"test/git@developer.sourcefind.cn:gaoqiong/migraphx.git" did not exist on "cc2535e0c5201e4ece51be90699dcc8b79579915"
- 05 Apr, 2025 1 commit
-
-
Lei Wang authored
* [Enhancement] Introduce CUDA driver module and refactor CUDA device handling - Added a new `cuda_driver` module to encapsulate CUDA device properties and functionalities. - Updated `CUDA` class in `cuda.py` to utilize the new driver for fetching device name and shared memory capabilities. - Introduced `get_device_name` and `get_shared_memory_per_block` functions in the `cuda_driver` for improved device property management. - This refactor enhances code organization and maintainability while improving the handling of CUDA device attributes. * [Refactor] Clean up whitespace in CUDA-related files - Removed unnecessary blank lines in `cuda.py`, `__init__.py`, and `cuda_driver.py` to improve code readability and maintainability. - This change enhances the overall organization of the codebase without altering functionality. * [Benchmark] Add FP8 Matrix Multiplication Benchmark Script - Introduced a new benchmark script for FP8 matrix multiplication in `benchmark/matmul_fp8/benchmark_matmul.py`. - The script includes functions for reference matrix multiplication, configuration generation for autotuning, and an autotuned kernel for performance measurement. - Added command-line argument parsing for matrix dimensions and the option to enable BitBLAS roller for search space exploration. - The benchmark computes and prints the best latency and performance metrics, enhancing the benchmarking capabilities for FP8 operations. * lint fix * Update submodule and enhance FP8 type handling in CUDA codegen - Updated the TVM submodule to the latest commit. - Modified FP8 type handling in `codegen_cuda.cc` to use more descriptive type codes. - Improved constant printing for FP8 and bfloat16 types, ensuring correct representation in generated code. - Added error handling for missing configuration keys in the AutoTuner class. * lint fix * Remove print statement from example script * lint fix * fix --------- Co-authored-by:LeiWang1999 <wyatuestc@gmail.com>
-
- 26 Mar, 2025 1 commit
-
-
Lei Wang authored
* [Refactor] Improve flash attention example and layout comparison logic - Removed unnecessary annotation for `lse_local_split` in the flash attention example to streamline the code. - Updated the handling of `lse_local_split` to utilize parallel processing for better performance. - Refactored kernel compilation and profiling logic to enhance clarity and maintainability in the flash attention example. - Added a condition in `FragmentNode::IsEqual` to handle broadcast cases, improving the robustness of layout comparisons. * lint fix * [Enhancement] Add support for shared memory scope in Fill operation - Introduced handling for `shared.dyn` and `shared` memory scopes in the Fill operation. - Implemented parallel operation and layout inference for improved performance in shared memory scenarios. - Updated thread loop partitioning and vectorization logic to accommodate new memory scope handling. * [Refactor] Remove deprecated decorator and enhance Cython kernel handling - Removed the deprecated decorator from the main module and added a new implementation in the utils module for better organization. - Introduced a pointer map in the Cython kernel adapter to manage pointer arguments, improving runtime shape resolution. - Updated the Cython kernel wrapper to utilize the new pointer map for handling kernel arguments. - Enhanced error checking in the tensor utility functions to ensure static shapes are enforced. - Added a new proxy module for buffer and tensor handling, streamlining the interface for TIR programs. * [Feature] Add matrix multiplication test and kernel implementation - Introduced a new test file `test_tilelang_language_ptr.py` that implements a matrix multiplication function using TileLang's primitives. - The `matmul_test` function defines a kernel for performing tile-level GEMM operations with customizable block sizes and data types. - Added a `run_matmul` function to compile and execute the kernel, along with a test function to validate the implementation. - Updated the `proxy.py` file to enhance type handling for buffer and tensor proxies, ensuring compatibility with TIR programs. - Minor formatting improvements in `deprecated.py` for better readability. * lint fix * [Refactor] Update tensor creation in matrix multiplication test - Replaced `T.Tensor.from_ptr` with `T.make_tensor` in `matmul_test` for improved clarity and consistency. - Updated imports in `__init__.py` to include `make_tensor`. - Added `make_tensor` function in `proxy.py` to streamline tensor creation from pointers. * [Refactor] Update tensor definitions across multiple files - Replaced instances of `T.Tensor` with updated tensor definitions in various benchmark and example files to enhance consistency and clarity. - Adjusted tensor shapes and types in functions related to matrix multiplication, attention mechanisms, and other operations. - Improved documentation in README and example files to reflect changes in tensor usage. * lint fix * [Refactor] Update tensor types in attention and matrix multiplication examples - Replaced instances of `T.Tensor` with `T.SharedTensor` and `T.FragmentTensor` in various attention and matrix multiplication functions to improve consistency and