logic in `Gemm` and `GemmSP` to utilize the new tilelang operations.
      - Enhanced CUDA and HIP code generation to handle the new GEMM operations, ensuring proper argument validation and external call printing.
      - Implemented shared memory alignment planning for GEMM operations to optimize performance on supported architectures.
      
      * lint fix
      
      * lint fix
      
      * test fix
      
      * test fix
      
      * rebase
      
      * Update builtin.cc
      17fafc1b
  9. 04 Aug, 2025 1 commit
  10. 30 Jul, 2025 1 commit
    • Siyuan Feng's avatar
      Refactor to support upstream tvm (#595) · a7c9a8b9
      Siyuan Feng authored
      
      
      **Summarize part of the rebase pr:**
      
      1. **Support T.thread_return() → CUDA return syntax**  
         Added support for translating `T.thread_return()` to CUDA's native `return` statement.
      
      2. **Dynamic type support for function inputs**  
         Functions now accept dynamically typed parameters using `typing`:
         ```python
         dyn_type = T.int32 or T.float
         @T.prim_func
         def main(
             a: dyn_type,
         )
         ```
      
      3. **Device Function Codegen**  
         Added support for generating `__device__` functions in CUDA:
         ```python
         @I.ir_module
         class Module:
             @T.prim_func(private=True)
             def add(a: T.int32, b: T.int32) -> T.int32:
                 return a + b
      
             @T.prim_func
             def main(
                 A: T.Buffer((128, 128), "int32"),
                 B: T.Buffer((128, 128), "int32"),
                 C: T.Buffer((128, 128), "int32"),
             ):
                 T.func_attr({"global_symbol": "main"})
                 length: T.int32 = Module.add(64, 64)  # Host call
                 for bx in T.thread_binding(length, "blockIdx.x"):
                     for tx in T.thread_binding(length, "threadIdx.x"):
                         C[bx, tx] = Module.add(A[bx, tx], B[bx, tx])  # Device call
         ```
         After compilation, `add` becomes a CUDA `__device__` function.
      
      4. **Cython-based Python/C++ interop**  
         Replaced ctypes with Cython for all Python/C++ interactions:
         - Python → C++ calls
         - C++ → Cython calls  
         This improves performance by around 100x and reduces CPU overhead during compile/runtime.
      
      5. **FP8 data type standardization**  
         Migrated `e5m2_float8` and similar types to Torch-standardized variants`float8_e5m2` and etc.
      
      
      
      * Refactor CMakeLists.txt to set default build type and manage dependencies for tvm_cython modules
      
      * Update default value of `check_well_formed` parameter in `prim_func` to False for improved flexibility in TIR function parsing.
      
      * Add StorageRewrite function to transform module
      
      Introduced the StorageRewrite function in the tilelang.transform module, which returns a TVM transform pass. This addition enhances the functionality of the module by providing a new transformation option for users.
      
      * Refactor null option handling in IR and layout inference
      
      - Updated instances of `NullOpt` to `std::nullopt` in `ir.cc` and `parallel.cc` for consistency with modern C++ practices.
      - Enhanced layout inference logic in `layout_inference.cc` to improve type safety by replacing `as<Fragment>().get()` with `as<FragmentNode>()`.
      - Adjusted error handling in `multi_version_buffer_rewriter.cc` and `persist_threadblock.cc` to use more concise null checks.
      - Cleaned up test files by commenting out `tilelang.testing.main()` and replacing it with specific test function calls for better clarity.
      - Removed unused test file `test_tilelang_kernel_deepseek_nsa.py` to streamline the testing suite.
      
      * Update TVM subproject and refactor cluster planning and tile operation handling
      
      - Updated the TVM subproject to a dirty commit state.
      - Refactored copyright headers in `cluster_planning.cc` to reflect the new licensing.
      - Enhanced error handling in `lower_tile_op.cc` to check for missing padding map annotations.
      - Modified test files to improve clarity and functionality, including adjustments to kernel compilation and test assertions.
      - Updated various test cases to ensure proper handling of annotations and configurations in the TileLang testing framework.
      
      * Update annotation type in warp specialized test for consistency
      
      - Changed the annotation type in the `test_warp_specialized` function from a literal integer to `T.int32(3)` for improved type safety and consistency with the TileLang framework.
      
      * Refactor test execution in warp specialized test
      
      - Replaced the direct call to `test_warp_specialized()` with `tilelang.testing.main()` in the test file to standardize test execution and improve integration with the TileLang testing framework.
      
      * refactor
      
      * [Enhancement] Add strict layout map for improved buffer layout inference (#594)
      
      - Introduced a `strict_layout_map` to enhance layout inference by ensuring that buffers with strict layout requirements are properly accounted for during the inference process.
      - Updated the inference logic to check for the presence of buffers in the `strict_layout_map` before applying layout changes, improving the accuracy of layout assignments.
      - Refactored the layout inference steps to include the copying of layouts into the new strict map, ensuring a clear separation of layout handling based on inference levels.
      
      * [Example] Update examples to use @tilelang.jit (#597)
      
      * [Example] Update kernel compilation in examples to use @tilelang.jit
      
      - Refactored multiple examples to eliminate the use of `tilelang.compile` for kernel creation, directly invoking the functions instead.
      - Added `@tilelang.jit` decorators with appropriate output indices to enhance performance and maintainability.
      - Improved code clarity by simplifying the kernel invocation process across various examples, ensuring consistency in how kernels are defined and executed.
      
      * format
      
      * Update example_tilelang_sparse_gqa_decode_varlen_indice.py
      
      * Update example_dequant_gemm_fine_grained.py
      
      * Update example_gemm_autotune.py
      
      ---------
      Co-authored-by: default avatarLei Wang <34334180+LeiWang1999@users.noreply.github.com>
      
      * [Enhancement] Refine error messaging in LowerBulkCopy for global and shared range checks (#599)
      
      * [Enhancement] Improve error messaging for global and shared range legality checks in LowerBulkCopy
      
      - Updated error messages in the LowerBulkCopy function to provide clearer context when global and shared ranges are illegal.
      - Enhanced the readability of the error output by including tensor names, improving debugging and validation processes during bulk copy operations.
      
      * [Enhancement] Refine error messaging in LowerBulkCopy for global and shared range checks
      
      - Improved the clarity of error messages in the LowerBulkCopy function by enhancing the output format.
      - Included additional context in error messages to aid debugging when global and shared ranges are found to be illegal, ensuring better traceability during bulk copy operations.
      
      * [Enhancement] Introduce PassConfig `TL_ENABLE_AGGRESSIVE_SHARED_MEMORY_MERGE` to enable aggressive shared memory reuse (#602)
      
      * [Enhancement] Add aggressive shared memory merge option in memory allocation
      
      - Introduced a new configuration option `tl.enable_aggressive_shared_memory_merge` to enable aggressive merging of shared memory allocations.
      - Updated the `SharedMemLinearAccessPatternFinder` class to support an aggressive merge strategy, allowing for improved memory reuse.
      - Modified the `MergeSharedMemoryAllocations` function to incorporate the new merging strategy based on the configuration.
      - Enhanced the `PassConfigKey` enumeration to include the new aggressive merge option, ensuring it can be configured appropriately.
      
      * lint fix
      
      * [Enhancement] Add aggressive shared memory merge configuration option
      
      - Introduced a new configuration option `kEnableAggressiveSharedMemoryMerge` to enable aggressive merging of shared memory allocations, enhancing memory management capabilities.
      
      * [Enhancement] Update MergeSharedMemoryAllocations to support aggressive merge option
      
      - Modified the `MergeSharedMemoryAllocations` function to accept an `enable_aggressive_merge` parameter, allowing for more flexible memory management.
      - Introduced a new helper function `should_enable_aggressive_merge` to determine the aggressive merge configuration based on the pass context and target.
      - Updated the relevant calls in the `phase.py` and `__init__.py` files to utilize the new aggressive merge functionality, enhancing the overall memory allocation strategy.
      
      * [Refactor] Update accumulation handling in gemm_sm90.h (#603)
      
      - Replaced the use of `tiled_mma.accumulate_ = GMMA::ScaleOut::Zero` with a call to `clear(acc)` for better clarity and maintainability in the accumulation logic.
      - This change enhances the readability of the code by standardizing the approach to clearing accumulation values across multiple sections of the file.
      
      * [Enhancement] Add tma bulk copy. (#600)
      
      * [Bugfix] Fixed mha_bwd shape inconsistency error (#604)
      
      * lint fix
      
      * Update requirements-lint.txt to maintain clang-format version consistency
      
      * [Bugfix] Avoid duplicate data access when cross thread buffer meet replicate register (#606)
      
      * [Enhancement] Improve debug output formatting in layout and fragment nodes
      
      - Updated the `DebugOutput` methods in `LayoutNode` and `FragmentNode` to provide more structured and informative output, including transformation details and thread range information.
      - Enhanced layout inference logic in `ParallelOp` to add predicates for cross-thread shared memory access, improving layout handling in parallel operations.
      - Minor adjustment in `layout_inference.cc` to ensure clarity in parallel loop handling.
      
      * lint fix
      
      * [Enhancement] Support tf32 gemm_rs (#607)
      
      - Added a line break in `quickstart.py` for better readability.
      - Simplified the JIT kernel compilation in `quickstart.py` by removing the unused execution backend option.
      - Modified `example_elementwise_add.py` to disable cache for `tilelang` and optimized the element-wise addition kernel by utilizing shared memory for input tensors, improving performance.
      - Updated default values for matrix dimensions and block sizes in the argument parser to enhance usability.
      
      * [Enhancement] Introduce option `TL_DISABLE_FAST_MATH` and `TL_ENABLE_PTXAS_VERBOSE_OUTPUT` (#609)
      
      * [Enhancement] Introduce new PassConfig options for fast math and PTXAS verbosity
      
      - Added `kDisableFastMath` and `kEnablePTXASVerboseOutput` configuration options to enhance control over compilation settings.
      - Updated `LibraryGenerator` to utilize these new pass configurations, allowing for more flexible compilation behavior based on user preferences.
      - Enhanced `PassConfigKey` enumeration to include the new options, ensuring they can be configured appropriately in the pass context.
      
