- 24 Mar, 2025 3 commits
-
-
Lei Wang authored
* [Refactor] Improve flash attention example and layout comparison logic - Removed unnecessary annotation for `lse_local_split` in the flash attention example to streamline the code. - Updated the handling of `lse_local_split` to utilize parallel processing for better performance. - Refactored kernel compilation and profiling logic to enhance clarity and maintainability in the flash attention example. - Added a condition in `FragmentNode::IsEqual` to handle broadcast cases, improving the robustness of layout comparisons. * lint fix * [Enhancement] Add support for shared memory scope in Fill operation - Introduced handling for `shared.dyn` and `shared` memory scopes in the Fill operation. - Implemented parallel operation and layout inference for improved performance in shared memory scenarios. - Updated thread loop partitioning and vectorization logic to accommodate new memory scope handling.
-
Yu Cheng authored
- Introduced TMAFinder and ProducerUsedBufferFinder classes to analyze TMA loads and identify buffers used in producer conditions. - Enhanced WarpSpecializedRoleMarker to prepare and utilize the identified buffers during role marking. - Updated VisitStmt methods to incorporate new analysis logic for IfThenElse and For nodes, improving the handling of TMA loads in the warp specialization process.
-
Lei Wang authored
* Fix indentation in JIT adapter wrapper to ensure consistent formatting of return statement in generated C code. * Enhance Fill Operation in TileLang - Updated the Fill constructor to support BufferLoad instances, adding checks for ramp indices and ensuring only stride 1 ramps are processed. - Introduced a region array to manage the bounds of the fill operation, improving error checking for static regions. - Modified the MakeSIMTLoop method to utilize the new region array for loop variable bounds, enhancing flexibility in kernel generation. - Updated the fill and clear functions in fill.py to accept both tir.Buffer and tir.BufferRegion types, improving usability and type handling. * Refactor Fill Operation and Improve Readability - Simplified the Fill constructor by enhancing the handling of BufferLoad instances and ensuring proper checks for ramp indices. - Improved error messages for region size checks to enhance clarity. - Cleaned up formatting in the Fill method for better readability. - Added a blank line in the matmul function test to improve code organization. - Introduced a blank line in the fill function to enhance readability in fill.py. * Add matrix multiplication functionality and test in TileLang - Introduced a new test file `test_tilelang_language_clear.py` that implements a matrix multiplication function using TileLang's primitives. - The `matmul` function defines a kernel for performing tile-level GEMM operations with customizable block sizes and data types. - Added a `run_matmul` function to compile and execute the kernel, along with a test function to validate the implementation. - Updated the `__init__.py` in the utils module to include `map_torch_type`, enhancing type handling for tensor operations. * lint fix
-
- 22 Mar, 2025 2 commits
-
-
Lei Wang authored
* Add GPU kernel for 2D continuous cumulative sum in TileLang example - Introduced a new example script `example_tilelang_cumsum.py` that generates a GPU kernel for 2D continuous cumulative sum. - Implemented functions to handle kernel configuration, memory allocation, and inclusive scan operations. - Added a main execution block to demonstrate the kernel's functionality using PyTorch for tensor operations. - Enhanced the example with error handling for power-of-two configurations and validation of results against PyTorch's built-in cumulative sum function. * Refactor TileLang examples and enhance kernel compilation - Updated `example_tilelang_cumsum.py` to improve GPU kernel generation for 2D continuous cumulative sum, including better parameter handling and error checking. - Refactored `example_mha_bwd.py` to enhance kernel compilation readability and maintainability. - Modified `kernel_cache.py` to prevent saving kernels to disk when using the DLPack backend, ensuring proper cache management. - Added `get_block_bindings` function to `kernel.py` for improved access to block bindings in kernel launch frames. - Cleaned up import statements in `__init__.py` for better organization and clarity. * Enhance GPU kernel for 2D continuous cumulative sum in TileLang example - Added additional spacing for improved readability in `example_tilelang_cumsum.py`. - Refined kernel structure to enhance clarity and maintainability during GPU kernel generation for cumulative sum operations. * Refactor CUDA post-processing callback registration in TileLang - Introduced a new decorator `register_cuda_postproc_callback` for registering CUDA post-processing functions, enhancing usability and flexibility. - Updated existing callback implementations to utilize the new decorator, improving code clarity and maintainability. - Added debug prints to the CUDA code generation process for better traceability during development. - Refactored the `OptimizeForTarget` function to streamline conditional statement handling in the pipeline transformation. - Cleaned up the `inject_pipeline.cc` file by removing redundant code related to statement grouping and condition handling. * lint fix * Enhance BlockSparse GEMM Example with Autotuning and Configurable Parameters - Added argument parsing to allow dynamic configuration of matrix dimensions and sparsity ratio. - Implemented a function to generate various kernel configurations for autotuning. - Refactored the main execution block to support both autotuned and default configurations. - Improved the block mask generation to accommodate specified sparsity levels. - Updated the kernel compilation process to utilize the new configurations and ensure accurate results verification.
-
Lei Wang authored
* Add GPU kernel for 2D continuous cumulative sum in TileLang example - Introduced a new example script `example_tilelang_cumsum.py` that generates a GPU kernel for 2D continuous cumulative sum. - Implemented functions to handle kernel configuration, memory allocation, and inclusive scan operations. - Added a main execution block to demonstrate the kernel's functionality using PyTorch for tensor operations. - Enhanced the example with error handling for power-of-two configurations and validation of results against PyTorch's built-in cumulative sum function. * Refactor TileLang examples and enhance kernel compilation - Updated `example_tilelang_cumsum.py` to improve GPU kernel generation for 2D continuous cumulative sum, including better parameter handling and error checking. - Refactored `example_mha_bwd.py` to enhance kernel compilation readability and maintainability. - Modified `kernel_cache.py` to prevent saving kernels to disk when using the DLPack backend, ensuring proper cache management. - Added `get_block_bindings` function to `kernel.py` for improved access to block bindings in kernel launch frames. - Cleaned up import statements in `__init__.py` for better organization and clarity. * Enhance GPU kernel for 2D continuous cumulative sum in TileLang example - Added additional spacing for improved readability in `example_tilelang_cumsum.py`. - Refined kernel structure to enhance clarity and maintainability during GPU kernel generation for cumulative sum operations.