clarity. - Adjusted tensor definitions in benchmark and example files to align with the new tensor types. - Enhanced the overall structure and readability of the code by standardizing tensor usage across multiple files. * lint fix * [Refactor] Update tensor types in GEMM example and test files - Replaced instances of `T.Tensor` with `T.LocalTensor` and `T.Buffer` in the GEMM example and related test functions to improve consistency and clarity. - Enhanced the overall structure of the code by standardizing tensor usage across multiple files, aligning with recent updates in tensor definitions. * [Refactor] Update tensor usage in customize.py - Replaced instances of `T.Tensor` with `T.Buffer` in the `reshape` and `view` functions to enhance consistency with recent tensor definitions. - Improved code clarity by standardizing buffer usage across the file. * [Refactor] Update tensor types in test_tilelang_transform_annotate_device_regions.py - Replaced instances of `T.Tensor` with `T.Buffer` in the `before` and `expected` methods of the `TestAnnotateThreadExtent` and `TestAnnotateDeviceScope` classes to enhance consistency with recent tensor definitions. - Improved code clarity by standardizing buffer usage across the test file. * [Refactor] Update tensor types to SharedBuffer and FragmentBuffer - Replaced instances of `T.SharedTensor` and `T.FragmentTensor` with `T.SharedBuffer` and `T.FragmentBuffer` across multiple benchmark, example, and test files to enhance consistency with recent tensor definitions. - Improved code clarity and structure by standardizing buffer usage in attention and matrix multiplication functions. * [Refactor] Introduce Tensor alias for Buffer in proxy.py - Added a new alias `Tensor` for `Buffer` in `proxy.py` to facilitate JIT compilation, ensuring that inputs and outputs are mapped with `torch.Tensor`. - This change enhances clarity and consistency in tensor usage across the codebase.
-
- 20 Mar, 2025 1 commit
-
-
Lei Wang authored
* remove llvm build * [Refactor] Update kernel compilation and profiling in examples - Replaced `tilelang.lower` with `tilelang.compile` in multiple example scripts to streamline kernel compilation. - Updated profiling calls to utilize the new `get_profiler` method, enhancing performance measurement consistency. - Adjusted assertions and benchmarking methods to align with the new profiling structure across various examples, ensuring correctness and clarity in performance evaluations. * lint fix * License Update * [Refactor] Improve code formatting and documentation in CUDA header and HIP runtime files - Adjusted formatting in `cuda.h` for better readability, including alignment of comments and struct fields. - Cleaned up whitespace and improved comment clarity in `rt_mod_hip.cc` to enhance code maintainability. * [Refactor] Enhance formatting and clarity in CUDA header and HIP runtime files - Improved comment alignment and readability in `cuda.h`. - Cleaned up whitespace and formatting in `rt_mod_hip.cc` to enhance maintainability. * lint fix * lint fix * lint fix * lint fix * fix * License update * [Enhancement] Update JITKernel to use artifact for kernel source - Assigned the generated artifact to `self.artifact` for better management. - Updated kernel source references to use `artifact.kernel_source` for consistency in execution backend handling. * lint fix * Add @tilelang.testing.requires_llvm decorator to vectorization tests * Enhance setup.py and env.py for library management - Added functionality to remove original files after copying in CMakeBuild. - Updated TVM_LIBRARY_PATH in env.py to include the PyPI build library path for better integration. * Refactor TVM_LIBRARY_PATH assignment for improved readability in env.py * Refactor CMakeBuild file handling in setup.py - Added a check to ensure the target library directory exists before copying .so files. - Improved the logic for creating the target directory and copying files to enhance robustness. * bugfix * Rename BuildTLDebug to BuildTileLangCUDAWithoutCompile and update registration. Add @tilelang.testing.requires_llvm decorator to multiple tests for LLVM requirement. * lint fix * Enhance TileLang code generation by adding support for device code generation without compilation. Updated `host_codegen` and `device_codegen` functions to include new transformations and registration for `tilelang_hip_without_compile`. Refactored JIT kernel adapters to accommodate host and device modules, improving overall integration and flexibility. * lint fix * Add support for C target in device code generation - Updated `device_codegen_without_compile` to include handling for the C target by registering the `tilelang_cpp` function. * [Enhancement] Implement auto-clear cache feature based on environment variable * Added TILELANG_CLEAR_CACHE environment variable to control cache clearing. * Updated CI workflow to set TILELANG_CLEAR_CACHE during testing. * Modified cache initialization to clear cache if TILELANG_CLEAR_CACHE is set to true. * [Refactor] Update kernel invocation and import paths in tests and cache * Changed kernel invocation in `test_tilelang_kernel_dequantize_gemm.py` to return the result. * Updated import statements in `test_tilelang_kernel_int4_gemm_mma.py` to use `bitblas` instead of `tilelang`. * Refactored paths for artifact and parameters in `kernel_cache.py` for better maintainability. * [Refactor] Clean