- 09 Oct, 2025 1 commit
-
-
Lei Wang authored
* [Feature] Introduce WGMMA support and enhance GEMM layout handling - Added support for the WGMMA intrinsic in the TileLang framework, enabling efficient matrix multiplication on newer architectures. - Refactored GEMM layout functions to accept a boolean parameter for K dimension handling, improving flexibility in layout generation. - Updated layout inference logic to accommodate new WGMMA configurations and ensure compatibility with existing GEMM operations. - Enhanced Python bindings for layout functions, allowing for better integration and usability in user-defined operations. - Improved documentation for layout functions and GEMM operations to clarify usage and parameters. These changes enhance the performance and usability of GEMM operations, particularly for advanced architectures, while maintaining backward compatibility with existing implementations. * [Refactor] Clean up code formatting and enhance layout function readability - Improved code formatting across multiple files for better readability, including consistent indentation and line breaks. - Updated layout function signatures to enhance clarity, particularly in `gemm_layouts.cc`, `layout.cc`, and `layout.h`. - Refactored lambda functions in `builtin.cc` and `gemm_py.cc` for improved structure and maintainability. - Enhanced comments and documentation in layout-related files to clarify usage and parameters. These changes contribute to a cleaner codebase and improved maintainability of layout functions in the TileLang framework. * [Feature] Add descriptor initialization and offset manipulation for WGMMA - Introduced new TileLang builtins `initialize_descriptor` and `increase_descriptor_offset` to facilitate descriptor management for WGMMA operations. - Updated `builtin.cc` and `builtin.h` to define and document the new builtins, enhancing the framework's capabilities for descriptor handling. - Modified `codegen_cuda.cc` and `ptx.cc` to integrate the new builtins into the code generation process, ensuring proper assembly generation for WGMMA operations. - Enhanced the `GemmWGMMA` class to utilize the new descriptor functionalities, improving the efficiency of matrix multiplication operations. - Updated related tests and documentation to reflect the new features and ensure comprehensive coverage. These changes enhance the TileLang framework's support for advanced matrix operations on newer architectures, improving performance and usability. * [Refactor] Improve code formatting and readability in various files - Enhanced code formatting across multiple files for better readability, including consistent indentation and line breaks. - Updated function signatures and comments in `builtin.h`, `codegen_cuda.cc`, and `ptx.cc` to improve clarity. - Refactored descriptor initialization and offset manipulation functions in `builtin.py` and `wgmma_macro_generator.py` for improved structure. - Cleaned up unnecessary whitespace and improved alignment in `common.h` and `allocate.py`. These changes contribute to a cleaner and more maintainable codebase in the TileLang framework. * [Update] Update subproject commit and refactor layout function call - Updated the subproject commit for `cutlass` to indicate a dirty state. - Refactored the `UpdateAnalyzer` function in `layout.cc` to call `LayoutNode::getVarMap()` instead of `getVarMap()`, improving clarity and ensuring proper context for variable mapping. These changes enhance the maintainability and clarity of the layout handling in the TileLang framework. * support more data types * gemm_rs support * lint fix * wgmma wrapper * Remove debug logging for wgmma assembly code and refactor swizzle byte size calculations in wgmma macro generator. Enhanced handling of leading and stride byte offsets based on swizzle mode, improving clarity and performance in tensor core intrinsic emissions. * Refactor GEMM layout functions to replace 'kfactor' with 'k_inner' for improved clarity and consistency. Update includes necessary changes in error messages for Hopper and Sm100 layouts. Additionally, include a new header for CUTE utilities in common.h. * Comprehensively support WGMMA GEMM SS * remove debug print * lint fix * remove debug print * reduce bwd test shape * lint fix * clear cache for pytest * lint fix * Update sparse MLA examples to support SKV adjustment and correctness checks - Changed SKV parameter from 32768 to 8192 in sparse MLA backward and forward tests. - Added check_correctness parameter to test functions for validation of outputs. - Updated test cases to reflect new SKV values and correctness checks. * test fix * adjust test case * test fix * skip some test currently