-
- 21 Mar, 2025 1 commit
-
-
Lei Wang authored
* [Enhancement] Add matrix multiplication functions for integer and float variables in Cython JIT - Introduced `matmul_int_variable` and `matmul_float_variable` functions to support matrix multiplication with dynamic shapes and additional parameters. - Implemented corresponding `run_matmul_int_variable` and `run_matmul_float_variable` functions for testing. - Updated test cases to validate the new matrix multiplication implementations. - Enhanced error handling in library initialization and compilation processes across various modules. - Improved dynamic memory handling in CUDA kernel initialization to provide better error reporting. * lint fix * optimize * Support var defiine * lint fix * Update TVM submodule and add alloc_variable function to allocate local variables in TileLang - Updated the TVM submodule to the latest commit. - Introduced `alloc_variable` function in `allocate.py` to support local variable allocation with specified data types and scopes. * lint fix * Refactor variable allocation functions for consistency - Renamed `alloc_variable` to `alloc_var` across multiple files for improved consistency. - Updated corresponding test functions to reflect the new naming convention. - Adjusted imports in `__init__.py` to align with the changes.
-
- 20 Mar, 2025 1 commit
-
-
Lei Wang authored
* remove llvm build * [Refactor] Update kernel compilation and profiling in examples - Replaced `tilelang.lower` with `tilelang.compile` in multiple example scripts to streamline kernel compilation. - Updated profiling calls to utilize the new `get_profiler` method, enhancing performance measurement consistency. - Adjusted assertions and benchmarking methods to align with the new profiling structure across various examples, ensuring correctness and clarity in performance evaluations. * lint fix * License Update * [Refactor] Improve code formatting and documentation in CUDA header and HIP runtime files - Adjusted formatting in `cuda.h` for better readability, including alignment of comments and struct fields. - Cleaned up whitespace and improved comment clarity in `rt_mod_hip.cc` to enhance code maintainability. * [Refactor] Enhance formatting and clarity in CUDA header and HIP runtime files - Improved comment alignment and readability in `cuda.h`. - Cleaned up whitespace and formatting in `rt_mod_hip.cc` to enhance maintainability. * lint fix * lint fix * lint fix * lint fix * fix * License update * [Enhancement] Update JITKernel to use artifact for kernel source - Assigned the generated artifact to `self.artifact` for better management. - Updated kernel source references to use `artifact.kernel_source` for consistency in execution backend handling. * lint fix * Add @tilelang.testing.requires_llvm decorator to vectorization tests * Enhance setup.py and env.py for library management - Added functionality to remove original files after copying in CMakeBuild. - Updated TVM_LIBRARY_PATH in env.py to include the PyPI build library path for better integration. * Refactor TVM_LIBRARY_PATH assignment for improved readability in env.py * Refactor CMakeBuild file handling in setup.py - Added a check to ensure the target library directory exists before copying .so files. - Improved the logic for creating the target directory and copying files to enhance robustness. * bugfix * Rename BuildTLDebug to BuildTileLangCUDAWithoutCompile and update registration. Add @tilelang.testing.requires_llvm decorator to multiple tests for LLVM requirement. * lint fix * Enhance TileLang code generation by adding support for device code generation without compilation. Updated `host_codegen` and `device_codegen` functions to include new transformations and registration for `tilelang_hip_without_compile`. Refactored JIT kernel adapters to accommodate host and device modules, improving overall integration and flexibility. * lint fix * Add support for C target in device code generation - Updated `device_codegen_without_compile` to include handling for the C target by registering the `tilelang_cpp` function. * [Enhancement] Implement auto-clear cache feature based on environment variable * Added TILELANG_CLEAR_CACHE environment variable to control cache clearing. * Updated CI workflow to set TILELANG_CLEAR_CACHE during testing. * Modified cache initialization to clear cache if TILELANG_CLEAR_CACHE is set to true. * [Refactor] Update kernel invocation and import paths in tests and cache * Changed kernel invocation in `test_tilelang_kernel_dequantize_gemm.py` to return the result. * Updated import statements in `test_tilelang_kernel_int4_gemm_mma.py` to use `bitblas` instead of `tilelang`. * Refactored paths for artifact and parameters in `kernel_cache.py` for better maintainability. * [Refactor] Clean up whitespace and improve code formatting in kernel_cache.py * Removed unnecessary blank lines and adjusted spacing for better readability in the KernelCache class. * Enhanced overall code formatting to align with project standards. * [Enhancement] Add bfloat16 test case and improve kernel caching logic * Introduced a new test case for bfloat16 matrix multiplication in `test_tilelang_kernel_gemm_mma_intrinsic.py`. * Updated `KernelCache` to handle multiple kernel source files and improve error handling during saving and loading. * Refactored `JITKernel` to support instantiation from a database, enhancing flexibility in kernel management. * Adjusted `CtypesKernelAdapter` and `CythonKernelAdapter` to utilize the new kernel loading mechanism from the database. * Improved code formatting and readability across several files. * lint fix * Update bfloat16 matrix multiplication test case to use larger dimensions for improved coverage
-
- 19 Mar, 2025 2 commits
-
-
Yuxi Chi authored
[Enhancement][CUDA] Avoid C7508 for CUDA backend via assigning default value to `minBlocksPerMultiprocesor ` (#248)
-
Yu Cheng authored
* [Enhancement] Add zero initialization option to GEMM operations - Introduced a new `zero_init` parameter to the GEMM function, allowing for optional zero initialization of the accumulator. - Updated the GEMM implementation across various CUDA architectures to support the new parameter. - Modified the Python interface for GEMM to include the `zero_init` argument, enhancing flexibility in kernel execution. - Ensured compatibility with existing functionality while improving initialization control for performance optimization. * rename zero_init to clear_accum * lint
-
- 18 Mar, 2025 3 commits
-
-
Yu Cheng authored
* [BugFix] Fix bug of missing MBarrierExpectTX * [Dev] Implement FlashAttention3 Backward - Added a new example for Flash Attention using pipelined WGMMA, including forward and backward pass implementations. - Introduced functions for forward and backward processing, leveraging tilelang for optimized tensor operations. - Enhanced the attention mechanism with support for both causal and non-causal configurations. - Included command-line arguments for batch size, number of heads, context size, and head dimension for flexibility in testing. - Updated GEMM operations to support a new `wg_wait` parameter for improved synchronization in kernel execution.