      * [Refactor] Update PTXAS verbosity configuration key in LibraryGenerator
      
      - Changed the configuration key for PTXAS verbosity from `TL_VERBOSE_PTXAS_OUTPUT` to `TL_ENABLE_PTXAS_VERBOSE_OUTPUT` to align with the new naming convention introduced in recent enhancements.
      - This update ensures consistency in the configuration options used within the `LibraryGenerator` class, improving clarity and maintainability of the code.
      
      * lint fix
      
      * fix build
      
      * [Experimental][Language] add `T.GEMM_SP` for sm90 sparse tensor core (#526)
      
      * [experimental] add a draft gemm_sp
      
      * [3rdparty] bump cutlass to v3.9.3
      
      * [lint] run format.sh
      
      * [chore] rebase
      
      * [chore] use abs path
      
      * [gemm_sp] add metadata layout
      
      * [ci] add more example
      
      * [lint] run format.sh
      
      * [chore] polish
      
      * [chore] move gemm_sp to experimental
      
      * [chore] polish
      
      * [lint] run format.sh
      
      * [Enhancement] Improve bulk copy handling and update GEMM sparse tensor test
      
      * Added a warning log for unsupported non-swizzled global layouts in the bulk copy operation, ensuring fallback to normal copy.
      * Refactored the GEMM sparse tensor test by removing unnecessary imports and simplifying the kernel compilation process.
      * Updated the test to directly call the `run_gemm_sp` function, enhancing clarity and functionality.
      
      * Implement Test
      
      * [Enhancement] Update GEMM SP and SM89 templates for improved functionality
      
      * Refactored GEMM SP computation to enhance warp partitioning logic, ensuring compatibility with Hopper architecture.
      * Updated layout inference to support new WGMMA conditions and improved error messaging for unsupported targets.
      * Modified SM89 templates to utilize new MMA atom structures, enhancing performance and compatibility with fp8 types.
      * Added conditional inclusion for GEMM SP header based on CUDA architecture version.
      
      * lint fix
      
      * [gemm_sp] support more layout and data types
      
      * Enhancement: sync T.gemm_sp's layout inference with T.gemm
      
      * Enhancement: support more block_k in compress util
      
      * [Enhancement] enable block_k=64
      
      * [Lint] run format.sh
      
      * [Enhancement] compressor support more dtype
      
      * Enhancement: enable block_K=32
      
      * [Lint] format.sh
      
      * [Fixbug] fix shape
      
      * Refactor: sync gemm
      
      * [Enhancement] enable transpose
      
      * [Enhancement] enable fp8_e4m3
      
      * [Enhancement] enable int8
      
      * [Lint] run format.sh
      
      * [Benchmark] add gemm_sp benchmark
      
      * [Example] fix 256 threads hang
      
      * [CI] fix ci
      
      * [Chore] resolve gemini feedback
      
      * [Benchmark] increase search space
      
      * [Lint] format
      
      * [CI] skip sparse tensor core related tests as only sm90 is supported
      
      * [CI] pass local run
      
      * Update gemm_sm89.h
      
      * lint fix
      
      * lint fix
      
      * [Enhancement] Add support for sparse GEMM and initialize CUDA architecture flags
      
      - Introduced a new boolean flag `enable_sparse_gemm_` to control the inclusion of sparse GEMM functionality in CUDA code generation.
      - Updated the `Finish` method to conditionally include the sparse GEMM header based on the new flag.
      - Implemented logic in `VisitStmt_` to enable sparse GEMM when the corresponding external call is detected.
      - Added a function to initialize the `TORCH_CUDA_ARCH_LIST` environment variable based on the target compute version, enhancing compatibility with PyTorch.
      - Refactored the initialization function into the appropriate module and ensured it is called in the sparse utilities module.
      
      * Update test_compress_utils.py
      
      ---------
      Co-authored-by: default avatarLeiWang1999 <leiwang1999@outlook.com>
      Co-authored-by: default avatarLei Wang <34334180+LeiWang1999@users.noreply.github.com>
      
      * [Doc] Phaseout Legacy documentations (#610)
      
      - Added a new entry in the README for the introduction of `T.gemm_sp` supporting 2:4 sparse tensor core.
      - Removed several outdated documentation files related to convolution, flash attention, and other tutorials to streamline the documentation structure.
      
      * [Refactor] Phaseout Pass ParallelLoopTransformer (#611)
      
      * Refactor layout inference by removing the ParallelLoopTransformer class. Updated layout inference logic to streamline buffer access collection and condition handling in parallel loops. This change simplifies the code structure and enhances maintainability.
      
      * Update MHA backward test cases to use reduced dimensions for batch size and context length
      
      * fix build
      
      * [Enhancement] Update ReduceOp initialization values for integer types (#614)
      
      * [Enhancement] Update ReduceOp initialization values for integer types
      
      - Modified the `MakeInitValue` method in `ReduceOp` to handle integer data types correctly by returning appropriate minimum and maximum values based on the bit width.
      - Added checks for integer types to ensure correct initialization for `kMax` and `kMin` reduction types, enhancing the robustness of the reduction operations.
      
      * [Enhancement] Update ReduceOp to handle unsigned integer initialization values
      
      - Enhanced the `MakeInitValue` method in `ReduceOp` to include support for unsigned integer data types.
      - Added conditions to return appropriate initialization values for `kMax` and `kMin` reduction types based on the data type, improving the robustness of reduction operations.
      
      * Bump transformers from 4.50.0 to 4.51.0 in /examples/bitnet-1.58b (#615)
      
      Bumps [transformers](https://github.com/huggingface/transformers) from 4.50.0 to 4.51.0.
      - [Release notes](https://github.com/huggingface/transformers/releases)
      - [Commits](https://github.com/huggingface/transformers/compare/v4.50.0...v4.51.0
      
      )
      
      ---
      updated-dependencies:
      - dependency-name: transformers
        dependency-version: 4.51.0
        dependency-type: direct:production
      ...
      Signed-off-by: default avatardependabot[bot] <support@github.com>
      Co-authored-by: default avatardependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
      
      * [Refactor] refactor autotune examples (#617)
      
      * [Refactor] Update tilelang kernel functions and remove unused imports
      
      - Refactored the `flashattn_fwd`, `flashattn_bwd_preprocess`, and `flashattn_bwd_postprocess` functions to utilize direct kernel calls instead of cached versions, improving clarity and performance.
      - Added `@tilelang.jit` decorators with specified output indices to enhance kernel compilation.
      - Removed unused import of `cached` from `tilelang`, streamlining the code.
      - Commented out the main testing function call in `test_tilelang_kernel_mha_bwd.py` for potential future use.
      
      * [Refactor] Simplify configuration generation in benchmark and example scripts
      
      - Refactored the `get_configs` functions in multiple benchmark and example scripts to utilize a dictionary-based approach for parameter configuration, improving readability and maintainability.
      - Updated the `flashattn` and `chunk_scan_fwd` functions to directly accept configuration parameters, enhancing flexibility in kernel tuning.
      - Removed redundant code and streamlined the configuration generation process across various files, ensuring consistency in how configurations are defined and utilized.
      
      * [Refactor] Update configuration handling in benchmark scripts
      
      - Refactored the `get_configs` functions in benchmark scripts to accept a variable argument list, improving flexibility in configuration management.
      - Enhanced the `matmul` and `flashattn` functions to utilize the updated configuration approach, streamlining parameter handling for kernel tuning.
      - Added `@autotune` decorators to relevant functions, ensuring consistent autotuning behavior across benchmarks.
      - Cleaned up redundant code and improved overall readability in the affected files.
      
      * [Refactor] Clean up formatting and update subproject commit
      
      - Updated the subproject commit reference in the TVM directory to indicate a dirty state.
      - Removed unnecessary blank lines and improved formatting in the `benchmark_matmul` and `benchmark_matmul_fp8` scripts for better readability.
      - Streamlined the function definitions in the `flashattn` example script to enhance clarity and maintainability.
      
      * [Refactor] Update AutoTuner configuration handling
      
      - Modified the AutoTuner class to check if kernel parameters are set before processing tunable arguments, improving robustness in configuration handling.
      - Enhanced the logic for skipping compilation when tunable parameters are already provided, ensuring efficient use of resources.
      - Updated comments for clarity and maintainability.
      
      * lint fix
      
      * Update TVM subproject commit to indicate dirty state and modify MHA backward test cases
      
      - Updated the subproject commit reference in the TVM directory to reflect a dirty state.
      - Adjusted the `test_mha_bwd` function to use a new configuration for the MHA backward tests, changing the context size from 128 to 256.
      - Uncommented the main testing function call for potential execution.
      
      * lint fix
      
      * Bump transformers from 4.51.0 to 4.52.1 in /examples/bitnet-1.58b (#619)
      
      Bumps [transformers](https://github.com/huggingface/transformers) from 4.51.0 to 4.52.1.
      - [Release notes](https://github.com/huggingface/transformers/releases)
      - [Commits](https://github.com/huggingface/transformers/compare/v4.51.0...v4.52.1
      
      )
      
      ---
      updated-dependencies:
      - dependency-name: transformers
        dependency-version: 4.52.1
        dependency-type: direct:production
      ...
      Signed-off-by: default avatardependabot[bot] <support@github.com>
      Co-authored-by: default avatardependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
      
      * Fix PTXAS options flag in LibraryGenerator for consistency (#620)
      
      * Refactor FP8 type handling across multiple files to standardize usage of "float8_e4m3" and "float8_e5m2" instead of "e4m3_float8" and "e5m2_float8". This includes updates in benchmarks, examples, tests, and internal utilities.
      
      * [Refactor] Add parallel loop transform pass for condition extraction (#618)
      
      * [Refactor] Add parallel loop transform
      
      * done format check
      
      * pull 3rdparty repo
      
      * Refactor loop variable handling in transformation utilities
      
      - Updated the logic in `loop_parallel_transform_utils.h` to simplify the handling of related loop variables.
      - Removed the check that enforced a single related loop variable, replacing it with a return statement when multiple variables are detected, enhancing clarity and maintainability of the transformation process.
      
