1. 23 Sep, 2025 1 commit
  2. 02 Sep, 2025 1 commit
    • Lei Wang's avatar
      [Math] Dispatch `T.rsqrt(x)` into cuda intrin instead of `1 / T.sqrt(x)` (#781) · b66f9aae
      Lei Wang authored
      * Fix type hint for target_host parameter in compile function to allow None value
      
      * Refactor target handling in compile function to utilize determine_target for improved clarity and consistency
      
      * Update PrintConst function in codegen_cuda.cc to use hexfloat format for bfloat16 and float8/float4 types, while adding scientific notation comments for clarity. This change enhances the representation of floating-point constants in the generated code.
      
      * Refactor PrintType function in codegen_cuda.cc to remove unnecessary failure conditions for floating-point types with lane counts greater than 4. This change simplifies the logic and improves code clarity.
      
      * Enhance benchmark_matmul.py to conditionally print Reference TFlops only if ref_latency is not None. Update param.py to ensure target is converted to string for consistency. Refactor tuner.py to utilize determine_target for improved clarity in target handling.
      
      * Remove automatic commit and push step from AMD and NVIDIA CI workflows to streamline the process and avoid unnecessary commits.
      
      * Add intrin_rule source files to CMakeLists.txt and implement hrsqrt function for half_t in common.h
      
      * lint fix
      
      * remove cmake dep in pyproject as it may lead to different cmake paths in diff stages
      
      * lint fix
      
      * Add cmake dependency to pyproject.toml and improve build logging in setup.py
      b66f9aae
  3. 01 Sep, 2025 1 commit
  4. 31 Aug, 2025 2 commits
    • coderabbitai[bot]'s avatar
      📝 Add docstrings to `reducer_0825` (#772) · 9a869396
      coderabbitai[bot] authored
      * 📝 Add docstrings to `reducer_0825`
      
      Docstrings generation was requested by @LeiWang1999.
      
      * https://github.com/tile-ai/tilelang/pull/757#issuecomment-3219088118
      
      
      
      The following files were modified:
      
      * `setup.py`
      * `src/op/builtin.h`
      * `src/op/finalize_reducer.cc`
      * `src/op/finalize_reducer.h`
      * `src/op/parallel.cc`
      * `src/op/parallel.h`
      * `src/op/reduce.cc`
      * `src/target/codegen_cuda.cc`
      * `src/tl_templates/cuda/common.h`
      * `src/transform/layout_inference.cc`
      * `src/transform/layout_reducer.cc`
      * `src/transform/layout_reducer.h`
      * `src/transform/merge_shared_memory_allocations.cc`
      * `src/transform/storage_access.cc`
      * `src/transform/warp_specialized_rewriter.cc`
      * `testing/python/autotune/test_tilelang_autotune_with_inputs.py`
      * `tilelang/engine/phase.py`
      * `tilelang/language/customize.py`
      * `tilelang/language/reduce.py`
      * `tilelang/transform/__init__.py`
      
      * lint fix
      
      * lint fix
      
      ---------
      Co-authored-by: default avatarcoderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com>
      Co-authored-by: default avatarLeiWang1999 <leiwang1999@outlook.com>
      9a869396
    • Lei Wang's avatar
      [Reducer] Introduce `alloc_reducer` to separate inter and intra warp reduction (#757) · 8eab7755
      Lei Wang authored
      
      
      * [Enhancement] Introduce finalize_reducer operator and layout reducer support
      
      - Added `FinalizeReducer` operator to handle reduction finalization in the TileLang framework, allowing for efficient reduction operations.
      - Implemented layout inference for local.reducer buffers, enhancing the handling of layout mappings and reducing complexity in buffer management.
      - Updated `setup.py` to include logging for build directory paths, improving build process visibility.
      - Enhanced atomic operations with new functions for atomic max, min, load, and store, providing more robust atomicity control in memory operations.
      - Refactored parallel loop handling to incorporate reducer information, ensuring proper management of reduction operations in parallel contexts.
      - Cleaned up test cases by removing unnecessary cache disabling and optimizing test parameters for better performance.
      
      * Refactor code formatting and improve readability in multiple files
      
      - Cleaned up whitespace in `setup.py` to enhance logging clarity.
      - Reformatted `AtomicMax` and `AtomicMin` functions in `common.h` for better alignment and readability.
      - Adjusted `debug_print_var` function in `debug.h` to improve code structure and maintainability.
      - Enhanced readability of the `atomic_add` function in `customize.py` by breaking long lines for better clarity.
      
      * Remove debug print statements from `copy.cc` and `inject_tma_barrier.cc` to enhance code clarity and maintainability.
      
      * [Enhancement] Disable reuse of small arrays in shared memory allocation
      
      - Added logic to prevent the reuse of small arrays (<= 32 bits) in `merge_shared_memory_allocations.cc`, ensuring they are lowered to registers in LLVM for improved performance and memory management.
      
      * Refactor `setup.py` to remove duplicate logging statements and enhance clarity. Update `finalize_reducer` function documentation in `reduce.py` to include detailed parameter and return descriptions, improving code readability and maintainability.
      
      * Refactor `finalize_reducer` and `reduce` functions to remove redundant target checks. Simplified conditionals by retaining only the `TargetIsHopper` check, enhancing code clarity and maintainability.
      
      * bug fix
      
      * Add thread checks workaround for replicated cases
      
      * Remove the is_one check
      
      * fix lint error
      
      * lint fix
      
      * Update autotune tests to use smaller matrix sizes for improved performance and reliability
      
      * [Refactor] Update FinalizeReducer to FinalizeReducerOp and adjust related methods
      
      - Refactored FinalizeReducer class to FinalizeReducerOp, updating constructor and method signatures for consistency with the new TileOperator structure.
      - Enhanced layout inference and cloning methods in FinalizeReducerOpNode.
      - Updated test_example_flash_attention.py to call test_example_gqa_bwd instead of tilelang.testing.main.
      - Adjusted header inclusions for improved organization and clarity across multiple files.
      
      * [Refactor] Update atomic operations in common.h and modify test_example_flash_attention.py
      
      - Enhanced atomic operations (Add, Min, Max) in common.h to handle half and bfloat16 types more efficiently.
      - Updated test_example_flash_attention.py to call test_example_gqa_bwd instead of tilelang.testing.main, improving test organization.
      
      * [Refactor] Simplify CopyNode::LowerBulkCopy logic and update test execution
      
      - Removed redundant checks for contiguous memory access in CopyNode::LowerBulkCopy, streamlining the logic for TMA copy operations.
      - Updated test_tilelang_kernel_gemm.py to comment out the main testing function and call a specific test for i8i8i32 tensor operations instead, improving test focus.
      