-
Lei Wang authored
* [Feature] Add reduce_max functionality and corresponding tests * Introduced a new test file for the reduce_max operation in the tilelang language module. * Implemented the reduce_max functionality using T.prim_func, including local memory allocation and result copying. * Added tests for various input sizes and data types to ensure correctness of the reduce_max implementation. * Enhanced profiling assertions to validate the output against reference implementations. * Fix whitespace issues in reduce_max test file for improved readability * [Refactor] Update DebugOutput methods to return strings instead of void * Modified DebugOutput methods in LayoutNode, FragmentNode, and SwizzledLayoutNode to return std::string instead of void, enhancing usability for logging and debugging. * Updated corresponding header files to reflect the new return types. * Improved layout inference error messages by incorporating DebugOutput for better clarity in layout conflicts. * lint fix * Fix typo in matmul function: changed loop from T.Parallel to T.grid for correct parallel execution in webgpu code generation tests. * [Enhancement] Improve layout inference conflict handling in ParallelOp * Updated the layout inference logic in ParallelOp to better handle conflicts for local.fragment buffers. * Added checks to ensure that layout conflicts are reported only when both source and destination buffers are defined, improving clarity in error messages. * Enhanced the overall robustness of the layout inference process by addressing specific cases where conflicts may arise. * [Feature] Add IsEqual methods for layout comparison * Introduced IsEqual methods in LayoutNode, FragmentNode, and SwizzledLayoutNode to facilitate structural equality checks, allowing for optional index comparison. * Enhanced layout inference logic in Copy and ParallelOp to utilize the new IsEqual methods for better conflict detection in local.fragment layouts. * Improved error messages for layout conflicts to provide clearer guidance on potential issues.houm * [Refactor] Update profiler usage in benchmark_nsa_fwd.py and improve layout inference in elem.cc and parallel.cc * Modified the profiler call in benchmark_nsa_fwd.py to streamline latency measurement. * Updated layout inference logic in elem.cc and parallel.cc to use const pointers for FragmentNode, enhancing type safety and clarity. * Improved error messages in layout conflict checks to provide better guidance on potential issues. * [Refactor] Clean up pointer formatting in layout inference files * Standardized pointer formatting for FragmentNode in elem.cc and parallel.cc to improve code readability. * Minor adjustments to error message formatting in layout conflict checks for better clarity.
-
Yu Cheng authored
-
- 17 Mar, 2025 1 commit
-
-
Lei Wang authored
* Refactor GEMM and Bulk Copy operations to enhance layout handling and support for Hopper architecture - Update `ComputeWarpPartition` to include a new parameter for Hopper WGMMA support. - Modify layout checks in `LowerBulkCopy` to accommodate new GEMM layout types. - Enhance layout inference logic in `InferLayout` for better compatibility with Hopper architecture. - Include necessary header files for built-in operations and layout inference improvements. * Refactor parameter formatting in CUDA matrix load functions for consistency - Adjusted parameter alignment in `ptx_ldmatrix_x1`, `ptx_ldmatrix_x2`, `ptx_ldmatrix_x4`, and their transposed counterparts for improved readability. - Added a blank line in `get_tensor_supply` function in `tensor.py` to enhance code clarity. * Enhance tensor supply generation in `get_tensor_supply` function - Introduced handling for unsigned integer and float8 tensor types, allowing for specific random tensor generation based on data type. - Updated logic to return appropriate random tensors for different data types, improving flexibility and functionality of tensor supply generation. - Refactored existing conditions for clarity and maintainability. * Fix tensor supply generation logic in `get_tensor_supply` function - Updated the variable reference from `tensor` to `param` to ensure correct handling of tensor data types. - Improved the accuracy of unsigned integer and float8 checks for tensor supply generation, enhancing functionality and reliability. * Enhance tensor supply checks in `get_tensor_supply` function - Updated the logic for identifying unsigned integers and float8 types by using `removeprefix` on the dtype string, improving accuracy in tensor supply generation. - Ensured better handling of tensor data types for more reliable random tensor generation based on the updated checks. * Enhance KernelParam functionality and improve tensor supply checks - Added methods `is_unsigned` and `is_float8` to the `KernelParam` class for better type identification of parameters. - Updated the `get_tensor_supply` function to utilize the new methods, improving clarity and accuracy in tensor supply generation based on parameter types.