      * Update loop_parallel_transform_utils.h
      
      * Refactor loop variable handling in transformation utilities
      
      - Enhanced the logic in `loop_parallel_transform_utils.h` to improve clarity and maintainability by simplifying the handling of related loop variables.
      - Replaced the previous enforcement of a single related loop variable with a return statement for multiple variables detected.
      
      * remove disable cache flag as commit id has been key component
      
      * lint fix
      
      ---------
      Co-authored-by: default avatarLeiWang1999 <leiwang1999@outlook.com>
      Co-authored-by: default avatarLei Wang <34334180+LeiWang1999@users.noreply.github.com>
      
      * [Dev] Update linear attention examples to enhance performance on Hopper GPUs (#621)
      
      * Tune linear attention examples on H100
      
      * Add retnet fwd kernel
      
      * fix lint
      
      * [Enhancement] Add ahead of time cython compilation in setup.py (#622)
      
      * [Enhancement] Add Cython support and compiler detection in setup.py
      
      - Introduced a new `CythonExtension` class for building Cython-based extensions, enhancing the build process for Cython projects.
      - Implemented functions to detect the Cython compiler and C++ compiler, improving compatibility and user experience.
      - Updated the build process to handle Cython extensions alongside CMake extensions, ensuring a seamless integration for users.
      - Added caching mechanisms for Cython compilation to optimize build times and reduce unnecessary recompilation.
      
      * [Enhancement] Add Cython dependency and enable CMake extension building
      
      - Added Cython as a required dependency in `pyproject.toml` to support Cython-based extensions.
      - Updated `setup.py` to enable building CMake extensions, improving the build process for projects utilizing both Cython and CMake.
      - Modified the Cython compiler detection logic to streamline installation instructions for users.
      
      * [Enhancement] Support more flexible layout host pythonic expr (#623)
      
      * [Refactor] Enhance expression handling in utils.py and update wrapper to use pythonic_expr
      
      - Added support for additional TIR expressions (FloorDiv, Min, Max, Add, Sub, FloorMod) in the pythonic_expr function to improve string representation.
      - Replaced the deprecated legalize_c function calls in TLCUDASourceWrapper and TLCPUSourceWrapper with pythonic_expr for better expression handling in kernel launch code.
      
      * [Refactor] Simplify expression handling in pythonic_expr function
      
      - Consolidated binary and min/max operation handling in the pythonic_expr function to improve readability and maintainability.
      - Replaced individual checks for binary operations with a mapping approach, streamlining the code and enhancing performance in expression representation.
      
      * [Enhancement] Improve expression representation in pythonic_expr function
      
      - Added operator precedence handling to the pythonic_expr function, enhancing the conversion of TVM PrimExpr to Python-style strings.
      - Updated the visitor logic to intelligently add parentheses based on operator precedence, improving the accuracy of expression representation.
      - Included a docstring for better clarity on the function's purpose and usage.
      
      * test fix
      
      * [Enhancement] support composable expression for shape with symbolic vars (#624)
      
      * [Refactor] Enhance expression handling in utils.py and update wrapper to use pythonic_expr
      
      - Added support for additional TIR expressions (FloorDiv, Min, Max, Add, Sub, FloorMod) in the pythonic_expr function to improve string representation.
      - Replaced the deprecated legalize_c function calls in TLCUDASourceWrapper and TLCPUSourceWrapper with pythonic_expr for better expression handling in kernel launch code.
      
      * [Refactor] Simplify expression handling in pythonic_expr function
      
      - Consolidated binary and min/max operation handling in the pythonic_expr function to improve readability and maintainability.
      - Replaced individual checks for binary operations with a mapping approach, streamlining the code and enhancing performance in expression representation.
      
      * [Enhancement] Improve expression representation in pythonic_expr function
      
      - Added operator precedence handling to the pythonic_expr function, enhancing the conversion of TVM PrimExpr to Python-style strings.
      - Updated the visitor logic to intelligently add parentheses based on operator precedence, improving the accuracy of expression representation.
      - Included a docstring for better clarity on the function's purpose and usage.
      
      * test fix
      
      * minor update
      
      * 🐍
      
      Fix the file name "test_exmaple_tilelang_nsa" (#629)
      
      * [Enhancement] Add CPU utilization and count settings for Auto-Tuning (#630)
      
      * [Enhancement] Add CPU utilization and count settings for Auto-Tuning
      
      - Introduced environment variables for CPU utilization, counts, and maximum CPU count for auto-tuning.
      - Updated the AutoTuner class to utilize these new settings, improving flexibility and performance in multi-threaded environments.
      - Enhanced logging to provide better insights into the auto-tuning process based on the configured CPU settings.
      
      * typo fix
      
      * [AutoTune] Support `with set_autotune_inputs` to set auto tuning input tensors (#632)
      
      * [Refactor] Simplify and modularize autotuner implementation
      
      - Removed unused imports and extensive code sections from the autotuner module to enhance readability and maintainability.
      - Modularized the code by introducing new imports for autotuning and capturing functionalities, streamlining the overall structure.
      - Improved logging setup and removed redundant timeout handling functions, focusing on core autotuning logic.
      - Updated the AutoTuner class to better utilize the new modular structure, ensuring efficient performance during auto-tuning processes.
      
      * [Refactor] Clean up and enhance capture and tuner modules
      
      - Improved code readability by removing unnecessary blank lines and organizing imports in `capture.py` and `tuner.py`.
      - Enhanced logging in the `AutoTuner` class to provide clearer warnings regarding the usage of `supply_prog` in the context of auto-tuning.
      - Streamlined the `CaptureStack` class for better thread-local context management.
      
      * lint fix
      
      * [Refactor] Simplify configuration and autotuning logic in blocksparse GEMM example
      
      - Updated `get_configs` function to reduce the number of configurations, enhancing performance and clarity.
      - Removed the `get_best_config` function, integrating its logic directly into the `blocksparse_matmul` function with the `@autotune` decorator for streamlined autotuning.
      - Adjusted the main function to directly utilize the autotuned kernel, simplifying the overall structure and improving readability.
      - Deleted obsolete test file for autotuning decorator, cleaning up the codebase.
      
      * [Refactor] Improve code formatting and readability in autotune test file
      
      - Reformatted the `matmul` function and `get_configs` function for better readability by adjusting line breaks and indentation.
      - Fixed a typo in the `enable_rasteration` parameter name to ensure consistency.
      - Cleaned up unnecessary blank lines to enhance overall code clarity.
      
      * Update example_blocksparse_gemm.py
      
      * Update capture.py
      
      * [Pass] Introduce flag to diable cp async lowering (#633)
      
      * [Enhancement] Update PipelinePlanner to support async copy configuration
      
      - Modified the `Substitute` method in `PipelinePlanner` to accept a `use_async_copy` parameter, allowing for more flexible pipeline planning based on async copy requirements.
      - Updated the constructor of `PipelinePlanner` to initialize the `use_async_copy_` member variable.
      - Adjusted the logic in the pipeline planning process to conditionally apply async copy annotations based on the new parameter.
      - Commented out the `LoopVectorizeDynamic` call in `LowerAndLegalize` to prevent unintended modifications during the legalizing phase.
      
      * Refactor PipelinePlanning function for improved readability
      
      - Adjusted the formatting of the `use_async_copy` variable assignment in the `PipelinePlanning` function to enhance code clarity and maintainability.
      
      * fix typo (#635)
      
      * [Pass][Simplify] Introduce symbolic level simplify for condition expression (#634)
      
      * [Enhancement] Add argument simplification option to StmtSimplifier
      
      - Introduced a new `simplify_arguments` flag in the `StmtSimplifier::Apply` method to control argument simplification behavior.
      - Updated the `Simplify` function to accept the new flag, allowing for enhanced flexibility in the simplification process.
      - Adjusted the `LowerAndLegalize` and `_Simplify` functions to utilize the new argument, ensuring consistent behavior across the codebase.
      - Added comments to clarify the purpose of the new flag and its impact on simplification logic.
      
      * lint fix
      
      * [Enhancement] Improve layout inference and reduce operation handling
      
      - Updated `ParallelOp::InferLayout` to check for pure buffer stores, enhancing layout inference logic.
      - Modified `ReduceOp::Lower` to include all threads in the AllReduce operation, improving performance on specific architectures.
      - Added a TODO comment in `AllReduce` to consider merging synchronization barriers for optimization.
      
      * lint fix
      
      * [Enhancement] Add input validation for GEMM parameters
      
      - Introduced checks to ensure that the dimensions M and N are divisible by their respective warp sizes (kMPerWarp and kNPerWarp) in the Gemm::ComputeWarpPartition method.
      - Added informative error messages to assist in debugging when the input parameters do not meet the required conditions.
      
      * bug fix
      
      * Enhance test coverage by adding LLVM requirement decorator to multiple function call tests. This ensures that tests for argument count, type code, null data pointer, and dimensionality checks are only executed when LLVM is available, improving test reliability and clarity.
      
      * lint fix
      
      * Fix software pipeline stage annotation and update optional config handling in StmtSimplifier
      
      * Add Python executable detection in CMake configuration and update TVM submodule reference. Remove unused vectorization tests for improved clarity.
      
      * Update TVM submodule reference and refactor FFI registration to use static initialization blocks for improved organization and clarity.
      
      * Refactor attribute handling in layout and IR nodes to use reflection registration. This change replaces the VisitAttrs method with a RegisterReflection method for improved clarity and organization across multiple classes, including KernelLaunchFrameNode, WarpSpecializeFrameNode, LayoutNode, FragmentNode, and SwizzledLayoutNode.
      
      * finish rebase
      
      * tvm update
      
      * Refactor FFI registration across tilelang modules to use the updated `tvm.ffi` namespace. This includes changes in various files to replace `tvm._ffi` with `tvm.ffi`, enhancing consistency and clarity in the codebase.
      