      ---------
      Co-authored-by: default avatarHuanqi Cao <caohuanqi@deepseek.com>
      Co-authored-by: default avatarFreebase6912 <amid-gauze-racing@duck.com>
      8eab7755
  5. 24 Aug, 2025 1 commit
    • Lei Wang's avatar
      [Bugfix] Add missing FP8 header include (#752) · cf7be057
      Lei Wang authored
      
      
      * [Enhancement] Add DispatchInstruction specialization for fp8 types in gemm_sm90.h
      
      - Introduced specialized DispatchInstruction templates for fp8_e4_t and fp8_e5_t types, enhancing support for new data formats in CUDA GEMM operations.
      - Each specialization defines the corresponding MMA and MMA_Group types, optimizing performance for specific configurations.
      Co-authored-by: default avatarLeiWang1999 <leiwang1999@outlook.com>
      
      * [Enhancement] Include cuda_fp8.h in gemm_sm90.h
      
      - Added the inclusion of the "cuda_fp8.h" header file to support new data formats in CUDA GEMM operations, enhancing compatibility with recent updates for fp8 types.
      Co-authored-by: default avatarLeiWang1999 <leiwang1999@outlook.com>
      
      * lint fix
      
      * [Refactor] Remove unused tl_shuffle_elect and related functions from common.h
      
      - Deleted the `tl_shuffle_elect` function and its associated comments to streamline the codebase.
      - Added inclusion of "intrin.h" for improved intrinsic support in CUDA operations.
      - Cleaned up the file by removing unnecessary template parameters and functions, enhancing clarity and maintainability.
      
      * lint fix
      
      * [Refactor] Update header inclusions in common.h and gemm_sm90.h
      
      - Removed the inclusion of "intrin.h" from common.h to streamline dependencies.
      - Added "intrin.h" inclusion in gemm_sm90.h to ensure intrinsic support for CUDA operations, enhancing functionality and maintainability.
      
      * bug fix
      cf7be057
  6. 23 Aug, 2025 1 commit
    • Lei Wang's avatar
      [Refactor] Merge ThreadPartialSync and ThreadStorageSync (#741) · 6b125028
      Lei Wang authored
      * Remove `thread_partial_sync.cc` and refactor `thread_storage_sync.cc` to streamline synchronization handling. Introduce `thread_sync_types.h` for thread-bound key definitions and reserved named barriers. Update related logic in `ThreadSyncInserter` and `TileLangThreadSync` for improved clarity and efficiency.
      
      * Remove `sync_thread_partial` references and related documentation from the codebase. Update CUDA and HIP code generation files to eliminate calls to the removed function. Refactor `__sync_thread_partial` to `sync_thread_partial` in CUDA common header for consistency.
      
      * Remove unused import of `bulk_copy.h` in `codegen_hip.cc` to enhance code clarity and maintainability.
      
      * Add import of `bulk_copy.h` in `codegen_hip.cc` to support new functionality.
      
      * typo fix
      
      * Update data type in reduce_sum tests from float16 to float32 for consistency and clarity. Remove redundant dtype tests and streamline run functions. Enhance reshape kernel compilation with pass configurations to address shared memory layout issues.
      
      * lint fix
      
      * test fix
      
      * Enhance CI configuration by adding verbose output to pip install command for better visibility during installation.
      
      * use ninja instead of make
      
      * Add CMake configuration step for Ninja build system in setup.py
      
      * Update pyproject.toml to include additional build dependencies: build, torch, tox, auditwheel, patchelf, and ninja.
      
      * Enhance CI configuration by adding verbose output to pytest commands for improved test visibility.
      
      * Update pyproject.toml to add Cython as a build dependency. Enhance thread storage synchronization in thread_storage_sync.cc by introducing new thread variable handling and improving index disjointness checks.
      
      * Update data type in cumulative sum tests from float16 to float32 for consistency. Modify run_cumsum function to utilize the updated dtype and enhance result validation with assertions. Adjust test cases accordingly.
      
      * Refactor storage access handling by introducing buffer data mapping in TileLangStorageAccessVisitor. Enhance access entry structure to include pointer access flag. Update thread storage synchronization to accommodate new buffer data mappings. Adjust quickstart example to print kernel source for debugging purposes.
      
      * Refactor linear index conversion in TileLangStorageAccessVisitor to utilize the analyzer for simplification. Update buffer index calculations to ensure consistent simplification of range expressions.
      
      * bugfix
      
      * Refactor buffer index calculation in TileLangStorageAccessVisitor to simplify access handling. Removed unused buffer mapping logic, ensuring consistent buffer index generation with a default ramp.
      
      * Refactor TileLangStorageAccessVisitor to replace buffer indices with buffer ranges for improved pointer access handling. Update AccessEntry structure to include buffer_ranges and adjust thread storage synchronization logic to account for pointer access conflicts.
      
      * Refactor thread storage synchronization to replace 'shared.dyn' with 'shared' for consistency in memory allocation. Update related test cases to reflect this change and ensure proper functionality.
      6b125028
  7. 21 Aug, 2025 1 commit
    • Lei Wang's avatar
      [Refactor] Refactor barrier management (#744) · cb37bfef
      Lei Wang authored
      * Introduce Barrier
      
      * Enhance CUDA kernel with new barrier management and post-processing support
      
      - Added a new CUDA kernel implementation in `example_mla_decode.py` for improved performance with shared memory barriers.
      - Refactored barrier handling in `codegen_cuda.cc` and `codegen_hip.cc` to utilize a more flexible mbarrier structure.
      - Updated intrinsic definitions from `ptx_stmatirx` to `ptx_stmatrix` across multiple files for consistency.
      - Introduced additional print statements for debugging in the lowering phase of the TileLang engine.
      - Enhanced the overall structure and readability of the codebase.
      
      * Remove unused barrier handling code in CUDA and HIP code generators to streamline the implementation. This change enhances code clarity and reduces complexity in the barrier management logic.
      
      * Enhance barrier management in TileLang
      
      - Introduced a new intrinsic `allocate_barrier` for dynamic barrier allocation in the TileLang framework.
      - Updated CUDA code generation to support the new barrier structure, allowing for improved synchronization in shared memory.
      - Refactored existing barrier handling logic to accommodate the new intrinsic and streamline code.
      - Added print statements for debugging purposes in various examples and the lowering phase of the TileLang engine.
      - Removed deprecated memory scope handling code to enhance clarity and maintainability.
      
      * lint fix
      
      * lint fix
      
      * Remove `allocate_barrier` intrinsic and related code from TileLang to streamline barrier management. This includes updates to CUDA code generation and the removal of associated Python wrappers, enhancing code clarity and maintainability.
      
      * Refactor logging in JITKernel to improve kernel compilation tracking
      
      - Removed unused import of `torch.backends` in the example file.
      - Introduced logging for kernel compilation in `JITKernel`, replacing print statements with structured logging for better traceability and debugging.
      - Added an assertion to ensure the presence of the `global_symbol` attribute in the kernel function.
      
      * Refactor dequantization tests and update barrier function
      
      - Removed the test for `example_dequant_gemm_bf16_fp4_hopper_serial` to streamline the testing suite.
      - Updated the `mbarrier_cp_async_arrive` function to support both pointer and non-pointer types, enhancing flexibility in barrier management.
      
      * Update CI configuration to increase pytest parallelism from 4 to 8 threads for improved test execution speed.
      
      * Fix typos in rasterization parameters and update import path for cached module
      
      - Corrected the spelling of `enable_rasteration` to `enable_rasterization` in the matmul function and its usage.
      - Updated the import statement for the `cached` module to reflect the new path in the cache submodule.
      - Added `StridedTensor` import in the language module for enhanced tensor functionality.
      