-
- 16 Mar, 2025 1 commit
-
-
zqh-wz authored
* add test for issue 101 * use ss_smem_selector from cutlass * fix mismatch between smem layout and mma * only fix for sm90 * Add CUDA requirements to GEMM thread tests * lint fix --------- Co-authored-by:Lei Wang <34334180+LeiWang1999@users.noreply.github.com>
-
- 14 Mar, 2025 3 commits
-
-
Yu Cheng authored
* [Dev] Implement IfStmtBinding and MergeIfStmt transformations - Add IfStmtBinding to bind If statements to each statement in SeqStmt, enhancing the handling of conditional statements. - Introduce MergeIfStmt to merge consecutive If statements within SeqStmt, optimizing the structure of conditional logic. - Update phase.py to apply IfStmtBinding and MergeIfStmt transformations for the "sm_90" target. - Enhance __init__.py with new functions for IfStmtBinding and MergeIfStmt, providing a clear interface for these transformations. * Update license header in if_stmt_binding.cc * Update license header in merge_if_stmt.cc --------- Co-authored-by:Lei Wang <34334180+LeiWang1999@users.noreply.github.com>
-
Lei Wang authored
* Optimize CMake build process with dynamic job count calculation - Modify build_csrc function to use 90% of available CPU cores - Ensure at least one job is used during compilation - Improve build performance by dynamically adjusting parallel job count * Optimize build_csrc function with multiprocessing module - Replace os.cpu_count() with multiprocessing.cpu_count() - Maintain existing 90% CPU utilization logic - Improve CPU core count calculation for build process * Add dynamic shape support with out_idx in Cython JIT kernel compilation - Implement `run_cython_dynamic_shape_with_out_idx` function in test_tilelang_jit_gemm_cython.py - Update Cython wrapper to handle dynamic symbolic shapes during tensor allocation - Add support for resolving dynamic shape dimensions using input tensor references - Enhance flexibility of JIT kernel compilation with symbolic shape handling * Enhance error reporting for dynamic symbolic shape resolution in Cython JIT kernel - Add detailed error message when a dynamic symbolic dimension is not found in dynamic_symbolic_map - Improve debugging by providing context about missing symbolic dimensions - Maintain existing dynamic shape resolution logic * Fix Copy operation handling for scalar and multi-dimensional tensors - Add special handling for scalar tensor copy operations - Enhance error reporting in MakeIndices method with more detailed diagnostic information - Improve SIMT loop generation to support zero-dimensional tensors - Add explicit check and handling for scalar tensor scenarios * Refactor Copy operation code formatting and improve readability - Improve code formatting in MakeIndices and MakeSIMTLoop methods - Add line breaks to enhance readability of complex ICHECK statements - Simplify code structure in scalar tensor handling - Remove unnecessary whitespace and improve code alignment * Simplify GEMM example with direct kernel compilation - Update copyright header to Tile-AI Corporation - Remove Profiler import and usage - Replace tilelang.lower() with tilelang.compile() - Simplify kernel execution workflow - Update kernel source retrieval method * Enhance block sparse attention implementation - Update `blocksparse_flashattn` to use 2 stages for improved performance. - Change `block_mask_dtype` from `int8` to `bool` for better memory efficiency. - Modify condition checks in the kernel to utilize boolean values. - Introduce a new example for top-k sparse attention and a benchmark for native sparse attention. - Add support for asynchronous copy in PTX and improve pipeline planning with condition handling. * Refactor and clean up code formatting across multiple files - Added whitespace for improved readability in `example_blocksparse_gemm.py`, `example_tilelang_nsa_fwd.py`, and `benchmark_nsa_fwd.py`. - Enhanced code structure and alignment in `inject_ptx_async_copy.cc` and `pipeline_planning.cc`. - Updated comments and documentation for clarity in `__init__.py` and `phase.py`. - Ensured consistent formatting and style across the codebase. * Add kernel source printing in example_tilelang_nsa_fwd.py and implement IfThenElse node replacement in inject_pipeline.cc - Added a print statement to output the kernel source in `example_tilelang_nsa_fwd.py` for debugging purposes. - Introduced a new function `replace_if_then_else` in `inject_pipeline.cc` to transform IfThenElse nodes while preserving attributes, enhancing the handling of conditional statements in the pipeline. * Refactor condition handling in inject_pipeline.cc - Change the data structure for mapping conditions to statements from a Map to an Array for improved performance and simplicity. - Update condition comparison logic to use StructuralEqual for better accuracy. - Enhance logging to provide detailed insights into condition changes and statement processing. - Adjust final statement construction to utilize the new data structure, ensuring correct handling of conditions and statements. * Improve logging and formatting in inject_pipeline.cc - Enhance logging statements for better clarity on condition changes and statement processing. - Adjust formatting for improved readability, including line breaks and consistent spacing. - Ensure accurate condition comparison and handling in the pipeline logic. * Refactor logging and clean up inject_pipeline.cc - Remove excessive logging statements to streamline the code and improve performance. - Simplify condition handling by eliminating unnecessary log outputs related to condition changes and statement processing. - Maintain the core functionality while enhancing code readability and maintainability. * Update Dockerfiles to specify exact version of libstdcxx-ng - Change installation command in multiple Dockerfiles to use `libstdcxx-ng=12` instead of `libstdcxx-ng-12` for consistency and to avoid potential issues with package resolution. - Ensure all Dockerfiles from cu118 to cu126 reflect this change for uniformity across builds. * Refactor and enhance examples and kernel handling - Adjusted the pipeline stages in `example_blocksparse_gemm.py` from 2 to 1 for improved performance. - Added kernel source printing in `benchmark_nsa_fwd.py` for better debugging and profiling insights. - Updated tensor allocation and parameter handling in `CtypesKernelAdapter` and `CythonKernelWrapper` to cache parameter dtypes and shapes, improving efficiency and clarity. - Enhanced the handling of dynamic shapes in the Cython JIT kernel compilation process. - Modified the benchmark script to accommodate new tensor output parameters and improved batch size defaults for testing. * Update copyright header in Cython wrapper to reflect Tile-AI Corporation * revert change