      * lint fix
      
      * Update TVM submodule reference and modify CUDA runtime argument handling to use the new runtime constants for improved clarity and consistency.
      
      * lint fix
      
      * Refactor tensor data type references from "e4m3_float8" and "e5m2_float8" to "float8_e4m3" and "float8_e5m2" across multiple files for consistency and clarity.
      
      * lint fix
      
      * Refactor forward_index initialization in Fragment class to default to an empty array instead of None, ensuring consistent handling of optional outputs.
      
      * test fix
      
      * lint fix
      
      * bugfix
      
      * lint fix
      
      * reduce fix
      
      * lint fix
      
      * carver fix
      
      * cast fix
      
      * Update submodule and enhance kernel launch functionality with optional block size parameter; add device kernel launch transformation.
      
      * lint fix
      
      * bugfix
      
      * Refactor test execution in test_tilelang_cpu_gemm.py and enhance device call checks in lower.py to exclude C packed functions from kernel launch conditions.
      
      * lint fix
      
      * Update runtime.cc
      
      * phase out lisence
      
      * Update subproject commit for TVM to 555cc71
      
      * Update subproject commit for TVM to d39953fa
      
      * Update subproject commit for TVM to 9574805f
      
      * Update subproject commit for TVM to a08b7c3
      
      * fix ci
      
      * ci fix
      
      ---------
      Signed-off-by: default avatardependabot[bot] <support@github.com>
      Co-authored-by: default avatarLeiWang1999 <leiwang1999@outlook.com>
      Co-authored-by: default avatarLei Wang <34334180+LeiWang1999@users.noreply.github.com>
      Co-authored-by: default avatarCunxiao Ni <85601223+Cunxiao2002@users.noreply.github.com>
      Co-authored-by: default avatarYuxi Chi <cherichy@outlook.com>
      Co-authored-by: default avatarNathan Chen <120630832+Nathancgy@users.noreply.github.com>
      Co-authored-by: default avatarbotbw <wang1570@e.ntu.edu.sg>
      Co-authored-by: default avatardependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
      Co-authored-by: default avatarxs-keju <93414213+xs-keju@users.noreply.github.com>
      Co-authored-by: default avatarTong WU <109033598+Rachmanino@users.noreply.github.com>
      Co-authored-by: default avatarKadir Nar <kadir.nar@hotmail.com>
      Co-authored-by: default avatarYuqing Xia <35415939+xiayuqing0622@users.noreply.github.com>
      Co-authored-by: default avatarxwhzz <wh.xie@outlook.com>
      
      
      a7c9a8b9
  11. 16 Jul, 2025 1 commit
    • Lei Wang's avatar
      [Warp Specialize] Implicit Warp Specialize Programing Model (#605) · e2d25ba8
      Lei Wang authored
      * [Enhancement] Improve memory access condition checks in GlobalMemChecker
      
      - Updated the condition checks in the GlobalMemChecker to utilize symbolic bounds in the CanProve method, enhancing the accuracy of memory access validations.
      - This change ensures that both upper and lower bound conditions are evaluated with improved proof strength, contributing to more robust memory access analysis.
      
      * lintfix
      
      * [Enhancement] Add legality checks for shared memory and global range in LowerBulkCopy
      
      - Implemented checks to ensure that the shared memory range and global range are legal during the bulk copy operation.
      - Added assertions to validate that the extents of global and shared ranges match, improving the robustness of memory access validation in the LowerBulkCopy function.
      
      * [Refactor] Update barrier and clear operations in warp specialization examples
      
      - Replaced `mbarrier_wait_parity` and `mbarrier_arrive` with `barrier_wait` and `barrier_arrive` for improved clarity and consistency in synchronization.
      - Adjusted the order of `clear` operations for local fragments in `example_warp_specialize_gemm_copy_1_gemm_0` to enhance parallel execution efficiency.
      
      * [Enhancement] Implement thread partial synchronization and improve shared memory allocation handling
      
      - Added support for thread partial barrier synchronization in CUDA, allowing for more flexible thread management.
      - Enhanced the `MergeSharedMemoryAllocations` function to accept alignment bytes, improving memory allocation efficiency based on target requirements.
      - Updated the `Lower` methods in `Copy` and `Fill` classes to include conditional predicates for thread execution, ensuring better control over thread behavior.
      - Refactored the `print` function to include warp group and warp IDs for more detailed debugging output.
      - Improved the handling of dynamic shared memory allocations in the `LowerAndLegalize` function to align with target-specific requirements.
      
      * [Enhancement] Add support for disabling TMA in Copy operations
      
      - Introduced a new `disable_tma` parameter in the `Copy` class to control thread memory access behavior.
      - Updated the `Lower` method to conditionally execute bulk copy operations based on the `disable_tma` flag.
      - Enhanced the `copy` function to accept the `disable_tma` argument, allowing for more flexible memory copy operations.
      - Improved handling of `coalesced_width` to ensure it defaults to -1 when not provided, enhancing robustness in memory operations.
      
      * [Refactor] Clean up whitespace and formatting in multiple files
      
      - Removed unnecessary blank lines and adjusted line breaks for improved code readability in `example_mla_decode.py`, `example_warp_specialize_gemm_copy_gemm_0_1.py`, `phase.py`, and `copy.py`.
      - Ensured consistent formatting across functions to enhance maintainability and clarity of the codebase.
      
      * [Enhancement] Refactor flash attention implementation for improved performance and configurability
      
      - Split the shared memory allocations for query and key-value pairs to optimize memory usage.
      - Introduced command-line arguments for batch size, number of heads, and dimensions, enhancing flexibility in running the example.
      - Updated kernel execution parameters to improve thread management and synchronization.
      - Enhanced the overall structure of the flash attention function for better readability and maintainability.
      
      * fix
      
      * Update layout inference in ParallelOp to account for thread bounds; remove debug print in OptimizeForTarget
      
      * Refactor barrier handling and update example configurations
      
      - Replaced commented-out barrier creation with new barrier allocation in GEMM example.
      - Updated kernel configuration in warp specialization example to include async copy settings.
      - Enhanced barrier management in the phase optimization process to improve synchronization handling.
      - Introduced new barrier allocation function for better memory management in shared contexts.
      
      * Refactor barrier handling in LowerAndLegalize and OptimizeForTarget
      
      - Reintroduced barrier lowering in OptimizeForTarget to enhance synchronization.
      - Removed commented-out barrier lowering in LowerAndLegalize for cleaner code.
      - Added exit() call in OptimizeForTarget to halt execution after barrier lowering.
      
      * Enhance CMake configuration and clean up example scripts
      
      - Enabled compile command export in CMakeLists.txt for better build integration.
      - Removed unnecessary print statement in the warp specialization example.
      - Cleaned up commented-out code in GEMM example for improved readability.
      - Updated barrier handling in shared memory allocation transformations for better synchronization.
      
      * Refactor barrier handling in warp specialization examples
      
      - Replaced commented-out mbarrier code with new barrier allocation using T.alloc_barrier for improved synchronization.
      - Updated barrier wait and arrive calls to align with the new allocation method across multiple example scripts.
      - Enhanced code readability by removing unnecessary comments and ensuring consistent barrier management.
      
      * Update lower_shared_barrier.cc
      
      * Update phase.py
      
      * Update warp specialization example and Cython wrapper
      
      - Removed commented-out pass configuration options in the warp specialization example for clarity.
      - Added functionality to write the generated kernel source to a file named "kernel.cu".
      - Enhanced Cython wrapper to support boolean type conversion for improved type handling.
      
      * Add storage synchronization call in shared barrier transformation
      
      - Introduced a new evaluation statement to call the TVM storage sync function with "shared" as an argument, enhancing synchronization in the shared barrier handling process.
      
      * remove debug files
      
      * Remove kernel source output to file in warp specialization example
      
      * remove comments
      
      * Refactor tensor handling and update test execution in TileLang
      
      - Changed `Buffer` to `Tensor` in `customize.py` for better type consistency.
      - Updated `mbarrier_wait_parity` and `mbarrier_arrive` functions in `builtin.py` to use `tir.BufferLoad` instead of `BufferLoad`.
      - Commented out the main testing function in `test_tilelang_language_reshape.py` and replaced it with a direct call to `run_reshape_smem` for streamlined testing.
      - Removed unnecessary NVCC compiler flags in `libgen.py` to reduce verbosity.
      
      * Update test_tilelang_language_reshape.py
      e2d25ba8
  12. 03 Jul, 2025 1 commit
    • botbw's avatar
      [Experimental][Language] add `T.GEMM_SP` for sm90 sparse tensor core (#526) · be44758c
      botbw authored
      
      
      * [experimental] add a draft gemm_sp
      
      * [3rdparty] bump cutlass to v3.9.3
      
      * [lint] run format.sh
      
      * [chore] rebase
      
      * [chore] use abs path
      
      * [gemm_sp] add metadata layout
      
      * [ci] add more example
      
      * [lint] run format.sh
      
      * [chore] polish
      
      * [chore] move gemm_sp to experimental
      
      * [chore] polish
      
      * [lint] run format.sh
      
      * [Enhancement] Improve bulk copy handling and update GEMM sparse tensor test
      
      * Added a warning log for unsupported non-swizzled global layouts in the bulk copy operation, ensuring fallback to normal copy.
      * Refactored the GEMM sparse tensor test by removing unnecessary imports and simplifying the kernel compilation process.
      * Updated the test to directly call the `run_gemm_sp` function, enhancing clarity and functionality.
      
      * Implement Test
      
      * [Enhancement] Update GEMM SP and SM89 templates for improved functionality
      
      * Refactored GEMM SP computation to enhance warp partitioning logic, ensuring compatibility with Hopper architecture.
      * Updated layout inference to support new WGMMA conditions and improved error messaging for unsupported targets.
      * Modified SM89 templates to utilize new MMA atom structures, enhancing performance and compatibility with fp8 types.
      * Added conditional inclusion for GEMM SP header based on CUDA architecture version.
      