      * Update ci.yml
      cb37bfef
  8. 15 Aug, 2025 1 commit
  9. 11 Aug, 2025 1 commit
    • Wenhao Xie's avatar
      [Enhancement] Add eviction policy support for TMA operations, enhance CUDA... · 6664d170
      Wenhao Xie authored
      [Enhancement] Add eviction policy support for TMA operations, enhance CUDA codegen, and introduce new pass config (#690)
      
      * Enhance TMA and barrier handling in CUDA code generation
      
      - Updated `CodeGenTileLangCUDA` to support eviction policies for TMA operations, allowing for more flexible memory management.
      - Introduced a new `CacheHintSm90` enum to define eviction strategies in `copy_sm90.h`.
      - Modified TMA load/store functions to accept eviction policies, improving performance on different architectures.
      - Enhanced `TmaBarrierCollector` and `TmaBarrierRewriter` to account for SIMT copies, ensuring correct barrier insertion.
      - Refactored thread synchronization logic to utilize barrier IDs, improving the efficiency of partial thread synchronization.
      - Updated Python interface for `copy` and `c2d_im2col` to include optional eviction policy parameters, enhancing usability.
      
      * update shuffle and elect optimization
      
      * fix bug
      
      * fix bug
      
      * fix potential bug
      
      * lint fix
      
      * lint fix
      
      * update shuffle_elect template
      
      * fix bug
      
      * fix bug
      
      * fix template
      
      * lint and fix
      
      * fix typo
      6664d170
  10. 16 Jul, 2025 1 commit
    • Lei Wang's avatar
      [Warp Specialize] Implicit Warp Specialize Programing Model (#605) · e2d25ba8
      Lei Wang authored
      * [Enhancement] Improve memory access condition checks in GlobalMemChecker
      
      - Updated the condition checks in the GlobalMemChecker to utilize symbolic bounds in the CanProve method, enhancing the accuracy of memory access validations.
      - This change ensures that both upper and lower bound conditions are evaluated with improved proof strength, contributing to more robust memory access analysis.
      
      * lintfix
      
      * [Enhancement] Add legality checks for shared memory and global range in LowerBulkCopy
      
      - Implemented checks to ensure that the shared memory range and global range are legal during the bulk copy operation.
      - Added assertions to validate that the extents of global and shared ranges match, improving the robustness of memory access validation in the LowerBulkCopy function.
      
      * [Refactor] Update barrier and clear operations in warp specialization examples
      
      - Replaced `mbarrier_wait_parity` and `mbarrier_arrive` with `barrier_wait` and `barrier_arrive` for improved clarity and consistency in synchronization.
      - Adjusted the order of `clear` operations for local fragments in `example_warp_specialize_gemm_copy_1_gemm_0` to enhance parallel execution efficiency.
      
      * [Enhancement] Implement thread partial synchronization and improve shared memory allocation handling
      
      - Added support for thread partial barrier synchronization in CUDA, allowing for more flexible thread management.
      - Enhanced the `MergeSharedMemoryAllocations` function to accept alignment bytes, improving memory allocation efficiency based on target requirements.
      - Updated the `Lower` methods in `Copy` and `Fill` classes to include conditional predicates for thread execution, ensuring better control over thread behavior.
      - Refactored the `print` function to include warp group and warp IDs for more detailed debugging output.
      - Improved the handling of dynamic shared memory allocations in the `LowerAndLegalize` function to align with target-specific requirements.
      
      * [Enhancement] Add support for disabling TMA in Copy operations
      
      - Introduced a new `disable_tma` parameter in the `Copy` class to control thread memory access behavior.
      - Updated the `Lower` method to conditionally execute bulk copy operations based on the `disable_tma` flag.
      - Enhanced the `copy` function to accept the `disable_tma` argument, allowing for more flexible memory copy operations.
      - Improved handling of `coalesced_width` to ensure it defaults to -1 when not provided, enhancing robustness in memory operations.
      
      * [Refactor] Clean up whitespace and formatting in multiple files
      
      - Removed unnecessary blank lines and adjusted line breaks for improved code readability in `example_mla_decode.py`, `example_warp_specialize_gemm_copy_gemm_0_1.py`, `phase.py`, and `copy.py`.
      - Ensured consistent formatting across functions to enhance maintainability and clarity of the codebase.
      
      * [Enhancement] Refactor flash attention implementation for improved performance and configurability
      
      - Split the shared memory allocations for query and key-value pairs to optimize memory usage.
      - Introduced command-line arguments for batch size, number of heads, and dimensions, enhancing flexibility in running the example.
      - Updated kernel execution parameters to improve thread management and synchronization.
      - Enhanced the overall structure of the flash attention function for better readability and maintainability.
      
      * fix
      
      * Update layout inference in ParallelOp to account for thread bounds; remove debug print in OptimizeForTarget
      
      * Refactor barrier handling and update example configurations
      
      - Replaced commented-out barrier creation with new barrier allocation in GEMM example.
      - Updated kernel configuration in warp specialization example to include async copy settings.
      - Enhanced barrier management in the phase optimization process to improve synchronization handling.
      - Introduced new barrier allocation function for better memory management in shared contexts.
      
      * Refactor barrier handling in LowerAndLegalize and OptimizeForTarget
      
      - Reintroduced barrier lowering in OptimizeForTarget to enhance synchronization.
      - Removed commented-out barrier lowering in LowerAndLegalize for cleaner code.
      - Added exit() call in OptimizeForTarget to halt execution after barrier lowering.
      
      * Enhance CMake configuration and clean up example scripts
      
      - Enabled compile command export in CMakeLists.txt for better build integration.
      - Removed unnecessary print statement in the warp specialization example.
      - Cleaned up commented-out code in GEMM example for improved readability.
      - Updated barrier handling in shared memory allocation transformations for better synchronization.
      
      * Refactor barrier handling in warp specialization examples
      
      - Replaced commented-out mbarrier code with new barrier allocation using T.alloc_barrier for improved synchronization.
      - Updated barrier wait and arrive calls to align with the new allocation method across multiple example scripts.
      - Enhanced code readability by removing unnecessary comments and ensuring consistent barrier management.
      
      * Update lower_shared_barrier.cc
      
      * Update phase.py
      
      * Update warp specialization example and Cython wrapper
      
      - Removed commented-out pass configuration options in the warp specialization example for clarity.
      - Added functionality to write the generated kernel source to a file named "kernel.cu".
      - Enhanced Cython wrapper to support boolean type conversion for improved type handling.
      
      * Add storage synchronization call in shared barrier transformation
      
      - Introduced a new evaluation statement to call the TVM storage sync function with "shared" as an argument, enhancing synchronization in the shared barrier handling process.
      
