- 31 Aug, 2025 1 commit
-
-
Lei Wang authored
* [Enhancement] Introduce finalize_reducer operator and layout reducer support - Added `FinalizeReducer` operator to handle reduction finalization in the TileLang framework, allowing for efficient reduction operations. - Implemented layout inference for local.reducer buffers, enhancing the handling of layout mappings and reducing complexity in buffer management. - Updated `setup.py` to include logging for build directory paths, improving build process visibility. - Enhanced atomic operations with new functions for atomic max, min, load, and store, providing more robust atomicity control in memory operations. - Refactored parallel loop handling to incorporate reducer information, ensuring proper management of reduction operations in parallel contexts. - Cleaned up test cases by removing unnecessary cache disabling and optimizing test parameters for better performance. * Refactor code formatting and improve readability in multiple files - Cleaned up whitespace in `setup.py` to enhance logging clarity. - Reformatted `AtomicMax` and `AtomicMin` functions in `common.h` for better alignment and readability. - Adjusted `debug_print_var` function in `debug.h` to improve code structure and maintainability. - Enhanced readability of the `atomic_add` function in `customize.py` by breaking long lines for better clarity. * Remove debug print statements from `copy.cc` and `inject_tma_barrier.cc` to enhance code clarity and maintainability. * [Enhancement] Disable reuse of small arrays in shared memory allocation - Added logic to prevent the reuse of small arrays (<= 32 bits) in `merge_shared_memory_allocations.cc`, ensuring they are lowered to registers in LLVM for improved performance and memory management. * Refactor `setup.py` to remove duplicate logging statements and enhance clarity. Update `finalize_reducer` function documentation in `reduce.py` to include detailed parameter and return descriptions, improving code readability and maintainability. * Refactor `finalize_reducer` and `reduce` functions to remove redundant target checks. Simplified conditionals by retaining only the `TargetIsHopper` check, enhancing code clarity and maintainability. * bug fix * Add thread checks workaround for replicated cases * Remove the is_one check * fix lint error * lint fix * Update autotune tests to use smaller matrix sizes for improved performance and reliability * [Refactor] Update FinalizeReducer to FinalizeReducerOp and adjust related methods - Refactored FinalizeReducer class to FinalizeReducerOp, updating constructor and method signatures for consistency with the new TileOperator structure. - Enhanced layout inference and cloning methods in FinalizeReducerOpNode. - Updated test_example_flash_attention.py to call test_example_gqa_bwd instead of tilelang.testing.main. - Adjusted header inclusions for improved organization and clarity across multiple files. * [Refactor] Update atomic operations in common.h and modify test_example_flash_attention.py - Enhanced atomic operations (Add, Min, Max) in common.h to handle half and bfloat16 types more efficiently. - Updated test_example_flash_attention.py to call test_example_gqa_bwd instead of tilelang.testing.main, improving test organization. * [Refactor] Simplify CopyNode::LowerBulkCopy logic and update test execution - Removed redundant checks for contiguous memory access in CopyNode::LowerBulkCopy, streamlining the logic for TMA copy operations. - Updated test_tilelang_kernel_gemm.py to comment out the main testing function and call a specific test for i8i8i32 tensor operations instead, improving test focus. --------- Co-authored-by:
Huanqi Cao <caohuanqi@deepseek.com> Co-authored-by:
Freebase6912 <amid-gauze-racing@duck.com>
-
- 15 Aug, 2025 1 commit
-
-
Gabriel Wu authored
* chore: fix typos * chore: fix ruff * chore: fix clang-format
-
- 05 Aug, 2025 1 commit
-
-
Lei Wang authored
* [Enhancement] Refactor GEMM operations for improved warp partitioning and target instruction handling - Introduced a new `GetGemmInst` method to determine the appropriate GEMM instruction based on block size and target architecture. - Updated `ComputeWarpPartition` to accept the GEMM instruction type, enhancing flexibility in warp partitioning logic. - Added `TargetGetWarpSize` utility to streamline warp size retrieval based on target architecture. - Refactored layout inference and lowering methods to utilize the new GEMM instruction handling, improving clarity and maintainability of the codebase. * bug fix * test fix * lint fix * phase out Canonialize * add option --expt-relaxed-constexpr * [Enhancement] Introduce tilelang intrinsic operations for GEMM - Added `tl_gemm` and `tl_gemm_sp` built-in operations to support general and sparse matrix multiplication in tilelang. - Updated the lowering logic in `Gemm` and `GemmSP` to utilize the new tilelang operations. - Enhanced CUDA and HIP code generation to handle the new GEMM operations, ensuring proper argument validation and external call printing. - Implemented shared memory alignment planning for GEMM operations to optimize performance on supported architectures. * lint fix * lint fix * test fix * test fix * rebase * Update builtin.cc
-
- 30 Jul, 2025 1 commit
-
-
Siyuan Feng authored
**Summarize part of the rebase pr:** 1. **Support T.thread_return() → CUDA return syntax** Added support for translating `T.thread_return()` to CUDA's native `return` statement. 2. **Dynamic type support for function inputs** Functions now accept dynamically typed parameters using `typing`: ```python dyn_type = T.int32 or T.float @T.prim_func def main( a: dyn_type, ) ``` 3. **Device Function Codegen** Added support for generating `__device__` functions in CUDA: ```python @I.ir_module class Module: @T.prim_func(private=True) def add(a: T.int32, b: T.int32) -> T.int32: return a + b @T.prim_func def main( A: T.Buffer((128, 128), "int32"), B: T.Buffer((128, 128), "int32"), C: T.Buffer((128, 128), "int32"), ): T.func_attr({"global_symbol": "main"}) length: T.int32 = Module.add(64, 64) # Host call for bx in T.thread_binding(length, "blockIdx.x"): for tx in T.thread_binding(length, "threadIdx.x"): C[bx, tx] = Module.add(A[bx, tx], B[bx, tx]) # Device call ``` After compilation, `add` becomes a CUDA `__device__` function. 