up whitespace and improve code formatting in kernel_cache.py * Removed unnecessary blank lines and adjusted spacing for better readability in the KernelCache class. * Enhanced overall code formatting to align with project standards. * [Enhancement] Add bfloat16 test case and improve kernel caching logic * Introduced a new test case for bfloat16 matrix multiplication in `test_tilelang_kernel_gemm_mma_intrinsic.py`. * Updated `KernelCache` to handle multiple kernel source files and improve error handling during saving and loading. * Refactored `JITKernel` to support instantiation from a database, enhancing flexibility in kernel management. * Adjusted `CtypesKernelAdapter` and `CythonKernelAdapter` to utilize the new kernel loading mechanism from the database. * Improved code formatting and readability across several files. * lint fix * Update bfloat16 matrix multiplication test case to use larger dimensions for improved coverage
-
- 17 Mar, 2025 1 commit
-
-
Yuxi Chi authored
* add fp8 gemm 2xAcc and deepgemm example. * format deepgemm example. * fix the fotmat lint. * format with the updated format.sh
-
- 13 Mar, 2025 1 commit
-
-
zqh-wz authored
* upgrade cutlass to upstream v3.8.0 * Implement fp8 gemm and add example script * Fix dtype retrieval with map_torch_type for fp8 inputs * Disable vectorization of fp8 values * Make MMA declaration compatible with cutlass 3.4.0+ * Add test for fp8 T.gemm * fix indent * fix indent * Add copyright and license header * Add copyright and license header * lint fix * Refactor matmul_nt and assert_matmul_correctness functions for improved readability by consolidating parameter definitions and adjusting formatting. * clang format lint --------- Co-authored-by:
Lei Wang <34334180+LeiWang1999@users.noreply.github.com> Co-authored-by:
LeiWang1999 <leiwang1999@outlook.com>
-
- 07 Mar, 2025 1 commit
-
-
Lei Wang authored
* [Refactor] Update BitBLAS Benchmark with TileLang Carver Imports and Roller Hints Generation - Replace BitBLAS imports with TileLang Carver imports in benchmark_matmul.py - Modify roller hints generation using new TileLang Carver template and utility functions - Update get_roller_hints_from_func to handle None cases and improve return logic - Adjust DefaultPolicy to handle different codegen dictionary formats * [Refactor] Update Thread Binding and Import Statements in TileLang Kernels - Replace T.thread_binding() with T.get_thread_binding() across multiple kernel test files - Update import statements for MMA layout and macro generator in dequantize GEMM and FP8 examples - Move map_torch_type utility function to tilelang.utils.tensor - Remove unnecessary imports and improve code organization
-
- 05 Mar, 2025 1 commit
-
-
Lei Wang authored
* Change default log level from WARNING to INFO in TileLang initialization * Refactor Flash Attention Variable-Length MHA Example with Cython Backend Support - Update `example_mha_fwd_varlen.py` to use Cython backend for kernel compilation - Remove unused imports and simplify function signature - Modify `flashattn` function to handle max sequence length as a separate argument - Update kernel call to include max sequence length parameter - Improve code readability and remove commented-out code - Add print statement to confirm successful assertion * Refactor code formatting in TileLang lowering and example files - Improve line breaks and code formatting in `lower.py`, `wrapper.py`, and `tensor.py` - Simplify line breaks and reduce unnecessary whitespace - Enhance code readability by adjusting indentation and line breaks - Update example MHA forward pass script with cleaner tensor initialization * Update TileLang kernel test with import path changes for MMA layout and macro generator - Modify import statements in test_tilelang_kernel_dequantize_gemm.py - Replace bitblas imports with tilelang.intrinsics imports for MMA-related utilities - Update main function to use tilelang.testing.main() * Add Block Sparse Attention Examples for TileLang and Triton - Implement block sparse attention kernels for both TileLang and Triton - Add utility functions for generating sparse attention masks using top-k and threshold methods - Support causal and variable-length attention scenarios - Include test cases for different sequence length configurations - Demonstrate block-level sparse attention with configurable parameters * Refactor Block Sparse Attention Examples with Code Style Improvements - Improve code formatting in block_sparse_attn_tilelang.py and block_sparse_attn_triton.py - Enhance readability by adjusting line breaks and indentation - Simplify kernel and function calls with better formatting - Add whitespace and line break improvements for better code clarity * Enhance Layout Plotting with Multi-Replication and Dynamic Visualization - Update plot_layout function to support multiple replications in thread and value mapping - Improve thread and value mapping to handle replicated layouts - Dynamically adjust figure size and legend positioning - Add print statements for saved plot file paths - Modify example fragment_mma_load_a.py to uncomment and enable warp and block layout plotting * Refactor AtomicAdd functions in CUDA common header - Implement a generic template for AtomicAdd function - Specialize templates for half_t, bfloat16_t, and pointer types - Reorganize and clean up existing AtomicAdd implementations - Improve type handling and conversion in atomic operations * Remove unused import in MHA backward test file - Remove unnecessary argparse import from test_tilelang_kenrel_mha_bwd.py - Add blank line for improved code formatting - Minor code cleanup in test file * Add FP8 GEMM Example with TensorCore Intrinsics - Implement a new example for FP8 matrix multiplication using TensorCore intrinsics - Support E4M3 and E5M2 floating-point 8-bit data types - Add README with notes on current FP8 implementation limitations - Include correctness test for FP8 GEMM with different configurations - Demonstrate swizzle layout and pipeline optimizations for FP8 computation