      * remove debug files
      
      * Remove kernel source output to file in warp specialization example
      
      * remove comments
      
      * Refactor tensor handling and update test execution in TileLang
      
      - Changed `Buffer` to `Tensor` in `customize.py` for better type consistency.
      - Updated `mbarrier_wait_parity` and `mbarrier_arrive` functions in `builtin.py` to use `tir.BufferLoad` instead of `BufferLoad`.
      - Commented out the main testing function in `test_tilelang_language_reshape.py` and replaced it with a direct call to `run_reshape_smem` for streamlined testing.
      - Removed unnecessary NVCC compiler flags in `libgen.py` to reduce verbosity.
      
      * Update test_tilelang_language_reshape.py
      e2d25ba8
  11. 05 Jun, 2025 1 commit
    • Gabriel Wu's avatar
      [Enhancement] Add nvrtc execution backend (#461) · 17f7394f
      Gabriel Wu authored
      
      
      * [wip] feat: add nvrtc backend
      
      * [wip] fix: handle out_idx
      
      * [wip] refactor: move lib logic to libgen
      
      * feat: cache for nvrtc backend
      
      * fmt: run format
      
      * fix: handle cuda bindings import error
      
      * fix: handle cuda bindings import error
      
      * fix: handle cuda bindings import error
      
      * fix: handle cuda bindings import error
      
      * fix: get kernel source
      
      * refactor: speedup pyimport
      
      * Improve error handling for missing cuda-python dependency in nvrtc backend. Raise ImportError with detailed installation instructions instead of logging a warning.
      
      * Enhance nvrtc backend error handling by introducing a flag to check for cuda-python availability. Raise ImportError with detailed installation instructions during initialization if the nvrtc backend is unavailable, improving user experience and clarity.
      
      * Update README.md to include recent NVRTC Backend addition, highlighting reduced compilation time for CUDA templates.
      
      * fix tl_templates
      
      * ensure CUDA context
      
      ---------
      Co-authored-by: default avatarLeiWang1999 <leiwang1999@outlook.com>
      17f7394f
  12. 26 May, 2025 1 commit
    • Lei Wang's avatar
      [Enhancement] Add atomicAdd for FLOAT16x2 and FLOAT16x4 (#522) · 46798f25
      Lei Wang authored
      * [Enhancement] Add atomic addition functions for FLOAT16x2 and FLOAT16x4 in CUDA
      
      * Introduced `AtomicAddx2` and `AtomicAddx4` functions for performing atomic addition operations on double-width float types in CUDA.
      * Updated `customize.py` to include the new `atomic_addx4` function for external calls.
      * Modified `__init__.py` to export the new atomic addition function, ensuring accessibility in the module.
      
      * lint fix
      46798f25
  13. 09 May, 2025 1 commit
    • Lei Wang's avatar
      [Feature] Implement fast integer power operation and related API (#466) · 1f5eb492
      Lei Wang authored
      * [Refactor] Enhance TMA barrier validation and support for additional architectures (#463)
      
      * Updated the TMA barrier validation in `inject_tma_barrier.cc` to check for non-empty `barrier_id_to_range_` before raising an error for missing `create_list_of_mbarrier`.
      * Refactored architecture checks in `phase.py` to utilize a new constant `SUPPORTED_TMA_ARCHS`, allowing for easier updates and improved readability in the target architecture validation logic.
      
      * [Feature] Implement fast integer power operation and related API
      
      * Added a new math operation `tl.power_of_int` in `math.cc` for efficient integer exponentiation.
      * Introduced a corresponding Python API `pow_of_int` in `tir/op.py` to facilitate usage in TileLang.
      * Enhanced `common.h` with a template function for integer power calculations.
      * Updated documentation to reflect the new functionality and usage examples.
      1f5eb492
  14. 06 May, 2025 1 commit
    • Lei Wang's avatar
      [Feature] Add TILELANG_CHECK_LAST_ERROR macro for improved error handling in CUDA and HIP (#450) · 0a8c8b99
      Lei Wang authored
      * [Feature] Add TILELANG_CHECK_LAST_ERROR macro for improved error handling in CUDA and HIP
      
      * Introduced TILELANG_CHECK_LAST_ERROR macro to streamline error checking for kernel launches in both CUDA and HIP.
      * Updated kernel launch code in wrapper.py to utilize the new macro, enhancing readability and maintainability.
      * This change improves error reporting by providing detailed messages when kernel execution fails.
      
      * [Refactor] Standardize error message formatting in TILELANG_CHECK_LAST_ERROR macro
      
      * Updated the TILELANG_CHECK_LAST_ERROR macro in both CUDA and HIP implementations to ensure consistent formatting of error messages.
      * Enhanced readability by aligning the error message structure across different platforms, improving maintainability of error handling code.
      0a8c8b99
  15. 29 Apr, 2025 1 commit
    • Lei Wang's avatar
      [Bugfix] Fix layout inference for free fragment buffer (#443) · 2ea45ae9
      Lei Wang authored
      * [Enhancement] Improve layout inference accuracy in ParallelOp (#441)
      
      * Added logic to use non-replicated buffers as source buffers for more accurate layout inference.
      * Enhanced comments to clarify the rationale behind buffer selection in layout inference process.
      
      * [Enhancement] Add error handling macros and refactor loop partitioning logic
      
      * Introduced TILELANG_CHECK macro for improved error handling in CUDA and HIP code, providing detailed error messages for kernel launches.
      * Enhanced loop partitioning logic to handle fragment buffers more effectively, ensuring correct replication based on thread extent.
      * Added logging for thread range in PlanLoopPartition to aid in debugging and performance analysis.
      * Updated pass configuration management to streamline vectorization control in the optimization process.
      
      * lint fix
      
      * remove debug print
      2ea45ae9
  16. 11 Apr, 2025 1 commit
    • Lei Wang's avatar
      [Language] Introduce `T.any_of` and `T.all_of` to reduce a bool arrary (#371) · c4638d65
      Lei Wang authored
      
      
      * [Enhancement] Introduce logical operations `any_of` and `all_of` for buffer checks
      
      - Added new logical operations `any_of` and `all_of` to the TileLang language interface, allowing users to check conditions across buffer elements.
      - Implemented corresponding intrinsic calls for CUDA, enhancing the functionality of the TileLang framework.
      - Updated the `allocate.py` to handle boolean types correctly in shared memory allocations.
      - Introduced tests for the new logical operations to ensure correctness and performance.
      Co-authored-by: default avatarZhiwen Mo <zhiwen.mo25@ic.ac.uk>
      
      * lint fix
      
      ---------
      Co-authored-by: default avatarZhiwen Mo <zhiwen.mo25@ic.ac.uk>
      c4638d65
  17. 03 Apr, 2025 1 commit
  18. 28 Mar, 2025 1 commit
  19. 27 Mar, 2025 1 commit
    • Lei Wang's avatar
      [Bugfix] Enable bfloat16 atomic operations only for CUDA architectures greater than 7.5 (#291) · 83412458
      Lei Wang authored
      * [Refactor] Improve flash attention example and layout comparison logic
      
      - Removed unnecessary annotation for `lse_local_split` in the flash attention example to streamline the code.
      - Updated the handling of `lse_local_split` to utilize parallel processing for better performance.
      - Refactored kernel compilation and profiling logic to enhance clarity and maintainability in the flash attention example.
      - Added a condition in `FragmentNode::IsEqual` to handle broadcast cases, improving the robustness of layout comparisons.
      