4. **Cython-based Python/C++ interop** Replaced ctypes with Cython for all Python/C++ interactions: - Python → C++ calls - C++ → Cython calls This improves performance by around 100x and reduces CPU overhead during compile/runtime. 5. **FP8 data type standardization** Migrated `e5m2_float8` and similar types to Torch-standardized variants`float8_e5m2` and etc. * Refactor CMakeLists.txt to set default build type and manage dependencies for tvm_cython modules * Update default value of `check_well_formed` parameter in `prim_func` to False for improved flexibility in TIR function parsing. * Add StorageRewrite function to transform module Introduced the StorageRewrite function in the tilelang.transform module, which returns a TVM transform pass. This addition enhances the functionality of the module by providing a new transformation option for users. * Refactor null option handling in IR and layout inference - Updated instances of `NullOpt` to `std::nullopt` in `ir.cc` and `parallel.cc` for consistency with modern C++ practices. - Enhanced layout inference logic in `layout_inference.cc` to improve type safety by replacing `as<Fragment>().get()` with `as<FragmentNode>()`. - Adjusted error handling in `multi_version_buffer_rewriter.cc` and `persist_threadblock.cc` to use more concise null checks. - Cleaned up test files by commenting out `tilelang.testing.main()` and replacing it with specific test function calls for better clarity. - Removed unused test file `test_tilelang_kernel_deepseek_nsa.py` to streamline the testing suite. * Update TVM subproject and refactor cluster planning and tile operation handling - Updated the TVM subproject to a dirty commit state. - Refactored copyright headers in `cluster_planning.cc` to reflect the new licensing. - Enhanced error handling in `lower_tile_op.cc` to check for missing padding map annotations. - Modified test files to improve clarity and functionality, including adjustments to kernel compilation and test assertions. - Updated various test cases to ensure proper handling of annotations and configurations in the TileLang testing framework. * Update annotation type in warp specialized test for consistency - Changed the annotation type in the `test_warp_specialized` function from a literal integer to `T.int32(3)` for improved type safety and consistency with the TileLang framework. * Refactor test execution in warp specialized test - Replaced the direct call to `test_warp_specialized()` with `tilelang.testing.main()` in the test file to standardize test execution and improve integration with the TileLang testing framework. * refactor * [Enhancement] Add strict layout map for improved buffer layout inference (#594) - Introduced a `strict_layout_map` to enhance layout inference by ensuring that buffers with strict layout requirements are properly accounted for during the inference process. - Updated the inference logic to check for the presence of buffers in the `strict_layout_map` before applying layout changes, improving the accuracy of layout assignments. - Refactored the layout inference steps to include the copying of layouts into the new strict map, ensuring a clear separation of layout handling based on inference levels. * [Example] Update examples to use @tilelang.jit (#597) * [Example] Update kernel compilation in examples to use @tilelang.jit - Refactored multiple examples to eliminate the use of `tilelang.compile` for kernel creation, directly invoking the functions instead. - Added `@tilelang.jit` decorators with appropriate output indices to enhance performance and maintainability. - Improved code clarity by simplifying the kernel invocation process across various examples, ensuring consistency in how kernels are defined and executed. * format * Update example_tilelang_sparse_gqa_decode_varlen_indice.py * Update example_dequant_gemm_fine_grained.py * Update example_gemm_autotune.py --------- Co-authored-by:Lei Wang <34334180+LeiWang1999@users.noreply.github.com> * [Enhancement] Refine error messaging in LowerBulkCopy for global and shared range checks (#599) * [Enhancement] Improve error messaging for global and shared range legality checks in LowerBulkCopy - Updated error messages in the LowerBulkCopy function to provide clearer context when global and shared ranges are illegal. - Enhanced the readability of the error output by including tensor names, improving debugging and validation processes during bulk copy operations. * [Enhancement] Refine error messaging in LowerBulkCopy for global and shared range checks - Improved the clarity of error messages in the LowerBulkCopy function by enhancing the output format. - Included additional context in error messages to aid debugging when global and shared ranges are found to be illegal, ensuring better traceability during bulk copy operations. * [Enhancement] Introduce PassConfig `TL_ENABLE_AGGRESSIVE_SHARED_MEMORY_MERGE` to enable aggressive shared memory reuse (#602) * [Enhancement] Add aggressive shared memory merge option in memory allocation - Introduced a new configuration option `tl.enable_aggressive_shared_memory_merge` to enable aggressive merging of shared memory allocations. - Updated the `SharedMemLinearAccessPatternFinder` class to support an aggressive merge strategy, allowing for improved memory reuse. - Modified the `MergeSharedMemoryAllocations` function to incorporate the new merging strategy based on the configuration. - Enhanced the `PassConfigKey` enumeration to include the new aggressive merge option, ensuring it can be configured appropriately. * lint fix * [Enhancement] Add aggressive shared memory merge configuration option - Introduced a new configuration option `kEnableAggressiveSharedMemoryMerge` to enable aggressive merging of shared memory allocations, enhancing memory management capabilities. * [Enhancement] Update MergeSharedMemoryAllocations to support aggressive merge option - Modified the `MergeSharedMemoryAllocations` function to accept an `enable_aggressive_merge` parameter, allowing for more flexible memory management. - Introduced a new helper function `should_enable_aggressive_merge` to determine the aggressive merge configuration based on the pass context and target. - Updated the relevant calls in the `phase.py` and `__init__.py` files to utilize the new