- 19 Mar, 2025 1 commit
-
-
Wenhao Xie authored
* [Typo] Fix formatting in installation instructions in README.md * [Enhancement] Improve CUDA path detection and update configuration handling * fix typo * remove IS_WINDOWS constant * lint fix * Improve error messages for CUDA detection failure * lint fix * lint fix * Fix .gitignore to correctly include venv directory * [Doc] Add instructions for installing nightly version of TileLang * update installation instructions * update install instruction * fix bug of mismatching dtype in testing and set the default value of check_dtype in torch_assert_close to true * lint fix * fix bug * use map_torch_type
-
- 07 Mar, 2025 1 commit
-
-
Lei Wang authored
* [Refactor] Update BitBLAS Benchmark with TileLang Carver Imports and Roller Hints Generation - Replace BitBLAS imports with TileLang Carver imports in benchmark_matmul.py - Modify roller hints generation using new TileLang Carver template and utility functions - Update get_roller_hints_from_func to handle None cases and improve return logic - Adjust DefaultPolicy to handle different codegen dictionary formats * [Refactor] Update Thread Binding and Import Statements in TileLang Kernels - Replace T.thread_binding() with T.get_thread_binding() across multiple kernel test files - Update import statements for MMA layout and macro generator in dequantize GEMM and FP8 examples - Move map_torch_type utility function to tilelang.utils.tensor - Remove unnecessary imports and improve code organization
-
- 05 Mar, 2025 1 commit
-
-
Lei Wang authored
* Fix debug print buffer template for unsigned char type - Update debug_print_buffer_value template specialization for unsigned char - Modify test_tilelang_debug_print.py to include additional dtype tests - Add test case for uint8 dtype in debug print buffer function * Refactor debug print buffer template formatting for unsigned char - Improve code formatting for debug_print_buffer_value template specialization - Adjust line breaks and indentation for better readability - Maintain consistent code style with other template specializations * Extract map_torch_type utility function to tilelang.utils.tensor - Move map_torch_type function from multiple test files to a centralized location - Import map_torch_type from tilelang.utils.tensor in kernel test files - Improve code reusability by creating a shared utility function for type mapping * Add buffer dtype mapping for Cython kernel adapter - Introduce buffer_dtype_map in CythonKernelAdapter to track buffer variable dtypes - Add _process_buffer_dtype method to extract dtype information from TIR function - Update CythonKernelWrapper to support setting and validating buffer dtypes - Enhance type checking during kernel execution with dtype verification - Improve logging message for Cython JIT adapter compilation * Add static shape mapping for Cython kernel adapter - Introduce static_shape_map in CythonKernelAdapter to track buffer variable static shapes - Add _process_static_shape method to extract static shape information from TIR function - Update CythonKernelWrapper to support setting and validating static shapes - Enhance type checking during kernel execution with static shape verification * Add Multi-Head Attention (MHA) Backward Pass Test for TileLang Kernel - Implement comprehensive test for Multi-Head Attention backward pass - Support both causal and non-causal attention scenarios - Add reference implementation for comparing kernel outputs - Test different batch sizes, head counts, sequence lengths, and head dimensions - Verify forward and backward pass correctness using torch.testing.assert_close * Set random seed for MHA backward pass test - Add random seed initialization for consistent test reproducibility - Use tilelang.testing.set_random_seed(42) to ensure deterministic test results
-
- 06 Feb, 2025 1 commit
-
-
Lei Wang authored
* [Enhancement] Add VectorizeLoop function and update imports for compatibility * [CI][Test] Improve test cases for vectorization and fix typos in parser comments * lint fix * Fix incorrect module reference for VectorizeLoop transformation * Refactor vectorize_loop transformation by removing unused extent mutation logic * [Enhancement] Add support for FP8 data types and global barriers in CUDA codegen * Fix formatting in CUDA FP8 header file for consistency * Refactor CI workflow to use 'tilelang_ci' virtual environment and update CUDA type printing for better clarity * Update submodule 'tvm' to latest commit for improved functionality * Refactor execution backend references from 'dl_pack' to 'dlpack' for consistency and clarity; add apply_simplify function to simplify PrimFunc or IRModule. * Refactor CUDA code for improved readability; clean up formatting and remove unnecessary whitespace in multiple files. * Refactor import statement in test_tilelang_kernel_dequantize_gemm.py to use 'tilelang.language' for consistency * Add CUDA requirements to FP8 test cases and update references for clarity * Add a blank line for improved readability in test_tilelang_kernel_fp8_gemm_mma.py * Fix data type in reference result calculation for consistency in test_tilelang_kernel_gemm_mma_intrinsic.py * Add CUDA requirements and FP8 test cases for matmul and gemv simulations * Remove debug print statements and use tilelang's testing assertion for result validation in test_tilelang_kernel_gemm_mma_intrinsic.py * Remove outdated comment regarding FP8 tests in test_tilelang_kernel_gemv_simt.py
-