-
- 23 Jul, 2025 1 commit
-
-
Wenhao Xie authored
* fix CI bugs in hopper * lint fix * Update bulk_copy.cc * Refactor bulk copy logic in LowerBulkCopy function - Removed unnecessary blank lines for improved code readability. - Enhanced stride validation by checking for null pointers in global stride calculations, ensuring robustness against symbolic strides. - Updated pass configuration handling in dynamic tile language tests to streamline dynamic alignment and TMA lower pass settings. * test fix * ci fix * Update flash-attention dependencies and clean up example code - Downgraded `flash-attn` dependency version in `requirements-test.txt` to `<=2.2.0`. - Removed unused imports and commented-out code in various example files to enhance readability and maintainability. - Updated the `flashattn` function signature to include default parameters for `block_M`, `block_N`, `num_stages`, and `threads`. - Cleaned up the `example_mha_fwd_varlen.py` and `example_mha_bwd_wgmma_pipelined.py` files by removing unnecessary comments and improving code clarity. - Deleted the `example_mha_inference.py` file as it is no longer needed. * Update CI workflow to remove `--user` flag from pip install commands - Removed the `--user` flag from the pip install commands in both the development and testing sections of the CI workflow to ensure proper installation of dependencies in the virtual environment. * Update CI workflow to include `--no-user` flag in pip install commands - Added the `--no-user` flag to the pip install commands in both the development and testing sections of the CI workflow to ensure dependencies are installed correctly within the virtual environment. * Update CI workflow to include `--no-user` flag in pip install command for wheel mode - Added the `--no-user` flag to the pip install command in the wheel mode section of the CI workflow to ensure dependencies are installed correctly within the virtual environment. * test fix * avoid conflict with system environments * test fix * add commnets --------- Co-authored-by:
Lei Wang <34334180+LeiWang1999@users.noreply.github.com> Co-authored-by:
LeiWang1999 <leiwang1999@outlook.com>
-
- 25 Jun, 2025 1 commit
-
-
Cunxiao Ni authored
* [Example] Update kernel compilation in examples to use @tilelang.jit - Refactored multiple examples to eliminate the use of `tilelang.compile` for kernel creation, directly invoking the functions instead. - Added `@tilelang.jit` decorators with appropriate output indices to enhance performance and maintainability. - Improved code clarity by simplifying the kernel invocation process across various examples, ensuring consistency in how kernels are defined and executed. * format * Update example_tilelang_sparse_gqa_decode_varlen_indice.py * Update example_dequant_gemm_fine_grained.py * Update example_gemm_autotune.py --------- Co-authored-by:Lei Wang <34334180+LeiWang1999@users.noreply.github.com>
-
- 04 Jun, 2025 1 commit
-
-
alex_xiao authored
* [CI]Add norm and layout_plot * fix lint * Remove obsolete test files for RMS normalization and plot layout, streamlining the testing suite. * Add make_mma_load_base_layout function to create MMA result layouts - Introduced a new function `make_mma_load_base_layout` for generating layout functions for storing MMA results in fragment buffers. - Added detailed docstring explaining parameters, return values, and potential exceptions. - Implemented logic for handling different data types and matrix configurations, including assertions for input validation. - Defined internal functions for mapping fragment indices to threads and local indices, enhancing the layout functionality. * Enhance MMA load test with additional imports and functionality - Added imports for `tilelang.language`, `Literal`, `Callable`, `DataType`, `IndexMap`, and `get_mma_micro_size` to support extended functionality. - Improved the `make_mma_load_base_layout` function by ensuring it can handle various data types and configurations. - Updated the test function `test_mma_load_base_layout` to validate the layout for float16 matrix A. * Fix formatting in test_fragment_mma_load_a.py by adding a blank line for improved readability. * Add RMS normalization functions to test_rms_norm.py - Introduced `rms_norm` and `rms_norm_splitk` functions for RMS normalization, enhancing the testing capabilities. - Implemented kernel functions with shared memory allocation and parallel processing