aggressive merge functionality, enhancing the overall memory allocation strategy. * [Refactor] Update accumulation handling in gemm_sm90.h (#603) - Replaced the use of `tiled_mma.accumulate_ = GMMA::ScaleOut::Zero` with a call to `clear(acc)` for better clarity and maintainability in the accumulation logic. - This change enhances the readability of the code by standardizing the approach to clearing accumulation values across multiple sections of the file. * [Enhancement] Add tma bulk copy. (#600) * [Bugfix] Fixed mha_bwd shape inconsistency error (#604) * lint fix * Update requirements-lint.txt to maintain clang-format version consistency * [Bugfix] Avoid duplicate data access when cross thread buffer meet replicate register (#606) * [Enhancement] Improve debug output formatting in layout and fragment nodes - Updated the `DebugOutput` methods in `LayoutNode` and `FragmentNode` to provide more structured and informative output, including transformation details and thread range information. - Enhanced layout inference logic in `ParallelOp` to add predicates for cross-thread shared memory access, improving layout handling in parallel operations. - Minor adjustment in `layout_inference.cc` to ensure clarity in parallel loop handling. * lint fix * [Enhancement] Support tf32 gemm_rs (#607) - Added a line break in `quickstart.py` for better readability. - Simplified the JIT kernel compilation in `quickstart.py` by removing the unused execution backend option. - Modified `example_elementwise_add.py` to disable cache for `tilelang` and optimized the element-wise addition kernel by utilizing shared memory for input tensors, improving performance. - Updated default values for matrix dimensions and block sizes in the argument parser to enhance usability. * [Enhancement] Introduce option `TL_DISABLE_FAST_MATH` and `TL_ENABLE_PTXAS_VERBOSE_OUTPUT` (#609) * [Enhancement] Introduce new PassConfig options for fast math and PTXAS verbosity - Added `kDisableFastMath` and `kEnablePTXASVerboseOutput` configuration options to enhance control over compilation settings. - Updated `LibraryGenerator` to utilize these new pass configurations, allowing for more flexible compilation behavior based on user preferences. - Enhanced `PassConfigKey` enumeration to include the new options, ensuring they can be configured appropriately in the pass context. * [Refactor] Update PTXAS verbosity configuration key in LibraryGenerator - Changed the configuration key for PTXAS verbosity from `TL_VERBOSE_PTXAS_OUTPUT` to `TL_ENABLE_PTXAS_VERBOSE_OUTPUT` to align with the new naming convention introduced in recent enhancements. - This update ensures consistency in the configuration options used within the `LibraryGenerator` class, improving clarity and maintainability of the code. * lint fix * fix build * [Experimental][Language] add `T.GEMM_SP` for sm90 sparse tensor core (#526) * [experimental] add a draft gemm_sp * [3rdparty] bump cutlass to v3.9.3 * [lint] run format.sh * [chore] rebase * [chore] use abs path * [gemm_sp] add metadata layout * [ci] add more example * [lint] run format.sh * [chore] polish * [chore] move gemm_sp to experimental * [chore] polish * [lint] run format.sh * [Enhancement] Improve bulk copy handling and update GEMM sparse tensor test * Added a warning log for unsupported non-swizzled global layouts in the bulk copy operation, ensuring fallback to normal copy. * Refactored the GEMM sparse tensor test by removing unnecessary imports and simplifying the kernel compilation process. * Updated the test to directly call the `run_gemm_sp` function, enhancing clarity and functionality. * Implement Test * [Enhancement] Update GEMM SP and SM89 templates for improved functionality * Refactored GEMM SP computation to enhance warp partitioning logic, ensuring compatibility with Hopper architecture. * Updated layout inference to support new WGMMA conditions and improved error messaging for unsupported targets. * Modified SM89 templates to utilize new MMA atom structures, enhancing performance and compatibility with fp8 types. * Added conditional inclusion for GEMM SP header based on CUDA architecture version. * lint fix * [gemm_sp] support more layout and data types * Enhancement: sync T.gemm_sp's layout inference with T.gemm * Enhancement: support more block_k in compress util * [Enhancement] enable block_k=64 * [Lint] run format.sh * [Enhancement] compressor support more dtype * Enhancement: enable block_K=32 * [Lint] format.sh * [Fixbug] fix shape * Refactor: sync gemm * [Enhancement] enable transpose * [Enhancement] enable fp8_e4m3 * [Enhancement] enable int8 * [Lint] run format.sh * [Benchmark] add gemm_sp benchmark * [Example] fix 256 threads hang * [CI] fix ci * [Chore] resolve gemini feedback * [Benchmark] increase search space * [Lint] format * [CI] skip sparse tensor core related tests as only sm90 is supported * [CI] pass local run * Update gemm_sm89.h * lint fix * lint fix * [Enhancement] Add support for sparse GEMM and initialize CUDA architecture flags - Introduced a new boolean flag `enable_sparse_gemm_` to control the inclusion of sparse GEMM functionality in CUDA code generation. - Updated the `Finish` method to conditionally include the sparse GEMM header based on the new flag. - Implemented logic in `VisitStmt_` to enable sparse GEMM when the corresponding external call is detected. - Added a function to initialize the `TORCH_CUDA_ARCH_LIST` environment variable based on the target compute version, enhancing compatibility with PyTorch. - Refactored the initialization function into the appropriate module and ensured it is called in the sparse utilities module. * Update test_compress_utils.py --------- Co-authored-by:
LeiWang1999 <leiwang1999@outlook.com> Co-authored-by:
Lei Wang <34334180+LeiWang1999@users.noreply.github.com> * [Doc] Phaseout Legacy documentations (#610) - Added a new entry in the README for the introduction of `T.gemm_sp` supporting 2:4 sparse tensor core. - Removed several outdated documentation files related to convolution, flash attention, and other tutorials to streamline the documentation structure. * [Refactor] Phaseout Pass ParallelLoopTransformer (#611) * Refactor layout inference by removing the ParallelLoopTransformer class. Updated layout inference logic to streamline buffer access collection and condition handling in parallel loops. This change simplifies the code structure and enhances maintainability. * Update MHA backward test cases to use reduced dimensions for batch size and context length * fix build * [Enhancement] Update ReduceOp initialization values for integer types (#614) * [Enhancement] Update ReduceOp initialization values for integer types - Modified the `MakeInitValue` method in `ReduceOp` to handle integer data types correctly by returning appropriate minimum and maximum values based on the bit width. - Added checks for integer types to ensure correct initialization for `kMax` and `kMin` reduction types, enhancing the robustness of the reduction operations. * [Enhancement] Update ReduceOp to handle unsigned integer initialization values - Enhanced the `MakeInitValue` method in `ReduceOp` to include support for unsigned integer data types. - Added conditions to return appropriate initialization values for `kMax` and `kMin` reduction types based on the data type, improving the robustness of reduction operations. * Bump transformers from 4.50.0 to 4.51.0 in /examples/bitnet-1.58b (#615) Bumps [transformers](https://github.com/huggingface/transformers) from 4.50.0 to 4.51.0. - [Release notes](https://github.com/huggingface/transformers/releases) - [Commits](https://github.com/huggingface/transformers/compare/v4.50.0...v4.51.0 ) --- updated-dependencies: - dependency-name: transformers dependency-version: 4.51.0 dependency-type: direct:production ... Signed-off-by:
dependabot[bot] <support@github.com> Co-authored-by:
dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> * [Refactor] refactor autotune examples (#617) * [Refactor] Update tilelang kernel functions and remove unused imports - Refactored the `flashattn_fwd`, `flashattn_bwd_preprocess`, and `flashattn_bwd_postprocess` functions to utilize direct kernel calls instead of cached versions, improving clarity and performance. - Added `@tilelang.jit` decorators with specified output indices to enhance kernel compilation. - Removed unused import of `cached` from `tilelang`, streamlining the code. - Commented out the main testing function call in `test_tilelang_kernel_mha_bwd.py` for potential future use. * [Refactor] Simplify configuration generation in benchmark and example scripts - Refactored the `get_configs` functions in multiple benchmark and example scripts to utilize a dictionary-based approach for parameter configuration, improving readability and maintainability. - Updated the `flashattn` and `chunk_scan_fwd` functions to directly accept configuration parameters, enhancing flexibility in kernel tuning. - Removed redundant code and streamlined the configuration generation process across various files, ensuring consistency in how configurations are defined and utilized. * [Refactor] Update configuration handling in benchmark scripts - Refactored the `get_configs` functions in benchmark scripts to accept a variable argument list, improving flexibility in configuration management. - Enhanced the `matmul` and `flashattn` functions to utilize the updated configuration approach, streamlining parameter handling for kernel tuning. - Added `@autotune` decorators to relevant functions, ensuring consistent autotuning behavior across benchmarks. - Cleaned up redundant code and improved overall readability in the affected files. * [Refactor] Clean up formatting and update subproject commit - Updated the subproject commit reference in the TVM directory to indicate a dirty state. - Removed unnecessary blank lines and improved formatting in the `benchmark_matmul` and `benchmark_matmul_fp8` scripts for better readability. - Streamlined the function definitions in the `flashattn` example script to enhance clarity and maintainability. * [Refactor] Update AutoTuner configuration handling - Modified the AutoTuner class to check if kernel parameters are set before processing tunable arguments, improving robustness in configuration handling. - Enhanced the logic for skipping compilation when tunable parameters are already provided, ensuring efficient use of resources. - Updated comments for clarity and maintainability. * lint fix * Update TVM subproject commit to indicate dirty state and modify MHA backward test cases - Updated the subproject commit reference in the TVM directory to reflect a dirty state. - Adjusted the `test_mha_bwd` function to use a new configuration for the MHA backward tests, changing the context size from 128 to 256. - Uncommented the main testing function call for potential execution. * lint fix * Bump transformers from 4.51.0 to 4.52.1 in /examples/bitnet-1.58b (#619) Bumps [transformers](https://github.com/huggingface/transformers) from 4.51.0 to 4.52.1. - [Release notes](https://github.com/huggingface/transformers/releases) - [Commits](https://github.com/huggingface/transformers/compare/v4.51.0...v4.52.1 ) --- updated-dependencies: - dependency-name: transformers dependency-version: 4.52.1 dependency-type: direct:production ... Signed-off-by:
dependabot[bot] <support@github.com> Co-authored-by:
dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> * Fix PTXAS options flag in LibraryGenerator for consistency (#620) * Refactor FP8 type handling across multiple files to standardize usage of "float8_e4m3" and "float8_e5m2" instead of "e4m3_float8" and "e5m2_float8". This includes updates in benchmarks, examples, tests, and internal utilities. * [Refactor] Add parallel loop transform pass for condition extraction (#618) * [Refactor] Add parallel loop transform * done format check * pull 3rdparty repo * Refactor loop variable handling in transformation utilities - Updated the logic in `loop_parallel_transform_utils.h` to simplify the handling of related loop variables. - Removed the check that enforced a single related loop variable, replacing it with a return statement when multiple variables are detected, enhancing clarity and maintainability of the transformation process. * Update loop_parallel_transform_utils.h * Refactor loop variable handling in transformation utilities - Enhanced the logic in `loop_parallel_transform_utils.h` to improve clarity and maintainability by simplifying the handling of related loop variables. - Replaced the previous enforcement of a single related loop variable with a return statement for multiple variables detected. * remove disable cache flag as commit id has been key component * lint fix --------- Co-authored-by:
LeiWang1999 <leiwang1999@outlook.com> Co-authored-by:
Lei Wang <34334180+LeiWang1999@users.noreply.github.com> * [Dev] Update linear attention examples to enhance performance on Hopper GPUs (#621) * Tune linear attention examples on H100 * Add retnet fwd kernel * fix lint * [Enhancement] Add ahead of time cython compilation in setup.py (#622) * [Enhancement] Add Cython support and compiler detection in setup.py - Introduced a new `CythonExtension` class for building Cython-based extensions, enhancing the build process for Cython projects. - Implemented functions to detect the Cython compiler and C++ compiler, improving compatibility and user experience. - Updated the build process to handle Cython extensions alongside CMake extensions, ensuring a seamless integration for users. - Added caching mechanisms for Cython compilation to optimize build times and reduce unnecessary recompilation. * [Enhancement] Add Cython dependency and enable CMake extension building - Added Cython as a required dependency in `pyproject.toml` to support Cython-based extensions. - Updated `setup.py` to enable building CMake extensions, improving the build process for projects utilizing both Cython and CMake. - Modified the Cython compiler detection logic to streamline installation instructions for users. * [Enhancement] Support more flexible layout host pythonic expr (#623) * [Refactor] Enhance expression handling in utils.py and update wrapper to use pythonic_expr - Added support for additional TIR expressions (FloorDiv, Min, Max, Add, Sub, FloorMod) in the pythonic_expr function to improve string representation. - Replaced the deprecated legalize_c function calls in TLCUDASourceWrapper and TLCPUSourceWrapper with pythonic_expr for better expression handling in kernel launch code. * [Refactor] Simplify expression handling in pythonic_expr function - Consolidated binary and min/max operation handling in the pythonic_expr function to improve readability and maintainability. - Replaced individual checks for binary operations with a mapping approach, streamlining the code and enhancing performance in expression representation. * [Enhancement] Improve expression representation in pythonic_expr function - Added operator precedence handling to the pythonic_expr function, enhancing the conversion of TVM PrimExpr to Python-style strings. - Updated the visitor logic to intelligently add parentheses based on operator precedence, improving the accuracy of expression representation. - Included a docstring for better clarity on the function's purpose and usage. * test fix * [Enhancement] support composable expression for shape with symbolic vars (#624) * [Refactor] Enhance expression handling in utils.py and update wrapper to use pythonic_expr - Added support for additional TIR expressions (FloorDiv, Min, Max, Add, Sub, FloorMod) in the pythonic_expr function to improve string representation. - Replaced the deprecated legalize_c function calls in TLCUDASourceWrapper and TLCPUSourceWrapper with pythonic_expr for better expression handling in kernel launch code. * [Refactor] Simplify expression handling in pythonic_expr function - Consolidated binary and min/max operation handling in the pythonic_expr function to improve readability and maintainability. - Replaced individual checks for binary operations with a mapping approach, streamlining the code and enhancing performance in expression representation. * [Enhancement] Improve expression representation in pythonic_expr function - Added operator precedence handling to the pythonic_expr function, enhancing the conversion of TVM PrimExpr to Python-style strings. - Updated the visitor logic to intelligently add parentheses based on operator precedence, improving the accuracy of expression representation. - Included a docstring for better clarity on the function's purpose and usage. * test fix * minor update *
🐍 Fix the file name "test_exmaple_tilelang_nsa" (#629) * [Enhancement] Add CPU utilization and count settings for Auto-Tuning (#630) * [Enhancement] Add CPU utilization and count settings for Auto-Tuning - Introduced environment variables for CPU utilization, counts, and maximum CPU count for auto-tuning. - Updated the AutoTuner class to utilize these new settings, improving flexibility and performance in multi-threaded environments. - Enhanced logging to provide better insights into the auto-tuning process based on the configured CPU settings. * typo fix * [AutoTune] Support `with set_autotune_inputs` to set auto tuning input tensors (#632) * [Refactor] Simplify and modularize autotuner implementation - Removed unused imports and extensive code sections from the autotuner module to enhance readability and maintainability. - Modularized the code by introducing new imports for autotuning and capturing functionalities, streamlining the overall structure. - Improved logging setup and removed redundant timeout handling functions, focusing on core autotuning logic. - Updated the AutoTuner class to better utilize the new modular structure, ensuring efficient performance during auto-tuning processes. * [Refactor] Clean up and enhance capture and tuner modules - Improved code readability by removing unnecessary blank lines and organizing imports in `capture.py` and `tuner.py`. - Enhanced logging in the `AutoTuner` class to provide clearer warnings regarding the usage of `supply_prog` in the context of auto-tuning. - Streamlined the `CaptureStack` class for better thread-local context management. * lint fix * [Refactor] Simplify configuration and autotuning logic in blocksparse GEMM example - Updated `get_configs` function to reduce the number of configurations, enhancing performance and clarity. - Removed the `get_best_config` function, integrating its logic directly into the `blocksparse_matmul` function with the `@autotune` decorator for streamlined autotuning. - Adjusted the main function to directly utilize the autotuned kernel, simplifying the overall structure and improving readability. - Deleted obsolete test file for autotuning decorator, cleaning up the codebase. * [Refactor] Improve code formatting and readability in autotune