      * lint fix
      
      * [Enhancement] Add support for shared memory scope in Fill operation
      
      - Introduced handling for `shared.dyn` and `shared` memory scopes in the Fill operation.
      - Implemented parallel operation and layout inference for improved performance in shared memory scenarios.
      - Updated thread loop partitioning and vectorization logic to accommodate new memory scope handling.
      
      * [Refactor] Remove deprecated decorator and enhance Cython kernel handling
      
      - Removed the deprecated decorator from the main module and added a new implementation in the utils module for better organization.
      - Introduced a pointer map in the Cython kernel adapter to manage pointer arguments, improving runtime shape resolution.
      - Updated the Cython kernel wrapper to utilize the new pointer map for handling kernel arguments.
      - Enhanced error checking in the tensor utility functions to ensure static shapes are enforced.
      - Added a new proxy module for buffer and tensor handling, streamlining the interface for TIR programs.
      
      * [Feature] Add matrix multiplication test and kernel implementation
      
      - Introduced a new test file `test_tilelang_language_ptr.py` that implements a matrix multiplication function using TileLang's primitives.
      - The `matmul_test` function defines a kernel for performing tile-level GEMM operations with customizable block sizes and data types.
      - Added a `run_matmul` function to compile and execute the kernel, along with a test function to validate the implementation.
      - Updated the `proxy.py` file to enhance type handling for buffer and tensor proxies, ensuring compatibility with TIR programs.
      - Minor formatting improvements in `deprecated.py` for better readability.
      
      * lint fix
      
      * [Refactor] Update tensor creation in matrix multiplication test
      
      - Replaced `T.Tensor.from_ptr` with `T.make_tensor` in `matmul_test` for improved clarity and consistency.
      - Updated imports in `__init__.py` to include `make_tensor`.
      - Added `make_tensor` function in `proxy.py` to streamline tensor creation from pointers.
      
      * [Refactor] Update tensor definitions across multiple files
      
      - Replaced instances of `T.Tensor` with updated tensor definitions in various benchmark and example files to enhance consistency and clarity.
      - Adjusted tensor shapes and types in functions related to matrix multiplication, attention mechanisms, and other operations.
      - Improved documentation in README and example files to reflect changes in tensor usage.
      
      * lint fix
      
      * [Refactor] Update tensor types in attention and matrix multiplication examples
      
      - Replaced instances of `T.Tensor` with `T.SharedTensor` and `T.FragmentTensor` in various attention and matrix multiplication functions to improve consistency and clarity.
      - Adjusted tensor definitions in benchmark and example files to align with the new tensor types.
      - Enhanced the overall structure and readability of the code by standardizing tensor usage across multiple files.
      
      * lint fix
      
      * [Refactor] Update tensor types in GEMM example and test files
      
      - Replaced instances of `T.Tensor` with `T.LocalTensor` and `T.Buffer` in the GEMM example and related test functions to improve consistency and clarity.
      - Enhanced the overall structure of the code by standardizing tensor usage across multiple files, aligning with recent updates in tensor definitions.
      
      * [Refactor] Update tensor usage in customize.py
      
      - Replaced instances of `T.Tensor` with `T.Buffer` in the `reshape` and `view` functions to enhance consistency with recent tensor definitions.
      - Improved code clarity by standardizing buffer usage across the file.
      
      * [Refactor] Update tensor types in test_tilelang_transform_annotate_device_regions.py
      
      - Replaced instances of `T.Tensor` with `T.Buffer` in the `before` and `expected` methods of the `TestAnnotateThreadExtent` and `TestAnnotateDeviceScope` classes to enhance consistency with recent tensor definitions.
      - Improved code clarity by standardizing buffer usage across the test file.
      
      * [Refactor] Update tensor types to SharedBuffer and FragmentBuffer
      
      - Replaced instances of `T.SharedTensor` and `T.FragmentTensor` with `T.SharedBuffer` and `T.FragmentBuffer` across multiple benchmark, example, and test files to enhance consistency with recent tensor definitions.
      - Improved code clarity and structure by standardizing buffer usage in attention and matrix multiplication functions.
      
      * [Refactor] Introduce Tensor alias for Buffer in proxy.py
      
      - Added a new alias `Tensor` for `Buffer` in `proxy.py` to facilitate JIT compilation, ensuring that inputs and outputs are mapped with `torch.Tensor`.
      - This change enhances clarity and consistency in tensor usage across the codebase.
      
      * [Refactor] Revamp cache management and enhance documentation in env.py and proxy.py
      
      - Replaced global cache functions with a CacheState class to improve encapsulation and management of kernel caching.
      - Updated the `from_ptr` method in BufferProxy and BaseTensorProxy classes to include detailed docstrings for better clarity on parameters and return values.
      - Enhanced class docstrings across various proxy classes to provide clearer descriptions of their purpose and functionality, improving overall code documentation.
      
      * [Refactor] Update imports in __init__.py for tir compatibility
      
      - Added imports for `prim_func` and `tir.op` to enhance compatibility with the upstream tir script.
      - Marked imports with `# noqa: F401` to suppress linting warnings for unused imports, indicating future removal once compatibility is achieved.
      
      * lint fix
      
      * [Refactor] Update imports in tir.ir.py for improved compatibility
      
      - Removed unused import of `PrimExpr` from `tvm.script.ir_builder.tir` and replaced it with the correct import from `tvm.tir`.
      - Added import for `tir.ir` in `__init__.py` to enhance module accessibility and maintain compatibility with upstream changes.
      
      * [Refactor] Update function calls in tir.ir.py to return values
      
      - Modified the `serial`, `parallel`, `vectorized`, `unroll`, `thread_binding`, and `grid` functions to return the results of their respective calls to `_ir` methods, enhancing clarity and ensuring proper value propagation.
      
      * bugfix
      
      * [Enhancement] Add support for uint16 data type in TLCUDASourceWrapper
      
      - Introduced the "uint16" mapping to the type dictionary in the TLCUDASourceWrapper class, expanding the range of supported data types for CUDA operations.
      
      * bugfix
      
      * [Update] Sync subproject commit and modify CUDA atomic add functions
      
      - Updated the subproject commit for TVM to edd35139a0481e9359aa269e3e50450b95ba2f5a.
      - Commented out the CUDA capability check in the example convolution script to prevent execution errors.
      - Refactored atomic add functions for BFLOAT16 in common.h to include a conditional compilation directive for improved compatibility with CUDA architectures.
      83412458
  20. 20 Mar, 2025 1 commit
    • Lei Wang's avatar
      [Refactor] Phaseout LLVM Dependency by Making it Optional (#247) · f2e99180
      Lei Wang authored
      * remove llvm build
      
      * [Refactor] Update kernel compilation and profiling in examples
      
      - Replaced `tilelang.lower` with `tilelang.compile` in multiple example scripts to streamline kernel compilation.
      - Updated profiling calls to utilize the new `get_profiler` method, enhancing performance measurement consistency.
      - Adjusted assertions and benchmarking methods to align with the new profiling structure across various examples, ensuring correctness and clarity in performance evaluations.
      