for improved performance. - Updated the test function to validate the new RMS normalization implementations. * Add reference program for RMS normalization in test_rms_norm.py - Introduced `ref_program` function to provide a reference implementation for RMS normalization. - This addition enhances the testing framework by allowing comparisons against a known reference output. * Enhance RMS normalization tests with additional imports and formatting - Added import for `tilelang.language` to support extended functionality in `test_rms_norm.py`. - Improved code readability by adding blank lines for better separation of code sections. * Update RMS normalization test parameters and enhance layout plotting - Increased matrix dimensions in `test_rms_norm` to 8192 for improved performance testing. - Removed obsolete test functions in `test_fragment_mma_load_a.py` to streamline the test suite. - Enhanced layout plotting functionality by ensuring proper visualization of base, warp, and block layouts in `test_fragment_mma_load_a.py`. * Refactor RMS normalization test parameters and improve layout plotting readability - Simplified the parameters in `test_rms_norm` by removing `blk_k` for clarity. - Enhanced code readability in `test_fragment_mma_load_a.py` by adjusting the formatting of the `block_layout` definition and removing the unused `warp_cols` variable. * Enhance RMS normalization with split-k implementation and additional profiling - Added a new function `test_rms_norm_splitk` to test the split-k variant of RMS normalization. - Updated the main RMS normalization script to include profiling for the split-k implementation. - Ensured all checks pass with appropriate latency measurements for both reference and tile-lang implementations. * Remove obsolete test file `test_fragment_mma_load_a.py` to streamline the test suite. * Refactor `rms_norm.py` to streamline benchmarking output and remove redundant code. Comment out the `plot_layout` call in `fragment_mma_load_a.py` for clarity. * Refactor `test_rms_norm.py` by removing redundant test function `test_rms_norm_splitk` to streamline the test suite and improve clarity. --------- Co-authored-by:Your Name <you@example.com>
-
- 04 Apr, 2025 1 commit
-
-
Yu Cheng authored
- Introduced a new local fragment for squared values to improve performance. - Updated the computation of the RMS normalization to use the new fragment, enhancing memory efficiency. - Refactored the final multiplication step to operate on the local fragment instead of shared memory. - Added a configuration option to the kernel compilation for better control over TMA lowering. These changes enhance the efficiency and clarity of the RMS normalization implementation.
-
- 30 Mar, 2025 1 commit
-
-
Leslin authored
* Update elementwise_add.py [Bugfix] Replace profiler.mod with profiler.adapter to fix AttributeError * Update rms_norm.py [Bugfix] Replace profiler.mod with profiler.adapter to fix AttributeError * Remove adapter argument from do_bench call * Remove adapter argument from do_bench call --------- Co-authored-by:Lei Wang <34334180+LeiWang1999@users.noreply.github.com>
-
- 26 Mar, 2025 1 commit
-
-
Lei Wang authored
* [Refactor] Improve flash attention example and layout comparison logic - Removed unnecessary annotation for `lse_local_split` in the flash attention example to streamline the code. - Updated the handling of `lse_local_split` to utilize parallel processing for better performance. - Refactored kernel compilation and profiling logic to enhance clarity and maintainability in the flash attention example. - Added a condition in `FragmentNode::IsEqual` to handle broadcast cases, improving the robustness of layout comparisons. * lint fix * [Enhancement] Add support for shared memory scope in Fill operation - Introduced handling for `shared.dyn` and `shared` memory scopes in the Fill operation. - Implemented parallel operation and layout inference for improved performance in shared memory scenarios. - Updated thread loop partitioning and vectorization logic to accommodate new memory scope handling. * [Refactor] Remove deprecated decorator and enhance Cython kernel handling - Removed the deprecated decorator from the main module and added a new implementation in the utils module for better organization. - Introduced a pointer map in the Cython kernel adapter to manage pointer arguments, improving runtime shape resolution. - Updated the Cython kernel wrapper to utilize the new pointer map for handling kernel arguments. - Enhanced error checking in the tensor utility