-
Lei Wang authored
* Enhance error message for constant size stack allocation in CUDA codegen. Include the actual constant size and buffer variable name in the error output for better debugging. * Refactor GEMM and Bulk Copy operations to enhance layout handling and support for Hopper architecture - Update `ComputeWarpPartition` to include a new parameter for Hopper WGMMA support. - Modify layout checks in `LowerBulkCopy` to accommodate new GEMM layout types. - Enhance layout inference logic in `InferLayout` for better compatibility with Hopper architecture. - Include necessary header files for built-in operations and layout inference improvements. * lint fix * Remove unused builtin.h include directive * Update include path for builtin.h
-
- 13 Mar, 2025 2 commits
-
-
zqh-wz authored
* upgrade cutlass to upstream v3.8.0 * Implement fp8 gemm and add example script * Fix dtype retrieval with map_torch_type for fp8 inputs * Disable vectorization of fp8 values * Make MMA declaration compatible with cutlass 3.4.0+ * Add test for fp8 T.gemm * fix indent * fix indent * Add copyright and license header * Add copyright and license header * lint fix * Refactor matmul_nt and assert_matmul_correctness functions for improved readability by consolidating parameter definitions and adjusting formatting. * clang format lint --------- Co-authored-by:
Lei Wang <34334180+LeiWang1999@users.noreply.github.com> Co-authored-by:
LeiWang1999 <leiwang1999@outlook.com>
-
Lei Wang authored
* Optimize CMake build process with dynamic job count calculation - Modify build_csrc function to use 90% of available CPU cores - Ensure at least one job is used during compilation - Improve build performance by dynamically adjusting parallel job count * Optimize build_csrc function with multiprocessing module - Replace os.cpu_count() with multiprocessing.cpu_count() - Maintain existing 90% CPU utilization logic - Improve CPU core count calculation for build process * Add dynamic shape support with out_idx in Cython JIT kernel compilation - Implement `run_cython_dynamic_shape_with_out_idx` function in test_tilelang_jit_gemm_cython.py - Update Cython wrapper to handle dynamic symbolic shapes during tensor allocation - Add support for resolving dynamic shape dimensions using input tensor references - Enhance flexibility of JIT kernel compilation with symbolic shape handling * Enhance error reporting for dynamic symbolic shape resolution in Cython JIT kernel - Add detailed error message when a dynamic symbolic dimension is not found in dynamic_symbolic_map - Improve debugging by providing context about missing symbolic dimensions - Maintain existing dynamic shape resolution logic * Fix Copy operation handling for scalar and multi-dimensional tensors - Add special handling for scalar tensor copy operations - Enhance error reporting in MakeIndices method with more detailed diagnostic information - Improve SIMT loop generation to support zero-dimensional tensors - Add explicit check and handling for scalar tensor scenarios * Refactor Copy operation code formatting and improve readability - Improve code formatting in MakeIndices and MakeSIMTLoop methods - Add line breaks to enhance readability of complex ICHECK statements - Simplify code structure in scalar tensor handling - Remove unnecessary whitespace and improve code alignment * Simplify GEMM example with direct kernel compilation - Update copyright header to Tile-AI Corporation - Remove Profiler import and usage - Replace tilelang.lower() with tilelang.compile() - Simplify kernel execution workflow - Update kernel source retrieval method * Enhance block sparse attention implementation - Update `blocksparse_flashattn` to use 2 stages for improved performance. - Change `block_mask_dtype` from `int8` to `bool` for better memory efficiency. - Modify condition checks in the kernel to utilize boolean values. - Introduce a new example for top-k sparse attention and a benchmark for native sparse attention. - Add support for asynchronous copy in PTX and improve pipeline planning with condition handling. * Refactor and clean up code formatting across multiple files - Added whitespace for improved readability in `example_blocksparse_gemm.py`, `example_tilelang_nsa_fwd.py`, and `benchmark_nsa_fwd.py`. - Enhanced code structure and alignment in `inject_ptx_async_copy.cc` and `pipeline_planning.cc`. - Updated comments and documentation for clarity in `__init__.py` and `phase.py`. - Ensured consistent formatting and style across the codebase. * Add kernel source printing in example_tilelang_nsa_fwd.py and implement IfThenElse node replacement in inject_pipeline.cc - Added a print statement to output the kernel source in `example_tilelang_nsa_fwd.py` for debugging purposes. - Introduced a new function `replace_if_then_else` in `inject_pipeline.cc` to transform IfThenElse nodes while preserving attributes, enhancing the handling of conditional statements in the pipeline. * Refactor condition handling in inject_pipeline.cc - Change the data structure for mapping conditions to statements from a Map to an Array for improved performance and simplicity. - Update condition comparison logic to use StructuralEqual for better accuracy. - Enhance logging to provide detailed insights into condition changes and statement processing. - Adjust final statement construction to utilize the new data structure, ensuring correct handling of conditions and statements. * Improve logging and formatting in inject_pipeline.cc - Enhance logging statements for better clarity on condition changes and statement processing. - Adjust formatting for improved readability, including line breaks and consistent spacing. - Ensure accurate condition comparison and handling in the pipeline logic. * Refactor logging and clean up inject_pipeline.cc - Remove excessive logging statements to streamline the code and improve performance. - Simplify condition handling by eliminating unnecessary log outputs related to condition changes and statement processing. - Maintain the core functionality while enhancing code readability and maintainability.