test file - Reformatted the `matmul` function and `get_configs` function for better readability by adjusting line breaks and indentation. - Fixed a typo in the `enable_rasteration` parameter name to ensure consistency. - Cleaned up unnecessary blank lines to enhance overall code clarity. * Update example_blocksparse_gemm.py * Update capture.py * [Pass] Introduce flag to diable cp async lowering (#633) * [Enhancement] Update PipelinePlanner to support async copy configuration - Modified the `Substitute` method in `PipelinePlanner` to accept a `use_async_copy` parameter, allowing for more flexible pipeline planning based on async copy requirements. - Updated the constructor of `PipelinePlanner` to initialize the `use_async_copy_` member variable. - Adjusted the logic in the pipeline planning process to conditionally apply async copy annotations based on the new parameter. - Commented out the `LoopVectorizeDynamic` call in `LowerAndLegalize` to prevent unintended modifications during the legalizing phase. * Refactor PipelinePlanning function for improved readability - Adjusted the formatting of the `use_async_copy` variable assignment in the `PipelinePlanning` function to enhance code clarity and maintainability. * fix typo (#635) * [Pass][Simplify] Introduce symbolic level simplify for condition expression (#634) * [Enhancement] Add argument simplification option to StmtSimplifier - Introduced a new `simplify_arguments` flag in the `StmtSimplifier::Apply` method to control argument simplification behavior. - Updated the `Simplify` function to accept the new flag, allowing for enhanced flexibility in the simplification process. - Adjusted the `LowerAndLegalize` and `_Simplify` functions to utilize the new argument, ensuring consistent behavior across the codebase. - Added comments to clarify the purpose of the new flag and its impact on simplification logic. * lint fix * [Enhancement] Improve layout inference and reduce operation handling - Updated `ParallelOp::InferLayout` to check for pure buffer stores, enhancing layout inference logic. - Modified `ReduceOp::Lower` to include all threads in the AllReduce operation, improving performance on specific architectures. - Added a TODO comment in `AllReduce` to consider merging synchronization barriers for optimization. * lint fix * [Enhancement] Add input validation for GEMM parameters - Introduced checks to ensure that the dimensions M and N are divisible by their respective warp sizes (kMPerWarp and kNPerWarp) in the Gemm::ComputeWarpPartition method. - Added informative error messages to assist in debugging when the input parameters do not meet the required conditions. * bug fix * Enhance test coverage by adding LLVM requirement decorator to multiple function call tests. This ensures that tests for argument count, type code, null data pointer, and dimensionality checks are only executed when LLVM is available, improving test reliability and clarity. * lint fix * Fix software pipeline stage annotation and update optional config handling in StmtSimplifier * Add Python executable detection in CMake configuration and update TVM submodule reference. Remove unused vectorization tests for improved clarity. * Update TVM submodule reference and refactor FFI registration to use static initialization blocks for improved organization and clarity. * Refactor attribute handling in layout and IR nodes to use reflection registration. This change replaces the VisitAttrs method with a RegisterReflection method for improved clarity and organization across multiple classes, including KernelLaunchFrameNode, WarpSpecializeFrameNode, LayoutNode, FragmentNode, and SwizzledLayoutNode. * finish rebase * tvm update * Refactor FFI registration across tilelang modules to use the updated `tvm.ffi` namespace. This includes changes in various files to replace `tvm._ffi` with `tvm.ffi`, enhancing consistency and clarity in the codebase. * lint fix * Update TVM submodule reference and modify CUDA runtime argument handling to use the new runtime constants for improved clarity and consistency. * lint fix * Refactor tensor data type references from "e4m3_float8" and "e5m2_float8" to "float8_e4m3" and "float8_e5m2" across multiple files for consistency and clarity. * lint fix * Refactor forward_index initialization in Fragment class to default to an empty array instead of None, ensuring consistent handling of optional outputs. * test fix * lint fix * bugfix * lint fix * reduce fix * lint fix * carver fix * cast fix * Update submodule and enhance kernel launch functionality with optional block size parameter; add device kernel launch transformation. * lint fix * bugfix * Refactor test execution in test_tilelang_cpu_gemm.py and enhance device call checks in lower.py to exclude C packed functions from kernel launch conditions. * lint fix * Update runtime.cc * phase out lisence * Update subproject commit for TVM to 555cc71 * Update subproject commit for TVM to d39953fa * Update subproject commit for TVM to 9574805f * Update subproject commit for TVM to a08b7c3 * fix ci * ci fix --------- Signed-off-by:dependabot[bot] <support@github.com> Co-authored-by:
LeiWang1999 <leiwang1999@outlook.com> Co-authored-by:
Lei Wang <34334180+LeiWang1999@users.noreply.github.com> Co-authored-by:
Cunxiao Ni <85601223+Cunxiao2002@users.noreply.github.com> Co-authored-by:
Yuxi Chi <cherichy@outlook.com> Co-authored-by:
Nathan Chen <120630832+Nathancgy@users.noreply.github.com> Co-authored-by:
botbw <wang1570@e.ntu.edu.sg> Co-authored-by:
dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> Co-authored-by:
xs-keju <93414213+xs-keju@users.noreply.github.com> Co-authored-by:
Tong WU <109033598+Rachmanino@users.noreply.github.com> Co-authored-by:
Kadir Nar <kadir.nar@hotmail.com> Co-authored-by:
Yuqing Xia <35415939+xiayuqing0622@users.noreply.github.com> Co-authored-by:
xwhzz <wh.xie@outlook.com>
-
- 21 Jul, 2025 1 commit
-
-
Lei Wang authored
- Eliminated the condition that disabled the reuse of small arrays (const_nbits <= 32) in the `MergeSharedMemoryAllocations` function, allowing for more flexible memory management. - Added a comment in `OptimizeForTarget` to clarify the order of applying `MergeSharedMemoryAllocations` after `SplitHostDevice`, ensuring correct allocation site handling in device functions.