functions to ensure static shapes are enforced. - Added a new proxy module for buffer and tensor handling, streamlining the interface for TIR programs. * [Feature] Add matrix multiplication test and kernel implementation - Introduced a new test file `test_tilelang_language_ptr.py` that implements a matrix multiplication function using TileLang's primitives. - The `matmul_test` function defines a kernel for performing tile-level GEMM operations with customizable block sizes and data types. - Added a `run_matmul` function to compile and execute the kernel, along with a test function to validate the implementation. - Updated the `proxy.py` file to enhance type handling for buffer and tensor proxies, ensuring compatibility with TIR programs. - Minor formatting improvements in `deprecated.py` for better readability. * lint fix * [Refactor] Update tensor creation in matrix multiplication test - Replaced `T.Tensor.from_ptr` with `T.make_tensor` in `matmul_test` for improved clarity and consistency. - Updated imports in `__init__.py` to include `make_tensor`. - Added `make_tensor` function in `proxy.py` to streamline tensor creation from pointers. * [Refactor] Update tensor definitions across multiple files - Replaced instances of `T.Tensor` with updated tensor definitions in various benchmark and example files to enhance consistency and clarity. - Adjusted tensor shapes and types in functions related to matrix multiplication, attention mechanisms, and other operations. - Improved documentation in README and example files to reflect changes in tensor usage. * lint fix * [Refactor] Update tensor types in attention and matrix multiplication examples - Replaced instances of `T.Tensor` with `T.SharedTensor` and `T.FragmentTensor` in various attention and matrix multiplication functions to improve consistency and clarity. - Adjusted tensor definitions in benchmark and example files to align with the new tensor types. - Enhanced the overall structure and readability of the code by standardizing tensor usage across multiple files. * lint fix * [Refactor] Update tensor types in GEMM example and test files - Replaced instances of `T.Tensor` with `T.LocalTensor` and `T.Buffer` in the GEMM example and related test functions to improve consistency and clarity. - Enhanced the overall structure of the code by standardizing tensor usage across multiple files, aligning with recent updates in tensor definitions. * [Refactor] Update tensor usage in customize.py - Replaced instances of `T.Tensor` with `T.Buffer` in the `reshape` and `view` functions to enhance consistency with recent tensor definitions. - Improved code clarity by standardizing buffer usage across the file. * [Refactor] Update tensor types in test_tilelang_transform_annotate_device_regions.py - Replaced instances of `T.Tensor` with `T.Buffer` in the `before` and `expected` methods of the `TestAnnotateThreadExtent` and `TestAnnotateDeviceScope` classes to enhance consistency with recent tensor definitions. - Improved code clarity by standardizing buffer usage across the test file. * [Refactor] Update tensor types to SharedBuffer and FragmentBuffer - Replaced instances of `T.SharedTensor` and `T.FragmentTensor` with `T.SharedBuffer` and `T.FragmentBuffer` across multiple benchmark, example, and test files to enhance consistency with recent tensor definitions. - Improved code clarity and structure by standardizing buffer usage in attention and matrix multiplication functions. * [Refactor] Introduce Tensor alias for Buffer in proxy.py - Added a new alias `Tensor` for `Buffer` in `proxy.py` to facilitate JIT compilation, ensuring that inputs and outputs are mapped with `torch.Tensor`. - This change enhances clarity and consistency in tensor usage across the codebase.
-
- 11 Mar, 2025 1 commit
-
-
Yu Cheng authored
* [Dev][Bugfix] Add RMS Normalization Kernels and Fix Reduce Bug - Implement two RMS normalization implementations in TileLang: * `rms_norm_splitk`: Split-K reduction approach for large matrices * `rms_norm`: Full reduction kernel with simplified implementation - Add reference implementation using PyTorch for validation - Include performance benchmarking for both kernel variants - Demonstrate flexible block size and matrix size configurations * [Examples] Simplify RMS Normalization Kernel Compilation - Remove commented-out code for split-K RMS normalization - Simplify kernel compilation by removing explicit TMA lowering configuration - Update copyright header to Tile-AI Corporation - Streamline main script for RMS normalization example
-