      * lint fix
      
      * [gemm_sp] support more layout and data types
      
      * Enhancement: sync T.gemm_sp's layout inference with T.gemm
      
      * Enhancement: support more block_k in compress util
      
      * [Enhancement] enable block_k=64
      
      * [Lint] run format.sh
      
      * [Enhancement] compressor support more dtype
      
      * Enhancement: enable block_K=32
      
      * [Lint] format.sh
      
      * [Fixbug] fix shape
      
      * Refactor: sync gemm
      
      * [Enhancement] enable transpose
      
      * [Enhancement] enable fp8_e4m3
      
      * [Enhancement] enable int8
      
      * [Lint] run format.sh
      
      * [Benchmark] add gemm_sp benchmark
      
      * [Example] fix 256 threads hang
      
      * [CI] fix ci
      
      * [Chore] resolve gemini feedback
      
      * [Benchmark] increase search space
      
      * [Lint] format
      
      * [CI] skip sparse tensor core related tests as only sm90 is supported
      
      * [CI] pass local run
      
      * Update gemm_sm89.h
      
      * lint fix
      
      * lint fix
      
      * [Enhancement] Add support for sparse GEMM and initialize CUDA architecture flags
      
      - Introduced a new boolean flag `enable_sparse_gemm_` to control the inclusion of sparse GEMM functionality in CUDA code generation.
      - Updated the `Finish` method to conditionally include the sparse GEMM header based on the new flag.
      - Implemented logic in `VisitStmt_` to enable sparse GEMM when the corresponding external call is detected.
      - Added a function to initialize the `TORCH_CUDA_ARCH_LIST` environment variable based on the target compute version, enhancing compatibility with PyTorch.
      - Refactored the initialization function into the appropriate module and ensured it is called in the sparse utilities module.
      
      * Update test_compress_utils.py
      
      ---------
      Co-authored-by: default avatarLeiWang1999 <leiwang1999@outlook.com>
      Co-authored-by: default avatarLei Wang <34334180+LeiWang1999@users.noreply.github.com>
      be44758c
  13. 11 Jun, 2025 1 commit
    • Yu Cheng's avatar
      [Feature] Introduce Persistent Loop and Update GEMM Example (#563) · e7b97be2
      Yu Cheng authored
      * [Feature] Added Support for Synchronizing Grids and Persistent Threadblock Transformation
      
      - Defined the sync_grid operation in builtin.cc and builtin.h, allowing synchronization of all threads within a grid.
      - Implemented support for sync_grid in codegen_cuda.cc, ensuring proper handling of this operation in the generated CUDA code.
      - Added the PersistThreadblock transformation, enabling the conversion of thread blocks to persistent thread blocks, enhancing support for persistent kernels.
      - Updated relevant documentation and comments to reflect the addition of new features and usage instructions.
      
      * [Example] Add MLA Decode With Persistent Threadblock Example
      
      * [Feature] Introduce Persistent Loop and Update GEMM Example
      
      - Added a new persistent loop construct in the TIR framework, enabling more efficient kernel execution.
      - Updated the GEMM example to utilize the new persistent primitive, enhancing performance for matrix multiplication.
      - Introduced a `loop_break` intrinsic for better control flow within persistent loops.
      - Updated relevant files to support the new features, including changes in code generation and language interface.
      
      * lint fix
      e7b97be2
  14. 01 Jun, 2025 1 commit
    • Lei Wang's avatar
      [AMD] Support float8 matrix core (#537) · 5872e647
      Lei Wang authored
      
      
      * [Enhancement] Add support for FP8 types in CUDA and HIP code generation
      
      * Updated `GetFP8Type` function in `codegen_cuda.cc` and `codegen_hip.cc` to handle new FP8 types, including `kFloat8_e4m3fnuz`.
      * Introduced a new header file `hip_fp8.h` for FP8 type definitions in HIP.
      * Modified type mappings in `dlpack.py` and `mfma_macro_generator.py` to accommodate new FP8 types.
      * Enhanced type handling in `TLHIPSourceWrapper` and `tensor.py` for better integration with FP8 types.
      * Added necessary includes and logic to support FP8 in the code generation process, improving performance and compatibility with FP8 data types.
      
      * lint fix
      
      * Update src/target/codegen_hip.cc
      Co-authored-by: default avatargemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
      
      * Update tilelang/intrinsics/mfma_macro_generator.py
      Co-authored-by: default avatargemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
      
      * workaround
      
      * fix
      
      * Update submodule TVM to latest commit 587028ffebfff0ded520f8f90d62f0f6b165906c
      
      * bug fix
      
      * Refactor tilelang matrix multiplication to support transposition and packing options. Adjusted shared memory shapes and loading logic for A and B matrices. Updated test cases to validate new functionality.
      
      * Refactor assertion function for tilelang matrix multiplication to improve readability by formatting parameters and aligning code. Cleaned up whitespace in intrinsic layout functions for consistency.
      
      * Update bfloat16 type definitions in common.h and gemm.h for consistency. Changed __hip_bfloat16 to hip_bfloat16 and updated MfmaTraits specialization accordingly.
      
      * lint fix
      
      ---------
      Co-authored-by: default avatargemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
      5872e647
  15. 26 May, 2025 1 commit
    • Lei Wang's avatar
      [Refactor] Replace default fp8 dtype with cute to perform fast cast (#520) · 6addc509
      Lei Wang authored
      * [Refactor] Enhance GEMM Warp Partitioning Logic and Introduce Buffer Remapping (#516)
      
      * Improved the warp partitioning logic in `Gemm::ComputeWarpPartition` to better accommodate various GEMM policies, including FullRow, FullCol, and Square, ensuring optimal performance based on matrix dimensions.
      * Introduced a new `RemapBufferRewriter` class to handle buffer reference updates and padding annotations during statement transformations, enhancing memory access safety and clarity.
      * Updated the `OptimizeForTarget` function to include a new step for configuring index bitwidth, improving the overall optimization process.
      * Refactored existing code to utilize constants for warp sizes, enhancing maintainability and readability.
      * Added checks to ensure correct warp allocation and padding map handling, improving robustness in memory management strategies.
      
      * [Refactor] Update ConfigIndexBitwidthRewriter to Support Auto-Check Feature
      
      * Modified the constructor of `ConfigIndexBitwidthRewriter` to include an `auto_check` parameter, allowing for dynamic bitwidth adjustments based on input conditions.
      * Enhanced the `VisitExpr_` methods to apply the new auto-check logic, ensuring that integer types are upgraded to 64 bits when necessary, or to a specified index bitwidth otherwise.
      * Updated the `ConfigIndexBitwidth` pass to determine the index bitwidth based on the presence of configuration, improving flexibility in handling different scenarios.
      
      * Add dynamic matrix multiplication example and corresponding test
      
      * Introduced `example_dynamic.py` to demonstrate dynamic matrix multiplication using TileLang and PyTorch, including a main function for execution and performance profiling.
      * Added `test_example_dynamic.py` to validate the functionality of the dynamic matrix multiplication example.
      * The example includes detailed parameter configurations and checks against PyTorch's implementation for correctness.
      
      * lint fix
      
      * Add get_num_sms function to retrieve the number of streaming multiprocessors on the CUDA device
      
      * Implemented the `get_num_sms` function in `cuda_driver.py` to return the count of streaming multiprocessors for a specified CUDA device.
      * Updated the `__init__.py` file to include the new function in the module exports.
      
      * lint fix
      
      * Add global barrier state and expectation handling in CUDA code generation
      
      * Introduced `vid_global_barrier_state_` and `vid_global_barrier_expect_` to manage global barrier synchronization in the CUDA code generator.
      * Updated `Finish` method to declare the global barrier state if needed.
      * Implemented handling for `EvaluateNode` to initialize the barrier expectation.
      * Removed unnecessary extern declaration for the global barrier state in `PrintStorageSync` method.
      * Enhanced CUDA FP8 type definitions for better alignment and structure.
      
      * Enhance CUDA FP8 type handling and debug printing
      
      * Updated `cuda_fp8.h` to replace NVidia's FP8 types with Cute's FP8 types for better compatibility and structure.
      * Added specializations for `debug_print_var` and `debug_print_buffer_value` functions to support the new FP8 types, improving debugging capabilities for these data types.
      * Updated `debug.h` to include the new `cuda_fp8.h` header for access to the FP8 type definitions.
      
      * Refactor CUDA code generation to remove unnecessary managed qualifier for global barrier state
      
      * Updated the `Finish` method in `codegen_cuda.cc` to declare the global barrier state without the `__managed__` qualifier, simplifying the declaration.
      * Added a new `sync_global` function in `builtin.py` to synchronize all threads in a block, enhancing synchronization capabilities in the TileLang framework.
      
      * Remove deprecated CUDA kernel and Python script for FP8 E4M3 casting
      
      * Deleted the `cast_to_fp8_e4m3_kernel` CUDA kernel implementation and its corresponding Python script, streamlining the codebase by removing unused components related to FP8 E4M3 type casting.
      * This cleanup enhances maintainability and reduces potential confusion regarding obsolete code.
      
      * lint fix
      6addc509
  16. 25 May, 2025 1 commit
    • Lei Wang's avatar
      [Enhancement] Support auto synchronization for global memory access (#519) · 623edf4c
      Lei Wang authored
      * [Refactor] Enhance GEMM Warp Partitioning Logic and Introduce Buffer Remapping (#516)
      
      * Improved the warp partitioning logic in `Gemm::ComputeWarpPartition` to better accommodate various GEMM policies, including FullRow, FullCol, and Square, ensuring optimal performance based on matrix dimensions.
      * Introduced a new `RemapBufferRewriter` class to handle buffer reference updates and padding annotations during statement transformations, enhancing memory access safety and clarity.
      * Updated the `OptimizeForTarget` function to include a new step for configuring index bitwidth, improving the overall optimization process.
      * Refactored existing code to utilize constants for warp sizes, enhancing maintainability and readability.
      * Added checks to ensure correct warp allocation and padding map handling, improving robustness in memory management strategies.
      
