1. 07 Mar, 2025 2 commits
    • Lei Wang's avatar
      [Example] Implement tilelang native sparse attention varlen example (#170) · 8e1845d2
      Lei Wang authored
      * [Refactor] Update BitBLAS Benchmark with TileLang Carver Imports and Roller Hints Generation
      
      - Replace BitBLAS imports with TileLang Carver imports in benchmark_matmul.py
      - Modify roller hints generation using new TileLang Carver template and utility functions
      - Update get_roller_hints_from_func to handle None cases and improve return logic
      - Adjust DefaultPolicy to handle different codegen dictionary formats
      
      * [Refactor] Update Thread Binding and Import Statements in TileLang Kernels
      
      - Replace T.thread_binding() with T.get_thread_binding() across multiple kernel test files
      - Update import statements for MMA layout and macro generator in dequantize GEMM and FP8 examples
      - Move map_torch_type utility function to tilelang.utils.tensor
      - Remove unnecessary imports and improve code organization
      
      * Refactor Native Sparse Attention Example with Enhanced Triton Kernel
      
      - Update parallel_nsa_fwd_kernel to support more flexible sparse attention computation
      - Add support for block counts and offsets in the Triton kernel
      - Modify kernel grid and computation logic for improved performance
      - Update example script to use naive_nsa_simple reference implementation
      - Improve type hints and kernel configuration
      
      * Add Native Sparse Attention Examples with Tilelang and Triton Implementations
      
      - Introduce new example scripts for native sparse attention:
        * example_tilelang_nsa_fwd.py: Forward pass implementation using TileLang
        * example_tilelang_nsa_decode.py: Decoding-specific sparse attention implementation
        * example_triton_nsa_fwd.py: Triton-based sparse attention forward pass
      - Update reference.py with naive implementations for sparse attention
      - Support different sparse attention scenarios including forward pass and inference
      - Add comprehensive testing and validation against reference implementations
      
      * lint fix
      
      * Add Variable-Length Native Sparse Attention Examples for TileLang and Triton
      
      - Introduce new example scripts for variable-length native sparse attention:
        * example_tilelang_nsa_fwd_varlen.py: TileLang implementation with variable sequence lengths
        * example_triton_nsa_fwd_varlen.py: Triton implementation with variable sequence lengths
      - Update reference.py to support variable-length sparse attention scenarios
      - Enhance existing sparse attention implementations to handle variable-length inputs
      - Add comprehensive testing and validation for variable-length sparse attention
      
      * Refactor Native Sparse Attention Examples: Code Style and Formatting Improvements
      
      - Standardize function and parameter formatting across NSA example files
      - Improve code readability by adjusting indentation and line breaks
      - Enhance type hints and parameter alignment
      - Remove unnecessary whitespaces and optimize imports
      - Maintain consistent code style across TileLang and Triton implementations
      8e1845d2
    • Lei Wang's avatar
      [Example] Implement NSA Decode tilelang exampls (#168) · 69f35439
      Lei Wang authored
      * [Refactor] Update BitBLAS Benchmark with TileLang Carver Imports and Roller Hints Generation
      
      - Replace BitBLAS imports with TileLang Carver imports in benchmark_matmul.py
      - Modify roller hints generation using new TileLang Carver template and utility functions
      - Update get_roller_hints_from_func to handle None cases and improve return logic
      - Adjust DefaultPolicy to handle different codegen dictionary formats
      
      * [Refactor] Update Thread Binding and Import Statements in TileLang Kernels
      
      - Replace T.thread_binding() with T.get_thread_binding() across multiple kernel test files
      - Update import statements for MMA layout and macro generator in dequantize GEMM and FP8 examples
      - Move map_torch_type utility function to tilelang.utils.tensor
      - Remove unnecessary imports and improve code organization
      
      * Refactor Native Sparse Attention Example with Enhanced Triton Kernel
      
      - Update parallel_nsa_fwd_kernel to support more flexible sparse attention computation
      - Add support for block counts and offsets in the Triton kernel
      - Modify kernel grid and computation logic for improved performance
      - Update example script to use naive_nsa_simple reference implementation
      - Improve type hints and kernel configuration
      
      * Add Native Sparse Attention Examples with Tilelang and Triton Implementations
      
      - Introduce new example scripts for native sparse attention:
        * example_tilelang_nsa_fwd.py: Forward pass implementation using TileLang
        * example_tilelang_nsa_decode.py: Decoding-specific sparse attention implementation
        * example_triton_nsa_fwd.py: Triton-based sparse attention forward pass
      - Update reference.py with naive implementations for sparse attention
      - Support different sparse attention scenarios including forward pass and inference
      - Add comprehensive testing and validation against reference implementations
      
      * lint fix
      69f35439