-
- 12 Mar, 2025 6 commits
-
-
Lei Wang authored
* Optimize CMake build process with dynamic job count calculation - Modify build_csrc function to use 90% of available CPU cores - Ensure at least one job is used during compilation - Improve build performance by dynamically adjusting parallel job count * Optimize build_csrc function with multiprocessing module - Replace os.cpu_count() with multiprocessing.cpu_count() - Maintain existing 90% CPU utilization logic - Improve CPU core count calculation for build process * Add dynamic shape support with out_idx in Cython JIT kernel compilation - Implement `run_cython_dynamic_shape_with_out_idx` function in test_tilelang_jit_gemm_cython.py - Update Cython wrapper to handle dynamic symbolic shapes during tensor allocation - Add support for resolving dynamic shape dimensions using input tensor references - Enhance flexibility of JIT kernel compilation with symbolic shape handling * Enhance error reporting for dynamic symbolic shape resolution in Cython JIT kernel - Add detailed error message when a dynamic symbolic dimension is not found in dynamic_symbolic_map - Improve debugging by providing context about missing symbolic dimensions - Maintain existing dynamic shape resolution logic * Fix Copy operation handling for scalar and multi-dimensional tensors - Add special handling for scalar tensor copy operations - Enhance error reporting in MakeIndices method with more detailed diagnostic information - Improve SIMT loop generation to support zero-dimensional tensors - Add explicit check and handling for scalar tensor scenarios * Refactor Copy operation code formatting and improve readability - Improve code formatting in MakeIndices and MakeSIMTLoop methods - Add line breaks to enhance readability of complex ICHECK statements - Simplify code structure in scalar tensor handling - Remove unnecessary whitespace and improve code alignment * Simplify GEMM example with direct kernel compilation - Update copyright header to Tile-AI Corporation - Remove Profiler import and usage - Replace tilelang.lower() with tilelang.compile() - Simplify kernel execution workflow - Update kernel source retrieval method * Enhance block sparse attention implementation - Update `blocksparse_flashattn` to use 2 stages for improved performance. - Change `block_mask_dtype` from `int8` to `bool` for better memory efficiency. - Modify condition checks in the kernel to utilize boolean values. - Introduce a new example for top-k sparse attention and a benchmark for native sparse attention. - Add support for asynchronous copy in PTX and improve pipeline planning with condition handling. * Refactor and clean up code formatting across multiple files - Added whitespace for improved readability in `example_blocksparse_gemm.py`, `example_tilelang_nsa_fwd.py`, and `benchmark_nsa_fwd.py`. - Enhanced code structure and alignment in `inject_ptx_async_copy.cc` and `pipeline_planning.cc`. - Updated comments and documentation for clarity in `__init__.py` and `phase.py`. - Ensured consistent formatting and style across the codebase.
-
Yu Cheng authored
* [Feature] Add TMA Store Synchronization Support - Introduce TMAStoreArrive and TMAStoreWait operations for CUDA TMA store synchronization - Add new builtin operations in op/builtin.cc and op/builtin.h - Implement TMAStoreSyncInjector to automatically inject TMA store synchronization calls - Update CUDA codegen to support new TMA store synchronization intrinsics - Add Python language bindings for new TMA store synchronization operations * [CMake] Add CUDA Major Version Detection for Conditional Compilation - Introduce CUDA_MAJOR_VERSION CMake variable to dynamically detect CUDA toolkit version - Update runtime and transform files to use CUDA_MAJOR_VERSION for version-specific code paths - Replace hardcoded __CUDACC_VER_MAJOR__ with dynamically set CUDA_MAJOR_VERSION - Improve cross-version compatibility for CUDA-dependent code sections
-
Yu Cheng authored
- Introduce TMAStoreArrive and TMAStoreWait operations for CUDA TMA store synchronization - Add new builtin operations in op/builtin.cc and op/builtin.h - Implement TMAStoreSyncInjector to automatically inject TMA store synchronization calls - Update CUDA codegen to support new TMA store synchronization intrinsics - Add Python language bindings for new TMA store synchronization operations
-
Yu Cheng authored
[Refactor] Add SetMaxNRegCollector to Improve Register Hint Handling in Warp Specialized Rewriter (#194) * [Refactor] Add SetMaxNRegCollector to Improve Register Hint Handling in Warp Specialized Rewriter - Introduce `SetMaxNRegCollector` to collect register hints from SetMaxNReg calls - Modify `WarpSpecializedRewriter` to use collected register hints for producer and consumer code - Add validation checks for register hint values in the collector - Remove SetMaxNReg calls during code transformation - Enhance flexibility of register allocation in warp specialized rewriting * temporary remove check in lower_hopper_intrin
-
penguin_wwy authored
-
Lei Wang authored
* Optimize CMake build process with dynamic job count calculation - Modify build_csrc function to use 90% of available CPU cores - Ensure at least one job is used during compilation - Improve build performance by dynamically adjusting parallel job count * Optimize build_csrc function with multiprocessing module - Replace os.cpu_count() with multiprocessing.cpu_count() - Maintain existing 90% CPU utilization logic - Improve CPU core count calculation for build process * Add dynamic shape support with out_idx in Cython JIT kernel compilation - Implement `run_cython_dynamic_shape_with_out_idx` function in test_tilelang_jit_gemm_cython.py - Update Cython wrapper to handle dynamic symbolic shapes during tensor allocation - Add support for resolving dynamic shape dimensions using input tensor references - Enhance flexibility of JIT kernel compilation with symbolic shape handling * Enhance error reporting for dynamic symbolic shape resolution in Cython JIT kernel - Add detailed error message when a dynamic symbolic dimension is not found in dynamic_symbolic_map - Improve debugging by providing context about missing symbolic dimensions - Maintain existing dynamic shape resolution logic * Fix Copy operation handling for scalar and multi-dimensional tensors - Add special handling for scalar tensor copy operations - Enhance error reporting in MakeIndices method with more detailed diagnostic information - Improve SIMT loop generation to support zero-dimensional tensors - Add explicit check and handling for scalar tensor scenarios * Refactor Copy operation code formatting and improve readability - Improve code formatting in MakeIndices and MakeSIMTLoop methods - Add line breaks to enhance readability of complex ICHECK statements - Simplify code structure in scalar tensor handling - Remove unnecessary whitespace and improve code alignment