      * lint fix
      
      * License Update
      
      * [Refactor] Improve code formatting and documentation in CUDA header and HIP runtime files
      
      - Adjusted formatting in `cuda.h` for better readability, including alignment of comments and struct fields.
      - Cleaned up whitespace and improved comment clarity in `rt_mod_hip.cc` to enhance code maintainability.
      
      * [Refactor] Enhance formatting and clarity in CUDA header and HIP runtime files
      
      - Improved comment alignment and readability in `cuda.h`.
      - Cleaned up whitespace and formatting in `rt_mod_hip.cc` to enhance maintainability.
      
      * lint fix
      
      * lint fix
      
      * lint fix
      
      * lint fix
      
      * fix
      
      * License update
      
      * [Enhancement] Update JITKernel to use artifact for kernel source
      
      - Assigned the generated artifact to `self.artifact` for better management.
      - Updated kernel source references to use `artifact.kernel_source` for consistency in execution backend handling.
      
      * lint fix
      
      * Add @tilelang.testing.requires_llvm decorator to vectorization tests
      
      * Enhance setup.py and env.py for library management
      
      - Added functionality to remove original files after copying in CMakeBuild.
      - Updated TVM_LIBRARY_PATH in env.py to include the PyPI build library path for better integration.
      
      * Refactor TVM_LIBRARY_PATH assignment for improved readability in env.py
      
      * Refactor CMakeBuild file handling in setup.py
      
      - Added a check to ensure the target library directory exists before copying .so files.
      - Improved the logic for creating the target directory and copying files to enhance robustness.
      
      * bugfix
      
      * Rename BuildTLDebug to BuildTileLangCUDAWithoutCompile and update registration. Add @tilelang.testing.requires_llvm decorator to multiple tests for LLVM requirement.
      
      * lint fix
      
      * Enhance TileLang code generation by adding support for device code generation without compilation. Updated `host_codegen` and `device_codegen` functions to include new transformations and registration for `tilelang_hip_without_compile`. Refactored JIT kernel adapters to accommodate host and device modules, improving overall integration and flexibility.
      
      * lint fix
      
      * Add support for C target in device code generation
      
      - Updated `device_codegen_without_compile` to include handling for the C target by registering the `tilelang_cpp` function.
      
      * [Enhancement] Implement auto-clear cache feature based on environment variable
      
      * Added TILELANG_CLEAR_CACHE environment variable to control cache clearing.
      * Updated CI workflow to set TILELANG_CLEAR_CACHE during testing.
      * Modified cache initialization to clear cache if TILELANG_CLEAR_CACHE is set to true.
      
      * [Refactor] Update kernel invocation and import paths in tests and cache
      
      * Changed kernel invocation in `test_tilelang_kernel_dequantize_gemm.py` to return the result.
      * Updated import statements in `test_tilelang_kernel_int4_gemm_mma.py` to use `bitblas` instead of `tilelang`.
      * Refactored paths for artifact and parameters in `kernel_cache.py` for better maintainability.
      
      * [Refactor] Clean up whitespace and improve code formatting in kernel_cache.py
      
      * Removed unnecessary blank lines and adjusted spacing for better readability in the KernelCache class.
      * Enhanced overall code formatting to align with project standards.
      
      * [Enhancement] Add bfloat16 test case and improve kernel caching logic
      
      * Introduced a new test case for bfloat16 matrix multiplication in `test_tilelang_kernel_gemm_mma_intrinsic.py`.
      * Updated `KernelCache` to handle multiple kernel source files and improve error handling during saving and loading.
      * Refactored `JITKernel` to support instantiation from a database, enhancing flexibility in kernel management.
      * Adjusted `CtypesKernelAdapter` and `CythonKernelAdapter` to utilize the new kernel loading mechanism from the database.
      * Improved code formatting and readability across several files.
      
      * lint fix
      
      * Update bfloat16 matrix multiplication test case to use larger dimensions for improved coverage
      f2e99180
  21. 17 Mar, 2025 1 commit
    • Lei Wang's avatar
      [Bugfix] Disable force inline for ldmatrix (#227) · a1da26f2
      Lei Wang authored
      * Refactor GEMM and Bulk Copy operations to enhance layout handling and support for Hopper architecture
      
      - Update `ComputeWarpPartition` to include a new parameter for Hopper WGMMA support.
      - Modify layout checks in `LowerBulkCopy` to accommodate new GEMM layout types.
      - Enhance layout inference logic in `InferLayout` for better compatibility with Hopper architecture.
      - Include necessary header files for built-in operations and layout inference improvements.
      
      * Refactor parameter formatting in CUDA matrix load functions for consistency
      
      - Adjusted parameter alignment in `ptx_ldmatrix_x1`, `ptx_ldmatrix_x2`, `ptx_ldmatrix_x4`, and their transposed counterparts for improved readability.
      - Added a blank line in `get_tensor_supply` function in `tensor.py` to enhance code clarity.
      
      * Enhance tensor supply generation in `get_tensor_supply` function
      
      - Introduced handling for unsigned integer and float8 tensor types, allowing for specific random tensor generation based on data type.
      - Updated logic to return appropriate random tensors for different data types, improving flexibility and functionality of tensor supply generation.
      - Refactored existing conditions for clarity and maintainability.
      
      * Fix tensor supply generation logic in `get_tensor_supply` function
      
      - Updated the variable reference from `tensor` to `param` to ensure correct handling of tensor data types.
      - Improved the accuracy of unsigned integer and float8 checks for tensor supply generation, enhancing functionality and reliability.
      
      * Enhance tensor supply checks in `get_tensor_supply` function
      
      - Updated the logic for identifying unsigned integers and float8 types by using `removeprefix` on the dtype string, improving accuracy in tensor supply generation.
      - Ensured better handling of tensor data types for more reliable random tensor generation based on the updated checks.
      
      * Enhance KernelParam functionality and improve tensor supply checks
      
      - Added methods `is_unsigned` and `is_float8` to the `KernelParam` class for better type identification of parameters.
      - Updated the `get_tensor_supply` function to utilize the new methods, improving clarity and accuracy in tensor supply generation based on parameter types.
      a1da26f2
  22. 04 Mar, 2025 1 commit
    • Lei Wang's avatar
      [Bugfix] Add missing definition for AtomicAdd (#138) · 3960d3d0
      Lei Wang authored
      * Change default log level from WARNING to INFO in TileLang initialization
      
      * Refactor Flash Attention Variable-Length MHA Example with Cython Backend Support
      
      - Update `example_mha_fwd_varlen.py` to use Cython backend for kernel compilation
      - Remove unused imports and simplify function signature
      - Modify `flashattn` function to handle max sequence length as a separate argument
      - Update kernel call to include max sequence length parameter
      - Improve code readability and remove commented-out code
      - Add print statement to confirm successful assertion
      
      * Refactor code formatting in TileLang lowering and example files
      
      - Improve line breaks and code formatting in `lower.py`, `wrapper.py`, and `tensor.py`
      - Simplify line breaks and reduce unnecessary whitespace
      - Enhance code readability by adjusting indentation and line breaks
      - Update example MHA forward pass script with cleaner tensor initialization
      