-
- 16 Jul, 2025 1 commit
-
-
Lei Wang authored
* [Enhancement] Improve memory access condition checks in GlobalMemChecker - Updated the condition checks in the GlobalMemChecker to utilize symbolic bounds in the CanProve method, enhancing the accuracy of memory access validations. - This change ensures that both upper and lower bound conditions are evaluated with improved proof strength, contributing to more robust memory access analysis. * lintfix * [Enhancement] Add legality checks for shared memory and global range in LowerBulkCopy - Implemented checks to ensure that the shared memory range and global range are legal during the bulk copy operation. - Added assertions to validate that the extents of global and shared ranges match, improving the robustness of memory access validation in the LowerBulkCopy function. * [Refactor] Update barrier and clear operations in warp specialization examples - Replaced `mbarrier_wait_parity` and `mbarrier_arrive` with `barrier_wait` and `barrier_arrive` for improved clarity and consistency in synchronization. - Adjusted the order of `clear` operations for local fragments in `example_warp_specialize_gemm_copy_1_gemm_0` to enhance parallel execution efficiency. * [Enhancement] Implement thread partial synchronization and improve shared memory allocation handling - Added support for thread partial barrier synchronization in CUDA, allowing for more flexible thread management. - Enhanced the `MergeSharedMemoryAllocations` function to accept alignment bytes, improving memory allocation efficiency based on target requirements. - Updated the `Lower` methods in `Copy` and `Fill` classes to include conditional predicates for thread execution, ensuring better control over thread behavior. - Refactored the `print` function to include warp group and warp IDs for more detailed debugging output. - Improved the handling of dynamic shared memory allocations in the `LowerAndLegalize` function to align with target-specific requirements. * [Enhancement] Add support for disabling TMA in Copy operations - Introduced a new `disable_tma` parameter in the `Copy` class to control thread memory access behavior. - Updated the `Lower` method to conditionally execute bulk copy operations based on the `disable_tma` flag. - Enhanced the `copy` function to accept the `disable_tma` argument, allowing for more flexible memory copy operations. - Improved handling of `coalesced_width` to ensure it defaults to -1 when not provided, enhancing robustness in memory operations. * [Refactor] Clean up whitespace and formatting in multiple files - Removed unnecessary blank lines and adjusted line breaks for improved code readability in `example_mla_decode.py`, `example_warp_specialize_gemm_copy_gemm_0_1.py`, `phase.py`, and `copy.py`. - Ensured consistent formatting across functions to enhance maintainability and clarity of the codebase. * [Enhancement] Refactor flash attention implementation for improved performance and configurability - Split the shared memory allocations for query and key-value pairs to optimize memory usage. - Introduced command-line arguments for batch size, number of heads, and dimensions, enhancing flexibility in running the example. - Updated kernel execution parameters to improve thread management and synchronization. - Enhanced the overall structure of the flash attention function for better readability and maintainability. * fix * Update layout inference in ParallelOp to account for thread bounds; remove debug print in OptimizeForTarget * Refactor barrier handling and update example configurations - Replaced commented-out barrier creation with new barrier allocation in GEMM example. - Updated kernel configuration in warp specialization example to include async copy settings. - Enhanced barrier management in the phase optimization process to improve synchronization handling. - Introduced new barrier allocation function for better memory management in shared contexts. * Refactor barrier handling in LowerAndLegalize and OptimizeForTarget - Reintroduced barrier lowering in OptimizeForTarget to enhance synchronization. - Removed commented-out barrier lowering in LowerAndLegalize for cleaner code. - Added exit() call in OptimizeForTarget to halt execution after barrier lowering. * Enhance CMake configuration and clean up example scripts - Enabled compile command export in CMakeLists.txt for better build integration. - Removed unnecessary print statement in the warp specialization example. - Cleaned up commented-out code in GEMM example for improved readability. - Updated barrier handling in shared memory allocation transformations for better synchronization. * Refactor barrier handling in warp specialization examples - Replaced commented-out mbarrier code with new barrier allocation using T.alloc_barrier for improved synchronization. - Updated barrier wait and arrive calls to align with the new allocation method across multiple example scripts. - Enhanced code readability by removing unnecessary comments and ensuring consistent barrier management. * Update lower_shared_barrier.cc * Update phase.py * Update warp specialization example and Cython wrapper - Removed commented-out pass configuration options in the warp specialization example for clarity. - Added functionality to write the generated kernel source to a file named "kernel.cu". - Enhanced Cython wrapper to support boolean type conversion for improved type handling. * Add storage synchronization call in shared barrier transformation - Introduced a new evaluation statement to call the TVM storage sync function with "shared" as an argument, enhancing synchronization in the shared barrier handling process. * remove debug files * Remove kernel source output to file in warp specialization example * remove comments * Refactor tensor handling and update test execution in TileLang - Changed `Buffer` to `Tensor` in `customize.py` for better type consistency. - Updated `mbarrier_wait_parity` and `mbarrier_arrive` functions in `builtin.py` to use `tir.BufferLoad` instead of `BufferLoad`. - Commented out the main testing function in `test_tilelang_language_reshape.py` and replaced it with a direct call to `run_reshape_smem` for streamlined testing. - Removed unnecessary NVCC compiler flags in `libgen.py` to reduce verbosity. * Update test_tilelang_language_reshape.py
-
- 26 Jun, 2025 1 commit
-
-
Lei Wang authored
[Enhancement] Introduce PassConfig `TL_ENABLE_AGGRESSIVE_SHARED_MEMORY_MERGE` to enable aggressive shared memory reuse (#602) * [Enhancement] Add aggressive shared memory merge option in memory allocation - Introduced a new configuration option `tl.enable_aggressive_shared_memory_merge` to enable aggressive merging of shared memory allocations. - Updated the `SharedMemLinearAccessPatternFinder` class to support an aggressive merge strategy, allowing for improved memory reuse. - Modified the `MergeSharedMemoryAllocations` function to incorporate the new merging strategy based on the configuration. - Enhanced the `PassConfigKey` enumeration to include the new aggressive merge option, ensuring it can be configured appropriately. * lint fix * [Enhancement] Add aggressive shared memory merge configuration option - Introduced a new configuration option `kEnableAggressiveSharedMemoryMerge` to enable aggressive merging of shared memory allocations, enhancing memory management capabilities. * [Enhancement] Update MergeSharedMemoryAllocations to support aggressive merge option - Modified the `MergeSharedMemoryAllocations` function to accept an `enable_aggressive_merge` parameter, allowing for more flexible memory management. - Introduced a new helper function `should_enable_aggressive_merge` to determine the aggressive merge configuration based on the pass context and target. - Updated the relevant calls in the `phase.py` and `__init__.py` files to utilize the new aggressive merge functionality, enhancing the overall memory allocation strategy.
-
- 18 Jun, 2025 1 commit
-
-
Lei Wang authored
* Fix L2 cache size calculation to handle symbolic expressions and ensure float conversion of hit ratios in annotation * [Enhancement] Update warp specialization check in phase.py * lint fix * [Enhancement] Add ContainsSeqStmt method to improve statement handling in merge_shared_memory_allocations.cc * [Refactor] Simplify memory copy operations in GEMM kernel tests - Updated memory copy operations in `test_tilelang_kernel_gemm.py` to use shared memory allocations for both A and B matrices, improving clarity and performance. - Adjusted the main execution block to include a new `run_gemm_rs` function call for testing, enhancing the test structure. * revert memory reuse pass. * revert the memory resue and thread sync pass/ * Update test_tilelang_kernel_gemm.py * Update test_tilelang_kernel_mha_bwd.py
-
- 23 May, 2025 1 commit
-
-
Lei Wang authored
[Refactor] Enhance MergeSharedMemoryAllocations Pass for Improved Liveness Analysis and Scope Management (#508) * Introduced a new StmtAttr structure to track the scope level of statements, enhancing the liveness analysis process. * Updated the UpdateStmtAttr function to manage statement attributes effectively during memory allocation visits. * Modified the VisitStmt_ methods to utilize the new scope level tracking, ensuring accurate memory access patterns. * Refactored the LivenessAnalysis and PlanMemory functions to incorporate statement attributes, improving the handling of gen and kill points in memory management. * Added a new helper function allow_warp_specialized in phase.py to conditionally enable warp specialization based on pass context and target, addressing potential bugs in the MergeSharedMemoryAllocations pass. * Enhanced the OptimizeForTarget function to conditionally apply the MergeSharedMemoryAllocations pass based on warp specialization settings, improving robustness in memory allocation strategies.
-
- 16 May, 2025 1 commit
-
-
Lei Wang authored
* Remove debug print statement from block_sparse_attn_triton.py and implement a timeout handler in autotuner for function execution. This enhances the robustness of the autotuner by allowing it to handle timeouts gracefully. * Enhance the autotuner module by adding a timeout handler for function execution, improving robustness in handling long-running tasks. This change includes the introduction of a custom TimeoutException and updates to the run_with_timeout function for better signal management. * Add merge shared memory allocations pass and related configurations - Introduced a new pass for merging shared memory allocations in GPU kernels, allowing for more efficient memory usage. - Registered configuration options for debugging and controlling the merging behavior. - Updated relevant files to integrate the new pass into the TileLang engine and transform modules. - Adjusted import paths and added documentation for the new functionality. * Reduce num_stages parameter in GEMM functions from 3 to 1 for improved performance in test_tilelang_kernel_gemm.py
-