      * [Refactor] Update ConfigIndexBitwidthRewriter to Support Auto-Check Feature
      
      * Modified the constructor of `ConfigIndexBitwidthRewriter` to include an `auto_check` parameter, allowing for dynamic bitwidth adjustments based on input conditions.
      * Enhanced the `VisitExpr_` methods to apply the new auto-check logic, ensuring that integer types are upgraded to 64 bits when necessary, or to a specified index bitwidth otherwise.
      * Updated the `ConfigIndexBitwidth` pass to determine the index bitwidth based on the presence of configuration, improving flexibility in handling different scenarios.
      
      * Add dynamic matrix multiplication example and corresponding test
      
      * Introduced `example_dynamic.py` to demonstrate dynamic matrix multiplication using TileLang and PyTorch, including a main function for execution and performance profiling.
      * Added `test_example_dynamic.py` to validate the functionality of the dynamic matrix multiplication example.
      * The example includes detailed parameter configurations and checks against PyTorch's implementation for correctness.
      
      * lint fix
      
      * Add get_num_sms function to retrieve the number of streaming multiprocessors on the CUDA device
      
      * Implemented the `get_num_sms` function in `cuda_driver.py` to return the count of streaming multiprocessors for a specified CUDA device.
      * Updated the `__init__.py` file to include the new function in the module exports.
      
      * lint fix
      
      * Add global barrier state and expectation handling in CUDA code generation
      
      * Introduced `vid_global_barrier_state_` and `vid_global_barrier_expect_` to manage global barrier synchronization in the CUDA code generator.
      * Updated `Finish` method to declare the global barrier state if needed.
      * Implemented handling for `EvaluateNode` to initialize the barrier expectation.
      * Removed unnecessary extern declaration for the global barrier state in `PrintStorageSync` method.
      * Enhanced CUDA FP8 type definitions for better alignment and structure.
      623edf4c
  17. 03 May, 2025 1 commit
    • Lei Wang's avatar
      [Refactor] Separate warp specialize rewriter and tma barrier injector pass (#447) · fce16b00
      Lei Wang authored
      * [Refactor] Update KernelLaunch to clarify CPU and GPU kernel launch logic
      
      * Added comments to distinguish between CPU and GPU kernel launch sections for better code readability.
      * Changed the creation of empty blocks to use a consistent "root" identifier, enhancing clarity in frame management.
      
      * [Refactor] Rename operations for consistency in lower_hopper_intrin and related files
      
      * Updated function names from CamelCase to snake_case for better consistency across the codebase.
      * Refactored calls to `CreateTMADescriptorOp`, `CreateListofMBarrierOp`, and similar functions to their new names: `create_tma_descriptor`, `create_list_of_mbarrier`, etc.
      * Adjusted corresponding test cases to reflect these changes, ensuring compatibility with the new naming conventions.
      
      * [Refactor] Rename operations to snake_case for consistency
      
      * Updated function names from CamelCase to snake_case across various files, including `CreateTMADescriptorOp` to `create_tma_descriptor`, `GetMBarrierOp` to `get_mbarrier`, and others.
      * Adjusted corresponding calls and definitions in the codebase to reflect these naming changes, ensuring uniformity and improved readability.
      * Enhanced layout inference and loop partitioning logic to accommodate the new naming conventions.
      
      * [Feature] Introduce Warp Specialization and Eliminate Storage Sync for MBarrier
      
      * Added a new example `gemm_ws.py` demonstrating matrix multiplication with warp specialization using TileLang.
      * Implemented `WarpSpecializeFrame` and `WarpSpecialize` functionality to manage warp group indices in TIR frames.
      * Introduced `EliminateStorageSyncForMBarrier` transformation to optimize storage synchronization in mbarrier regions.
      * Enhanced the TileLang API with new methods for retrieving block and thread extents.
      * Updated the `LowerAndLegalize` and `OptimizeForTarget` functions to incorporate the new transformation.
      * Improved layout inference and kernel launch logic for better performance and clarity.
      
      * [Refactor] Clean up code formatting and improve readability
      
      * Added blank lines for better separation of code blocks in `gemm_ws.py`, `phase.py`, `kernel.py`, and `warpgroup.py`.
      * Reformatted the `tilelang.compile` call in `gemm_ws.py` for improved clarity.
      * Updated comments in `warpgroup.py` to clarify the availability of the `WarpSpecialize` function for NVIDIA GPUs.
      * Ensured consistent spacing and formatting across multiple files to enhance overall code readability.
      
      * lint fix
      
      * [Refactor] Update mbarrier functions for improved clarity and consistency
      
      * Refactored `mbarrier_wait_parity` and `mbarrier_arrive` functions in `builtin.py` to accept explicit parameters for better readability.
      * Updated calls in `gemm_ws.py` to use the new function signatures, enhancing code clarity.
      * Adjusted `warpgroup.py` to remove unused thread extent variable, streamlining the code.
      * Added detailed docstrings to clarify usage examples for memory barrier functions.
      
      * Added blank lines in `mbarrier_wait_parity` and `mbarrier_arrive` functions in `builtin.py` for improved code readability and separation of logical sections.
      
      * [Feature] Add examples for warp specialization and TMA barrier integration
      
      * Introduced three new example scripts: `example_warp_specialize_gemm.py`, `example_warp_specialize_gemm_barrier4.py`, and `example_warp_specialize_mla.py` demonstrating matrix multiplication with warp specialization and TMA barriers.
      * Implemented kernel functions with shared memory allocation and memory barrier synchronization for improved performance.
      * Enhanced the TileLang API with new methods for compiling and testing kernels in Python using PyTorch.
      * Updated the `phase.py` to include TMA barrier injection in the optimization process.
      * Improved documentation and comments for better clarity on usage and functionality.
      
      * [Feature] Add example for warp specialization in GEMM with TMA barriers
      
      * Introduced a new example script `example_warp_specialize_gemm_stage2.py` demonstrating matrix multiplication using warp specialization and TMA barriers.
      * Implemented a kernel function with shared memory allocation and memory barrier synchronization for enhanced performance.
      * Included functionality to compile the kernel into a PyTorch-compatible function and validate its correctness against PyTorch's reference implementation.
      * Enhanced documentation and comments for clarity on usage and functionality.
      
      * lint fix
      
      * [Feature] Implement WarpSpecializedDetector for TMA and MBarrier Detection
      
      * Added the `WarpSpecializedDetector` class to identify the presence of TMA operations and memory barrier operations within a given TIR statement.
      * Enhanced the `WarpSpecialized` pass to utilize the detector, allowing for conditional substitution based on the detection results.
      * Improved code organization by including necessary headers and utilizing the `IRVisitorWithAnalyzer` for analysis.
      * This addition aims to optimize warp specialization by ensuring that only relevant functions are transformed, enhancing performance and correctness.
      
      * lint fix
      fce16b00
  18. 30 Apr, 2025 1 commit
    • Lei Wang's avatar
      [Language] Support explicit programming for identified warp groups (#445) · 6972aed7
      Lei Wang authored
      * [Refactor] Update KernelLaunch to clarify CPU and GPU kernel launch logic
      
      * Added comments to distinguish between CPU and GPU kernel launch sections for better code readability.
      * Changed the creation of empty blocks to use a consistent "root" identifier, enhancing clarity in frame management.
      
      * [Refactor] Rename operations for consistency in lower_hopper_intrin and related files
      
      * Updated function names from CamelCase to snake_case for better consistency across the codebase.
      * Refactored calls to `CreateTMADescriptorOp`, `CreateListofMBarrierOp`, and similar functions to their new names: `create_tma_descriptor`, `create_list_of_mbarrier`, etc.
      * Adjusted corresponding test cases to reflect these changes, ensuring compatibility with the new naming conventions.
      
      * [Refactor] Rename operations to snake_case for consistency
      
      * Updated function names from CamelCase to snake_case across various files, including `CreateTMADescriptorOp` to `create_tma_descriptor`, `GetMBarrierOp` to `get_mbarrier`, and others.
      * Adjusted corresponding calls and definitions in the codebase to reflect these naming changes, ensuring uniformity and improved readability.
      * Enhanced layout inference and loop partitioning logic to accommodate the new naming conventions.
      
      * [Feature] Introduce Warp Specialization and Eliminate Storage Sync for MBarrier
      
      * Added a new example `gemm_ws.py` demonstrating matrix multiplication with warp specialization using TileLang.
      * Implemented `WarpSpecializeFrame` and `WarpSpecialize` functionality to manage warp group indices in TIR frames.
      * Introduced `EliminateStorageSyncForMBarrier` transformation to optimize storage synchronization in mbarrier regions.
      * Enhanced the TileLang API with new methods for retrieving block and thread extents.
      * Updated the `LowerAndLegalize` and `OptimizeForTarget` functions to incorporate the new transformation.
      * Improved layout inference and kernel launch logic for better performance and clarity.
      
      * [Refactor] Clean up code formatting and improve readability
      
      * Added blank lines for better separation of code blocks in `gemm_ws.py`, `phase.py`, `kernel.py`, and `warpgroup.py`.
      * Reformatted the `tilelang.compile` call in `gemm_ws.py` for improved clarity.
      * Updated comments in `warpgroup.py` to clarify the availability of the `WarpSpecialize` function for NVIDIA GPUs.
      * Ensured consistent spacing and formatting across multiple files to enhance overall code readability.
      
      * lint fix
      
      * [Refactor] Update mbarrier functions for improved clarity and consistency
      
      * Refactored `mbarrier_wait_parity` and `mbarrier_arrive` functions in `builtin.py` to accept explicit parameters for better readability.
      * Updated calls in `gemm_ws.py` to use the new function signatures, enhancing code clarity.
      * Adjusted `warpgroup.py` to remove unused thread extent variable, streamlining the code.
      * Added detailed docstrings to clarify usage examples for memory barrier functions.
      