      * Update TileLang kernel test with import path changes for MMA layout and macro generator
      
      - Modify import statements in test_tilelang_kernel_dequantize_gemm.py
      - Replace bitblas imports with tilelang.intrinsics imports for MMA-related utilities
      - Update main function to use tilelang.testing.main()
      
      * Add Block Sparse Attention Examples for TileLang and Triton
      
      - Implement block sparse attention kernels for both TileLang and Triton
      - Add utility functions for generating sparse attention masks using top-k and threshold methods
      - Support causal and variable-length attention scenarios
      - Include test cases for different sequence length configurations
      - Demonstrate block-level sparse attention with configurable parameters
      
      * Refactor Block Sparse Attention Examples with Code Style Improvements
      
      - Improve code formatting in block_sparse_attn_tilelang.py and block_sparse_attn_triton.py
      - Enhance readability by adjusting line breaks and indentation
      - Simplify kernel and function calls with better formatting
      - Add whitespace and line break improvements for better code clarity
      
      * Enhance Layout Plotting with Multi-Replication and Dynamic Visualization
      
      - Update plot_layout function to support multiple replications in thread and value mapping
      - Improve thread and value mapping to handle replicated layouts
      - Dynamically adjust figure size and legend positioning
      - Add print statements for saved plot file paths
      - Modify example fragment_mma_load_a.py to uncomment and enable warp and block layout plotting
      
      * Refactor AtomicAdd functions in CUDA common header
      
      - Implement a generic template for AtomicAdd function
      - Specialize templates for half_t, bfloat16_t, and pointer types
      - Reorganize and clean up existing AtomicAdd implementations
      - Improve type handling and conversion in atomic operations
      
      * Remove unused import in MHA backward test file
      
      - Remove unnecessary argparse import from test_tilelang_kenrel_mha_bwd.py
      - Add blank line for improved code formatting
      - Minor code cleanup in test file
      3960d3d0
  23. 24 Feb, 2025 1 commit
    • Lei Wang's avatar
      [Dev] Support vectorized value pack and atomicAdd for BFloat16 DType (#116) · 62843b88
      Lei Wang authored
      * Add DeepSeek MLA decode example with Flash Attention implementation
      
      * Add GEMM SplitK and StreamK example implementations
      
      This commit introduces two new example scripts demonstrating advanced GEMM (matrix multiplication) techniques:
      - `example_tilelang_gemm_splitk.py`: Implements a Split-K GEMM kernel using TileLang
      - `example_tilelang_gemm_streamk.py`: Implements a Stream-K GEMM kernel using TileLang
      
      Both examples showcase different parallel computation strategies for matrix multiplication, with comprehensive testing using PyTorch reference implementations.
      
      * Refactor GEMM SplitK and StreamK example implementations
      
      Clean up and improve code formatting for the SplitK and StreamK GEMM example scripts:
      - Remove unused import (Profiler) in splitk example
      - Simplify line breaks and improve code readability
      - Standardize indentation and remove unnecessary whitespace
      - Optimize atomic add and copy operations for better clarity
      
      * Add block sparse attention benchmarks for multiple libraries
      
      This commit introduces comprehensive block sparse attention benchmarks for different libraries:
      - TileLang block sparse FMHA implementation
      - Triton block sparse FMHA implementation
      - PyTorch reference block sparse FMHA implementation
      - FlashAttention dense FMHA reference implementation
      
      The benchmarks include:
      - Configurable benchmark parameters (batch size, heads, sequence length, etc.)
      - Sparse mask generation using top-k and threshold methods
      - Performance measurement for different sparse attention configurations
      - Utility functions for mask generation and benchmarking
      
      * Refactor block sparse attention benchmarks with code style improvements
      
      - Add Ruff linter ignore comments to benchmark files
      - Improve code formatting and line breaks
      - Remove unused imports
      - Standardize print statement formatting
      - Enhance code readability across multiple library benchmarks
      
      * lint fix
      
      * Add CUDA atomic operations for BFLOAT16 and update function naming
      
      - Implement AtomicAdd functions for BFLOAT16 and BFLOAT16x2 in CUDA common header
      - Rename existing atomic add functions to use PascalCase (atomicAdd -> AtomicAdd)
      - Add a new __pack_nv_bfloat162 function for packing BFLOAT16 values
      - Update kernel and language customization to use new function names
      - Add return type annotations in profiler module
      
      * lint fix
      62843b88
  24. 09 Feb, 2025 1 commit
    • Lei Wang's avatar
      [Tools] Introduce `plot_layout` to visualize the fragment layout (#68) · f9b6a92e
      Lei Wang authored
      * [Enhancement] Add VectorizeLoop function and update imports for compatibility
      
      * [CI][Test] Improve test cases for vectorization and fix typos in parser comments
      
      * lint fix
      
      * Fix incorrect module reference for VectorizeLoop transformation
      
      * Refactor vectorize_loop transformation by removing unused extent mutation logic
      
      * [Enhancement] Add support for FP8 data types and global barriers in CUDA codegen
      
      * Fix formatting in CUDA FP8 header file for consistency
      
      * Refactor CI workflow to use 'tilelang_ci' virtual environment and update CUDA type printing for better clarity
      
      * Update submodule 'tvm' to latest commit for improved functionality
      
      * Refactor execution backend references from 'dl_pack' to 'dlpack' for consistency and clarity; add apply_simplify function to simplify PrimFunc or IRModule.
      
      * Refactor CUDA code for improved readability; clean up formatting and remove unnecessary whitespace in multiple files.
      
      * Refactor import statement in test_tilelang_kernel_dequantize_gemm.py to use 'tilelang.language' for consistency
      
      * Add CUDA requirements to FP8 test cases and update references for clarity
      
      * Add a blank line for improved readability in test_tilelang_kernel_fp8_gemm_mma.py
      
      * Fix data type in reference result calculation for consistency in test_tilelang_kernel_gemm_mma_intrinsic.py
      
      * Add CUDA requirements and FP8 test cases for matmul and gemv simulations
      
      * Remove debug print statements and use tilelang's testing assertion for result validation in test_tilelang_kernel_gemm_mma_intrinsic.py
      
      * Remove outdated comment regarding FP8 tests in test_tilelang_kernel_gemv_simt.py
      
      * Add BF16 support to matrix multiplication and introduce corresponding test cases
      
      * Add a blank line for improved readability in BF16 GEMM test
      
      * Update acknowledgements in README to include supervision by Zhi Yang at Peking University
      
      * enhance acknowledgement
      
      * Replace tutorial on memory layout optimization with new tutorial on writing high-performance kernels with thread primitives
      
      * Update subproject commit for TVM dependency
      
      * Update subproject commit for TVM dependency
      
      * Add int4_t type and functions for packing char values in CUDA common header
      
      * Add plot_layout example and implement GetForwardVars method in layout classes
      
      * Refactor code for improved readability by adjusting line breaks and formatting in layout and test files
      
      * Fix formatting by removing unnecessary line break in layout.h
      
      * Refactor make_int4 function for improved readability by adjusting parameter formatting
      f9b6a92e
  25. 06 Feb, 2025 1 commit
    • Lei Wang's avatar
      [Dev] Support FP8 Codegen for cuda backend (#64) · 61de5288
      Lei Wang authored
      * [Enhancement] Add VectorizeLoop function and update imports for compatibility
      
      * [CI][Test] Improve test cases for vectorization and fix typos in parser comments
      
      * lint fix
      
      * Fix incorrect module reference for VectorizeLoop transformation
      
      * Refactor vectorize_loop transformation by removing unused extent mutation logic
      
      * [Enhancement] Add support for FP8 data types and global barriers in CUDA codegen
      
      * Fix formatting in CUDA FP8 header file for consistency
      
      * Refactor CI workflow to use 'tilelang_ci' virtual environment and update CUDA type printing for better clarity
      
      * Update submodule 'tvm' to latest commit for improved functionality
      
      * Refactor execution backend references from 'dl_pack' to 'dlpack' for consistency and clarity; add apply_simplify function to simplify PrimFunc or IRModule.
      