-
- 26 Feb, 2025 1 commit
-
-
Lei Wang authored
* Add DeepSeek MLA decode example with Flash Attention implementation * Add GEMM SplitK and StreamK example implementations This commit introduces two new example scripts demonstrating advanced GEMM (matrix multiplication) techniques: - `example_tilelang_gemm_splitk.py`: Implements a Split-K GEMM kernel using TileLang - `example_tilelang_gemm_streamk.py`: Implements a Stream-K GEMM kernel using TileLang Both examples showcase different parallel computation strategies for matrix multiplication, with comprehensive testing using PyTorch reference implementations. * Refactor GEMM SplitK and StreamK example implementations Clean up and improve code formatting for the SplitK and StreamK GEMM example scripts: - Remove unused import (Profiler) in splitk example - Simplify line breaks and improve code readability - Standardize indentation and remove unnecessary whitespace - Optimize atomic add and copy operations for better clarity * Add block sparse attention benchmarks for multiple libraries This commit introduces comprehensive block sparse attention benchmarks for different libraries: - TileLang block sparse FMHA implementation - Triton block sparse FMHA implementation - PyTorch reference block sparse FMHA implementation - FlashAttention dense FMHA reference implementation The benchmarks include: - Configurable benchmark parameters (batch size, heads, sequence length, etc.) - Sparse mask generation using top-k and threshold methods - Performance measurement for different sparse attention configurations - Utility functions for mask generation and benchmarking * Refactor block sparse attention benchmarks with code style improvements - Add Ruff linter ignore comments to benchmark files - Improve code formatting and line breaks - Remove unused imports - Standardize print statement formatting - Enhance code readability across multiple library benchmarks * lint fix * Add CUDA atomic operations for BFLOAT16 and update function naming - Implement AtomicAdd functions for BFLOAT16 and BFLOAT16x2 in CUDA common header - Rename existing atomic add functions to use PascalCase (atomicAdd -> AtomicAdd) - Add a new __pack_nv_bfloat162 function for packing BFLOAT16 values - Update kernel and language customization to use new function names - Add return type annotations in profiler module * lint fix * Add example for Group Query Attention (GQA) forward pass using Flash Attention in TileLang This commit introduces a new example script `example_gqa_fwd_bshd.py` that demonstrates: - Group Query Attention (GQA) implementation - Flash Attention forward pass - Performance benchmarking - Configurable parameters for batch, heads, sequence length, and dimension - Autotuning support - Reference implementation comparison * Refactor IR lowering pipeline into modular phases This commit introduces a new module `phase.py` to modularize the IR lowering process by splitting the complex lowering pipeline into two distinct phases: - `LowerAndLegalize`: Handles initial IR legalization and transformation - `OptimizeForTarget`: Applies target-specific optimizations The changes simplify the lowering logic in multiple files by extracting the transformation steps into reusable functions, improving code readability and maintainability. * lintfix * nas kernel * Enhance Native Sparse Attention Examples with Code Improvements and Parameter Updates - Updated example_tilelang_nsa.py and example_triton_nsa.py with code formatting and style improvements - Increased default number of heads and selected blocks in TileLang NSA example - Added Ruff linter ignore comments to reference.py - Standardized function signatures and improved code readability across NSA implementations * Add utility math functions for integer operations - Implement `next_power_of_2()` to calculate the next power of 2 for an integer - Add `cdiv()` function for ceiling division of integers * Add utility math functions for integer operations - Implement `next_power_of_2()` to calculate the next power of 2 for an integer - Add `cdiv()` function for ceiling division of integers * Refactor DeepSeek MLA Decode Example with Enhanced Flash Attention Implementation - Update flash attention kernel to support positional embeddings (PE) - Modify reference implementation to handle PE and group query attention - Increase default batch size and adjust benchmarking parameters - Improve kernel performance and readability - Add einops and torch operations for more flexible tensor manipulation * Update README.md with corrected Flash MLA Decoding example path - Modify the example link for Flash MLA Decoding to point to the correct directory - Ensure accurate navigation to the DeepSeek MLA decoding example
-