      * Added blank lines in `mbarrier_wait_parity` and `mbarrier_arrive` functions in `builtin.py` for improved code readability and separation of logical sections.
      6972aed7
  19. 05 Apr, 2025 1 commit
    • Lei Wang's avatar
      [Enhancement] Enhance FP8/FP4 type handling in CUDA codegen (#323) · 89725f7f
      Lei Wang authored
      
      
      * [Enhancement] Introduce CUDA driver module and refactor CUDA device handling
      
      - Added a new `cuda_driver` module to encapsulate CUDA device properties and functionalities.
      - Updated `CUDA` class in `cuda.py` to utilize the new driver for fetching device name and shared memory capabilities.
      - Introduced `get_device_name` and `get_shared_memory_per_block` functions in the `cuda_driver` for improved device property management.
      - This refactor enhances code organization and maintainability while improving the handling of CUDA device attributes.
      
      * [Refactor] Clean up whitespace in CUDA-related files
      
      - Removed unnecessary blank lines in `cuda.py`, `__init__.py`, and `cuda_driver.py` to improve code readability and maintainability.
      - This change enhances the overall organization of the codebase without altering functionality.
      
      * [Benchmark] Add FP8 Matrix Multiplication Benchmark Script
      
      - Introduced a new benchmark script for FP8 matrix multiplication in `benchmark/matmul_fp8/benchmark_matmul.py`.
      - The script includes functions for reference matrix multiplication, configuration generation for autotuning, and an autotuned kernel for performance measurement.
      - Added command-line argument parsing for matrix dimensions and the option to enable BitBLAS roller for search space exploration.
      - The benchmark computes and prints the best latency and performance metrics, enhancing the benchmarking capabilities for FP8 operations.
      
      * lint fix
      
      * Update submodule and enhance FP8 type handling in CUDA codegen
      
      - Updated the TVM submodule to the latest commit.
      - Modified FP8 type handling in `codegen_cuda.cc` to use more descriptive type codes.
      - Improved constant printing for FP8 and bfloat16 types, ensuring correct representation in generated code.
      - Added error handling for missing configuration keys in the AutoTuner class.
      
      * lint fix
      
      * Remove print statement from example script
      
      * lint fix
      
      * fix
      
      ---------
      Co-authored-by: default avatarLeiWang1999 <wyatuestc@gmail.com>
      89725f7f
  20. 31 Mar, 2025 1 commit
    • Lei Wang's avatar
      [Bugfix] Fix dynamic axis with variable extent (#311) · c30904ea
      Lei Wang authored
      * [Enhancement] Improve error message for RampNode in CUDA codegen
      
      - Updated the error message in the VisitExpr_ method for RampNode to include the specific Ramp node and lane count when the lane count exceeds the limit of 4. This change enhances debugging by providing clearer context for the error.
      - Refactored the loop vectorization logic in loop_vectorize_dynamic.cc to improve readability and maintainability, ensuring that dynamic vectorization checks are performed correctly and efficiently.
      
      * lint fix
      c30904ea
  21. 21 Mar, 2025 1 commit
    • Lei Wang's avatar
      [Language] Introduce `T.alloc_var` to define a variable like `int var;` (#255) · c770a58f
      Lei Wang authored
      * [Enhancement] Add matrix multiplication functions for integer and float variables in Cython JIT
      
      - Introduced `matmul_int_variable` and `matmul_float_variable` functions to support matrix multiplication with dynamic shapes and additional parameters.
      - Implemented corresponding `run_matmul_int_variable` and `run_matmul_float_variable` functions for testing.
      - Updated test cases to validate the new matrix multiplication implementations.
      - Enhanced error handling in library initialization and compilation processes across various modules.
      - Improved dynamic memory handling in CUDA kernel initialization to provide better error reporting.
      
      * lint fix
      
      * optimize
      
      * Support var defiine
      
      * lint fix
      
      * Update TVM submodule and add alloc_variable function to allocate local variables in TileLang
      
      - Updated the TVM submodule to the latest commit.
      - Introduced `alloc_variable` function in `allocate.py` to support local variable allocation with specified data types and scopes.
      
      * lint fix
      
      * Refactor variable allocation functions for consistency
      
      - Renamed `alloc_variable` to `alloc_var` across multiple files for improved consistency.
      - Updated corresponding test functions to reflect the new naming convention.
      - Adjusted imports in `__init__.py` to align with the changes.
      c770a58f
  22. 20 Mar, 2025 1 commit
    • Lei Wang's avatar
      [Refactor] Phaseout LLVM Dependency by Making it Optional (#247) · f2e99180
      Lei Wang authored
      * remove llvm build
      
      * [Refactor] Update kernel compilation and profiling in examples
      
      - Replaced `tilelang.lower` with `tilelang.compile` in multiple example scripts to streamline kernel compilation.
      - Updated profiling calls to utilize the new `get_profiler` method, enhancing performance measurement consistency.
      - Adjusted assertions and benchmarking methods to align with the new profiling structure across various examples, ensuring correctness and clarity in performance evaluations.
      
      * lint fix
      
      * License Update
      
      * [Refactor] Improve code formatting and documentation in CUDA header and HIP runtime files
      
      - Adjusted formatting in `cuda.h` for better readability, including alignment of comments and struct fields.
      - Cleaned up whitespace and improved comment clarity in `rt_mod_hip.cc` to enhance code maintainability.
      
      * [Refactor] Enhance formatting and clarity in CUDA header and HIP runtime files
      
      - Improved comment alignment and readability in `cuda.h`.
      - Cleaned up whitespace and formatting in `rt_mod_hip.cc` to enhance maintainability.
      
      * lint fix
      
      * lint fix
      
      * lint fix
      
      * lint fix
      
      * fix
      
      * License update
      
      * [Enhancement] Update JITKernel to use artifact for kernel source
      
      - Assigned the generated artifact to `self.artifact` for better management.
      - Updated kernel source references to use `artifact.kernel_source` for consistency in execution backend handling.
      
      * lint fix
      
      * Add @tilelang.testing.requires_llvm decorator to vectorization tests
      
      * Enhance setup.py and env.py for library management
      
      - Added functionality to remove original files after copying in CMakeBuild.
      - Updated TVM_LIBRARY_PATH in env.py to include the PyPI build library path for better integration.
      
      * Refactor TVM_LIBRARY_PATH assignment for improved readability in env.py
      
      * Refactor CMakeBuild file handling in setup.py
      
      - Added a check to ensure the target library directory exists before copying .so files.
      - Improved the logic for creating the target directory and copying files to enhance robustness.
      
      * bugfix
      
      * Rename BuildTLDebug to BuildTileLangCUDAWithoutCompile and update registration. Add @tilelang.testing.requires_llvm decorator to multiple tests for LLVM requirement.
      
      * lint fix
      
      * Enhance TileLang code generation by adding support for device code generation without compilation. Updated `host_codegen` and `device_codegen` functions to include new transformations and registration for `tilelang_hip_without_compile`. Refactored JIT kernel adapters to accommodate host and device modules, improving overall integration and flexibility.
      
      * lint fix
      
      * Add support for C target in device code generation
      
      - Updated `device_codegen_without_compile` to include handling for the C target by registering the `tilelang_cpp` function.
      
      * [Enhancement] Implement auto-clear cache feature based on environment variable
      
      * Added TILELANG_CLEAR_CACHE environment variable to control cache clearing.
      * Updated CI workflow to set TILELANG_CLEAR_CACHE during testing.
      * Modified cache initialization to clear cache if TILELANG_CLEAR_CACHE is set to true.
      
      * [Refactor] Update kernel invocation and import paths in tests and cache
      
      * Changed kernel invocation in `test_tilelang_kernel_dequantize_gemm.py` to return the result.
      * Updated import statements in `test_tilelang_kernel_int4_gemm_mma.py` to use `bitblas` instead of `tilelang`.
      * Refactored paths for artifact and parameters in `kernel_cache.py` for better maintainability.
      
      * [Refactor] Clean up whitespace and improve code formatting in kernel_cache.py
      
      * Removed unnecessary blank lines and adjusted spacing for better readability in the KernelCache class.
      * Enhanced overall code formatting to align with project standards.
      
      * [Enhancement] Add bfloat16 test case and improve kernel caching logic
      
      * Introduced a new test case for bfloat16 matrix multiplication in `test_tilelang_kernel_gemm_mma_intrinsic.py`.
      * Updated `KernelCache` to handle multiple kernel source files and improve error handling during saving and loading.
      * Refactored `JITKernel` to support instantiation from a database, enhancing flexibility in kernel management.
      * Adjusted `CtypesKernelAdapter` and `CythonKernelAdapter` to utilize the new kernel loading mechanism from the database.
      * Improved code formatting and readability across several files.
      
      * lint fix
      
      * Update bfloat16 matrix multiplication test case to use larger dimensions for improved coverage
      f2e99180
  23. 19 Mar, 2025 1 commit
  24. 14 Mar, 2025 1 commit
    • Lei Wang's avatar
      [Enhancement] Allow mma fallback when wgmma is not supported (#206) · 45559a1f
      Lei Wang authored
      * Enhance error message for constant size stack allocation in CUDA codegen. Include the actual constant size and buffer variable name in the error output for better debugging.
      
      * Refactor GEMM and Bulk Copy operations to enhance layout handling and support for Hopper architecture
      
      - Update `ComputeWarpPartition` to include a new parameter for Hopper WGMMA support.
      - Modify layout checks in `LowerBulkCopy` to accommodate new GEMM layout types.
      - Enhance layout inference logic in `InferLayout` for better compatibility with Hopper architecture.
      - Include necessary header files for built-in operations and layout inference improvements.
      