-
- 11 Mar, 2025 1 commit
-
-
Yu Cheng authored
* [Dev][Bugfix] Add RMS Normalization Kernels and Fix Reduce Bug - Implement two RMS normalization implementations in TileLang: * `rms_norm_splitk`: Split-K reduction approach for large matrices * `rms_norm`: Full reduction kernel with simplified implementation - Add reference implementation using PyTorch for validation - Include performance benchmarking for both kernel variants - Demonstrate flexible block size and matrix size configurations * [Examples] Simplify RMS Normalization Kernel Compilation - Remove commented-out code for split-K RMS normalization - Simplify kernel compilation by removing explicit TMA lowering configuration - Update copyright header to Tile-AI Corporation - Streamline main script for RMS normalization example
-
- 10 Mar, 2025 2 commits
-
-
Lei Wang authored
* [Refactor] Improve Thread Variable Handling in Layout Inference - Update layout inference to handle thread variables more robustly - Add explicit size check between infer_list_ and thread_var_vec_ - Modify thread variable access to use per-iteration thread variable - Simplify thread predicate retrieval logic - Add minor code cleanup and return variable assignment * [Refactor] Update Layout Inference Copyright and Simplify Return Logic - Replace Apache License header with Microsoft Corporation copyright notice - Simplify LayoutInference function by directly returning substituted function - Remove unnecessary variable assignment in return statement * [Refactor] Update Layout Inference Copyright to Tile-AI Corporation - Change copyright notice from Microsoft Corporation to Tile-AI Corporation - Maintain existing file structure and licensing header
-
Lei Wang authored
- Introduce `CreateEnvThread` function to generate environment threads for GPU kernel launches - Modify `KernelLaunch` to use `CreateEnvThread` for block and thread indices - Improve thread variable naming with shorter, more descriptive identifiers (bx, by, bz, tx, ty, tz) - Ensure proper thread environment setup within PrimFunc context
-
- 09 Mar, 2025 2 commits
-
-
Lei Wang authored
* Add TMA lowering configuration option and update copyright notices This commit introduces a new configuration option to disable TMA (Tensor Memory Access) lowering and updates copyright notices across multiple files. Key changes include: - Add `kDisableTMALower` configuration option in builtin.h and builtin.cc - Update copyright notices from Microsoft Corporation to Tile-AI Corporation - Modify `LowerArgs` struct to include `disable_tma_lower` flag - Update JIT compilation interfaces to support pass configuration - Enhance error reporting in bulk copy lowering - Propagate pass configuration through various adapter layers * lint fix
-
Lei Wang authored
* [Refactor] Update BitBLAS Benchmark with TileLang Carver Imports and Roller Hints Generation - Replace BitBLAS imports with TileLang Carver imports in benchmark_matmul.py - Modify roller hints generation using new TileLang Carver template and utility functions - Update get_roller_hints_from_func to handle None cases and improve return logic - Adjust DefaultPolicy to handle different codegen dictionary formats * [Refactor] Update Thread Binding and Import Statements in TileLang Kernels - Replace T.thread_binding() with T.get_thread_binding() across multiple kernel test files - Update import statements for MMA layout and macro generator in dequantize GEMM and FP8 examples - Move map_torch_type utility function to tilelang.utils.tensor - Remove unnecessary imports and improve code organization * Refactor Native Sparse Attention Example with Enhanced Triton Kernel - Update parallel_nsa_fwd_kernel to support more flexible sparse attention computation - Add support for block counts and offsets in the Triton kernel - Modify kernel grid and computation logic for improved performance - Update example script to use naive_nsa_simple reference implementation - Improve type hints and kernel configuration * Add Native Sparse Attention Examples with Tilelang and Triton Implementations - Introduce new example scripts for native sparse attention: * example_tilelang_nsa_fwd.py: Forward pass implementation using TileLang * example_tilelang_nsa_decode.py: Decoding-specific sparse attention implementation * example_triton_nsa_fwd.py: Triton-based sparse attention forward pass - Update reference.py with naive implementations for sparse attention - Support different sparse attention scenarios including forward pass and inference - Add comprehensive testing and validation against reference implementations * lint fix * Add Variable-Length Native Sparse Attention Examples for TileLang and Triton - Introduce new example scripts for variable-length native sparse attention: * example_tilelang_nsa_fwd_varlen.py: TileLang implementation with variable sequence lengths * example_triton_nsa_fwd_varlen.py: Triton implementation with variable sequence lengths - Update reference.py to support variable-length sparse attention scenarios - Enhance existing sparse attention implementations to handle variable-length inputs - Add comprehensive testing and validation for variable-length sparse attention * Refactor Native Sparse Attention Examples: Code Style and Formatting Improvements - Standardize function and parameter formatting across NSA example files - Improve code readability by adjusting indentation and line breaks - Enhance type hints and parameter alignment - Remove unnecessary whitespaces and optimize imports - Maintain consistent code style across TileLang and Triton implementations * Add debug logging and extend execution backend in JIT and loop vectorization - Add detailed logging in loop vectorization to help diagnose buffer shape handling - Extend JIT execution backend to include 'cython' option - Improve boundary condition checks in BufferLoadNode visit method * Remove debug logging in loop vectorization BufferLoadNode visit method - Remove unnecessary INFO log statements in VisitExpr_ method - Simplify code by eliminating redundant logging - Maintain core logic for handling buffer load node visits