      * Refactor CUDA code for improved readability; clean up formatting and remove unnecessary whitespace in multiple files.
      
      * Refactor import statement in test_tilelang_kernel_dequantize_gemm.py to use 'tilelang.language' for consistency
      
      * Add CUDA requirements to FP8 test cases and update references for clarity
      
      * Add a blank line for improved readability in test_tilelang_kernel_fp8_gemm_mma.py
      
      * Fix data type in reference result calculation for consistency in test_tilelang_kernel_gemm_mma_intrinsic.py
      
      * Add CUDA requirements and FP8 test cases for matmul and gemv simulations
      
      * Remove debug print statements and use tilelang's testing assertion for result validation in test_tilelang_kernel_gemm_mma_intrinsic.py
      
      * Remove outdated comment regarding FP8 tests in test_tilelang_kernel_gemv_simt.py
      61de5288
  26. 11 Jan, 2025 2 commits
    • Lei Wang's avatar
      [Lint] Overall Typo and Linting Fixes (#13) · fa511857
      Lei Wang authored
      * README.md fixed
      
      * update test ci
      
      * Lint and Typo Fix
      
      * Clang Format Lint Fix
      fa511857
    • Lei Wang's avatar
      [Initialization] Migration of Codebase from Dev Branch into Main (#10) · 57ab687c
      Lei Wang authored
      
      
      * Add format.sh script for code formatting and linting
      
      * docs update
      
      * center align the title
      
      * lint fix
      
      * add ignore
      
      * Add .gitignore for 3rdparty directory
      
      * Add requirements-dev.txt, requirements-test.txt, and requirements.txt
      
      * 3rdparty
      
      * Add gemm.h, CMakeLists.txt, _ffi_api.py, __init__.py, runtime.h, reduce.h, loop_partition.h, utils.h, and loop_vectorize.h
      
      * Refactor CMakeLists.txt and include statements
      
      - Update CMakeLists.txt to use a newer version of CMake and add project name
      - Remove unnecessary include directories
      
      Fix include paths in layout.cc, codegen.cc, codegen.h, rt_mod.cc, frontend_legalize.cc, inject_pipeline.cc, layout_inference.cc, loop_vectorize.cc, and lower_tile_op.cc
      
      - Update include paths to use relative paths instead of absolute paths
      
      * Update submodule for 3rdparty/tvm
      
      * update
      
      * load dll first
      
      * Refactor CMakeLists.txt and include statements
      
      * Refactor CMakeLists.txt and include statements
      
      * git keep update
      
      * Refactor CMakeLists.txt and include statements
      
      * Refactor CMakeLists.txt and include statements
      
      * refactor code structure
      
      * Update Readme
      
      * CMakeLists Customized
      
      * update readme
      
      * update README
      
      * update readme
      
      * update usage
      
      * with TVM_IMPORT_PYTHON_PATH to handle own tvm build python import
      
      * annotate lower transform global func with `transform` prefix
      
      * Migrate Simplify Pass from tilelang tvm branch
      
      * enhance system environment handling with __init__ and CMake
      
      * Initial commit
      
      * CODE_OF_CONDUCT.md committed
      
      * LICENSE committed
      
      * README.md committed
      
      * SECURITY.md committed
      
      * SUPPORT.md committed
      
      * CODE_OF_CONDUCT Commit
      
      * LICENSE Commit
      
      * SECURITY Commit
      
      * SUPPORT Commit
      
      * Modify Support
      
      * Update README.md
      
      * security ci update
      
      * remove examples
      
      * Update and implement clang-format
      
      * add composable kernel components
      
      * Migrate from latest update
      
      * submodule update
      
      * Test update
      
      * Update License
      
      * Spell check
      
      * lint fix
      
      * add clang-tidy to apply static analysis for c source
      
      * update tilelang examples
      
      * Update Install Docs
      
      * Refactor filetree
      
      * Enhance Install
      
      * conflict resloved
      
      * annotate_version
      
      * Initial Update
      
      * test fix
      
      * install
      
      * Implement setup.py
      
      * lint fix
      
      * Separate Init
      
      * Separate test
      
      * docker file commit
      
      * add logo
      
      * Update Readme and Examples
      
      * update readme
      
      * update logo
      
      * Implement AMD Installation
      
      * Add License
      
      * Update AMD MI300x Benchmark
      
      * update README
      
      * update mi300 benchmark scripts
      
      * update ignore
      
      * enhance build scirpt
      
      * update image
      
      * enhance setup.py to remove duplicated libraries
      
      * remove debug files
      
      * update readme
      
      * update image
      
      * update gemm examples
      
      * update flashattention README
      
      * readme update
      
      * add cmake into requirements
      
      * libinfo fix
      
      * auto update submodule
      
      * lint fix
      
      * Fix AMD Build and Test
      
      * Update check for transpose attribute for CDNA Arch
      
      * typo fix for amd
      
      * Implement Matmul Benchmark
      
      * Refactor Code
      
      * [TypoFix] Fix GEMM Example
      
      * [Docs] Init Linear Attention README
      
      * [TYPO] Typo fix
      
      * [Lint] Lint Fix
      
      * enhance example with intrinsics
      
      * [Enhancement] Improve Buffer Collection during IR Parser
      
      * [Dev] Introduce Current classmethod to get current frame
      
      * submodule update
      
      * fake test pass update
      
      * support thread_extent_api
      
      * code optimize
      
      * Add GEMM function implementation for matrix multiplication
      
      * Update logging format to reflect TileLang in logger messages
      
      * Refactor CMakeLists.txt for improved readability and set default build type to Release
      
      * Support Gemm SS Primitives Implementation
      
      * [README] Upload Tile Language Logo (#5)
      
      * update logo
      
      * Update README.md to enhance formatting and center the title
      
      ---------
      Co-authored-by: default avatarmicrosoft-github-operations[bot] <55726097+microsoft-github-operations[bot]@users.noreply.github.com>
      Co-authored-by: default avatarMicrosoft Open Source <microsoftopensource@users.noreply.github.com>
      Co-authored-by: default avatarYu Cheng <yu.cheng@pku.edu.cn>
      57ab687c