      * lint fix
      
      * Remove unused builtin.h include directive
      
      * Update include path for builtin.h
      45559a1f
  25. 12 Mar, 2025 1 commit
    • Yu Cheng's avatar
      [Feature] Add TMA Store Synchronization Support (#195) · eba7dd5a
      Yu Cheng authored
      - Introduce TMAStoreArrive and TMAStoreWait operations for CUDA TMA store synchronization
      - Add new builtin operations in op/builtin.cc and op/builtin.h
      - Implement TMAStoreSyncInjector to automatically inject TMA store synchronization calls
      - Update CUDA codegen to support new TMA store synchronization intrinsics
      - Add Python language bindings for new TMA store synchronization operations
      eba7dd5a
  26. 27 Feb, 2025 1 commit
    • Lei Wang's avatar
      [JIT] Enhance cython/ctypes wrapper for tma descriptor (#126) · 7b74bb01
      Lei Wang authored
      
      
      * refactor code
      
      * enhance tutorial
      
      * Enhance error handling and code generation in CUDA and TileLang components
      
      This commit introduces several improvements across multiple files:
      - Added more informative error messages in GEMM layout checks
      - Updated CUDA codegen to support more flexible function signature generation
      - Improved TMA descriptor initialization and kernel dispatch logic
      - Refined library generation and source code parsing utilities
      - Enhanced error handling in various adapter and wrapper classes
      
      * Add thread tag validation for warp specialization
      
      Introduce a ThreadTagChecker to validate that a PrimFunc only uses threadIdx.x before applying warp specialization. This prevents unintended transformations on kernels with complex thread binding and provides a clear warning to users about potential issues with warp specialization.
      
      * Update TileLang Profiling and Compilation in Flash Decoding Examples
      
      Refactor the profiling and compilation workflow in two flash decoding example scripts:
      - Replace `tilelang.lower()` and `tilelang.Profiler()` with `tilelang.compile()`
      - Simplify profiler initialization using `get_profiler()`
      - Update method calls to use the new profiler and compiled kernel objects
      - Maintain existing performance benchmarking and validation logic
      
      * Refactor and clean up code formatting in TileLang testing and adapter modules
      
      This commit includes several code style and formatting improvements:
      - Adjust whitespace and line breaks in test files
      - Improve code formatting in CUDA source wrapper and adapter utilities
      - Enhance readability of function calls and argument handling
      - Remove unnecessary whitespace and standardize indentation
      - Simplify function signatures and argument parsing
      
      * Refactor CUDA codegen and improve code formatting
      
      This commit includes several improvements to CUDA code generation and formatting:
      - Enhance function signature generation in CodeGenTileLangCUDA
      - Improve code formatting and readability in CUDA-related files
      - Simplify parameter handling and type annotations
      - Clean up whitespace and line breaks in codegen and layout files
      
      ---------
      Co-authored-by: default avatarUbuntu <dlisuser@h100testl730RPS.xu5snccwrbtejcqqalluoku5hb.xx.internal.cloudapp.net>
      7b74bb01
  27. 06 Feb, 2025 1 commit
    • Lei Wang's avatar
      [Dev] Support FP8 Codegen for cuda backend (#64) · 61de5288
      Lei Wang authored
      * [Enhancement] Add VectorizeLoop function and update imports for compatibility
      
      * [CI][Test] Improve test cases for vectorization and fix typos in parser comments
      
      * lint fix
      
      * Fix incorrect module reference for VectorizeLoop transformation
      
      * Refactor vectorize_loop transformation by removing unused extent mutation logic
      
      * [Enhancement] Add support for FP8 data types and global barriers in CUDA codegen
      
      * Fix formatting in CUDA FP8 header file for consistency
      
      * Refactor CI workflow to use 'tilelang_ci' virtual environment and update CUDA type printing for better clarity
      
      * Update submodule 'tvm' to latest commit for improved functionality
      
      * Refactor execution backend references from 'dl_pack' to 'dlpack' for consistency and clarity; add apply_simplify function to simplify PrimFunc or IRModule.
      
      * Refactor CUDA code for improved readability; clean up formatting and remove unnecessary whitespace in multiple files.
      
      * Refactor import statement in test_tilelang_kernel_dequantize_gemm.py to use 'tilelang.language' for consistency
      
      * Add CUDA requirements to FP8 test cases and update references for clarity
      
      * Add a blank line for improved readability in test_tilelang_kernel_fp8_gemm_mma.py
      
      * Fix data type in reference result calculation for consistency in test_tilelang_kernel_gemm_mma_intrinsic.py
      
      * Add CUDA requirements and FP8 test cases for matmul and gemv simulations
      
      * Remove debug print statements and use tilelang's testing assertion for result validation in test_tilelang_kernel_gemm_mma_intrinsic.py
      
      * Remove outdated comment regarding FP8 tests in test_tilelang_kernel_gemv_simt.py
      61de5288
  28. 24 Jan, 2025 1 commit
    • Lei Wang's avatar
      [Debug] Introduce `T.print` for buffer and variables logging on frontend (#45) · 8cdc185b
      Lei Wang authored
      * [Doc] Update documentation structure and content: add overview section, revise project name, and change theme to Furo
      
      * [Feature] Add device-side debug printing functions and integrate into kernel interface
      
      * lint fix
      
      * remove debug print
      
      * implement test for debug
      
      * lint fix
      
      * add some comments
      
      * Enhance fragment design and assert fragment print
      
      * enhance debug print
      
      * add test for msg
      
      * lint fix
      8cdc185b
  29. 11 Jan, 2025 2 commits
    • Lei Wang's avatar
      [Lint] Overall Typo and Linting Fixes (#13) · fa511857
      Lei Wang authored
      * README.md fixed
      
      * update test ci
      
      * Lint and Typo Fix
      
      * Clang Format Lint Fix
      fa511857
    • Lei Wang's avatar
      [Initialization] Migration of Codebase from Dev Branch into Main (#10) · 57ab687c
      Lei Wang authored
      
      
      * Add format.sh script for code formatting and linting
      
      * docs update
      
      * center align the title
      
      * lint fix
      
      * add ignore
      
      * Add .gitignore for 3rdparty directory
      
      * Add requirements-dev.txt, requirements-test.txt, and requirements.txt
      
      * 3rdparty
      
      * Add gemm.h, CMakeLists.txt, _ffi_api.py, __init__.py, runtime.h, reduce.h, loop_partition.h, utils.h, and loop_vectorize.h
      
      * Refactor CMakeLists.txt and include statements
      
      - Update CMakeLists.txt to use a newer version of CMake and add project name
      - Remove unnecessary include directories
      
      Fix include paths in layout.cc, codegen.cc, codegen.h, rt_mod.cc, frontend_legalize.cc, inject_pipeline.cc, layout_inference.cc, loop_vectorize.cc, and lower_tile_op.cc
      
      - Update include paths to use relative paths instead of absolute paths
      
      * Update submodule for 3rdparty/tvm
      
      * update
      
      * load dll first
      
      * Refactor CMakeLists.txt and include statements
      
      * Refactor CMakeLists.txt and include statements
      
      * git keep update
      
      * Refactor CMakeLists.txt and include statements
      
      * Refactor CMakeLists.txt and include statements
      
      * refactor code structure
      
      * Update Readme
      
      * CMakeLists Customized
      
      * update readme
      
      * update README
      
      * update readme
      
      * update usage
      
      * with TVM_IMPORT_PYTHON_PATH to handle own tvm build python import
      
      * annotate lower transform global func with `transform` prefix
      
      * Migrate Simplify Pass from tilelang tvm branch
      
      * enhance system environment handling with __init__ and CMake
      
      * Initial commit
      
      * CODE_OF_CONDUCT.md committed
      
      * LICENSE committed
      
      * README.md committed
      
      * SECURITY.md committed
      
      * SUPPORT.md committed
      
      * CODE_OF_CONDUCT Commit
      
      * LICENSE Commit
      
      * SECURITY Commit
      
      * SUPPORT Commit
      
      * Modify Support
      
      * Update README.md
      
      * security ci update
      
      * remove examples
      
      * Update and implement clang-format
      
      * add composable kernel components
      
      * Migrate from latest update
      
      * submodule update
      
      * Test update
      
      * Update License
      
      * Spell check
      
      * lint fix
      
      * add clang-tidy to apply static analysis for c source
      
      * update tilelang examples
      
      * Update Install Docs
      
      * Refactor filetree
      
      * Enhance Install
      
      * conflict resloved
      
      * annotate_version
      
      * Initial Update
      
      * test fix
      
      * install
      
      * Implement setup.py
      
      * lint fix
      
      * Separate Init
      
      * Separate test
      
      * docker file commit
      
      * add logo
      
      * Update Readme and Examples
      
      * update readme
      
      * update logo
      
      * Implement AMD Installation
      
      * Add License
      
      * Update AMD MI300x Benchmark
      
      * update README
      
      * update mi300 benchmark scripts
      
      * update ignore
      
      * enhance build scirpt
      
      * update image
      
      * enhance setup.py to remove duplicated libraries
      
      * remove debug files
      
      * update readme
      
      * update image
      
      * update gemm examples
      
      * update flashattention README
      
      * readme update
      
      * add cmake into requirements
      
      * libinfo fix
      
      * auto update submodule
      
      * lint fix
      
      * Fix AMD Build and Test
      
      * Update check for transpose attribute for CDNA Arch
      
      * typo fix for amd
      
      * Implement Matmul Benchmark
      
      * Refactor Code
      
      * [TypoFix] Fix GEMM Example
      
      * [Docs] Init Linear Attention README
      
      * [TYPO] Typo fix
      
      * [Lint] Lint Fix
      
      * enhance example with intrinsics
      
      * [Enhancement] Improve Buffer Collection during IR Parser
      
      * [Dev] Introduce Current classmethod to get current frame
      
      * submodule update
      
      * fake test pass update
      
      * support thread_extent_api
      
      * code optimize
      
      * Add GEMM function implementation for matrix multiplication
      
      * Update logging format to reflect TileLang in logger messages
      
      * Refactor CMakeLists.txt for improved readability and set default build type to Release
      
      * Support Gemm SS Primitives Implementation
      
      * [README] Upload Tile Language Logo (#5)
      
      * update logo
      
      * Update README.md to enhance formatting and center the title
      
      ---------
      Co-authored-by: default avatarmicrosoft-github-operations[bot] <55726097+microsoft-github-operations[bot]@users.noreply.github.com>
      Co-authored-by: default avatarMicrosoft Open Source <microsoftopensource@users.noreply.github.com>
      Co-authored-by: default avatarYu Cheng <yu.cheng@pku.edu.cn>
      57ab687c