-
- 06 Mar, 2025 1 commit
-
-
xs-keju authored
* Add cpu jit with backend ctypes * Resolve some lint issues * Apply PR feedback on head file and kernel example * Add test cases * Resolve formatting issues * Resolve formatting issues --------- Co-authored-by:xxw <1990389406@qq.con>
-
- 05 Mar, 2025 2 commits
-
-
Lei Wang authored
* Fix debug print buffer template for unsigned char type - Update debug_print_buffer_value template specialization for unsigned char - Modify test_tilelang_debug_print.py to include additional dtype tests - Add test case for uint8 dtype in debug print buffer function * Refactor debug print buffer template formatting for unsigned char - Improve code formatting for debug_print_buffer_value template specialization - Adjust line breaks and indentation for better readability - Maintain consistent code style with other template specializations
-
Yu Cheng authored
[Dev] Adjust computation logic to avoid precision loss when casting acc_s from float to float16 (#141) - Remove redundant `acc_s_0` fragment in flash attention kernel - Simplify memory copy and reduction operations - Reorder memory copy and scaling steps for improved performance - Add Hopper-specific synchronization method in CUDA reduce template - Update reduce operation to use architecture-specific synchronization
-
- 04 Mar, 2025 1 commit
-
-
Lei Wang authored
* Change default log level from WARNING to INFO in TileLang initialization * Refactor Flash Attention Variable-Length MHA Example with Cython Backend Support - Update `example_mha_fwd_varlen.py` to use Cython backend for kernel compilation - Remove unused imports and simplify function signature - Modify `flashattn` function to handle max sequence length as a separate argument - Update kernel call to include max sequence length parameter - Improve code readability and remove commented-out code - Add print statement to confirm successful assertion * Refactor code formatting in TileLang lowering and example files - Improve line breaks and code formatting in `lower.py`, `wrapper.py`, and `tensor.py` - Simplify line breaks and reduce unnecessary whitespace - Enhance code readability by adjusting indentation and line breaks - Update example MHA forward pass script with cleaner tensor initialization * Update TileLang kernel test with import path changes for MMA layout and macro generator - Modify import statements in test_tilelang_kernel_dequantize_gemm.py - Replace bitblas imports with tilelang.intrinsics imports for MMA-related utilities - Update main function to use tilelang.testing.main() * Add Block Sparse Attention Examples for TileLang and Triton - Implement block sparse attention kernels for both TileLang and Triton - Add utility functions for generating sparse attention masks using top-k and threshold methods - Support causal and variable-length attention scenarios - Include test cases for different sequence length configurations - Demonstrate block-level sparse attention with configurable parameters * Refactor Block Sparse Attention Examples with Code Style Improvements - Improve code formatting in block_sparse_attn_tilelang.py and block_sparse_attn_triton.py - Enhance readability by adjusting line breaks and indentation - Simplify kernel and function calls with better formatting - Add whitespace and line break improvements for better code clarity * Enhance Layout Plotting with Multi-Replication and Dynamic Visualization - Update plot_layout function to support multiple replications in thread and value mapping - Improve thread and value mapping to handle replicated layouts - Dynamically adjust figure size and legend positioning - Add print statements for saved plot file paths - Modify example fragment_mma_load_a.py to uncomment and enable warp and block layout plotting * Refactor AtomicAdd functions in CUDA common header - Implement a generic template for AtomicAdd function - Specialize templates for half_t, bfloat16_t, and pointer types - Reorganize and clean up existing AtomicAdd implementations - Improve type handling and conversion in atomic operations * Remove unused import in MHA backward test file - Remove unnecessary argparse import from test_tilelang_kenrel_mha_bwd.py - Add blank line for improved code formatting - Minor code cleanup in test file
-
- 28 Feb, 2025 2 commits
-
-
Lei Wang authored
* Add DeepSeek MLA decode example with Flash Attention implementation * Add GEMM SplitK and StreamK example implementations This commit introduces two new example scripts demonstrating advanced GEMM (matrix multiplication) techniques: - `example_tilelang_gemm_splitk.py`: Implements a Split-K GEMM kernel using TileLang - `example_tilelang_gemm_streamk.py`: Implements a Stream-K GEMM kernel using TileLang Both examples showcase different parallel computation strategies for matrix multiplication, with comprehensive testing using PyTorch reference implementations. * Refactor GEMM SplitK and StreamK example implementations Clean up and improve code formatting for the SplitK and StreamK GEMM example scripts: - Remove unused import (Profiler) in splitk example - Simplify line breaks and improve code readability - Standardize indentation and remove unnecessary whitespace - Optimize atomic add and copy operations for better clarity * Add block sparse attention benchmarks for multiple libraries This commit introduces comprehensive block sparse attention benchmarks for different libraries: - TileLang block sparse FMHA implementation - Triton block sparse FMHA implementation - PyTorch reference block sparse FMHA implementation - FlashAttention dense FMHA reference implementation The benchmarks include: - Configurable benchmark parameters (batch size, heads, sequence length, etc.) - Sparse mask generation using top-k and threshold methods - Performance measurement for different sparse attention configurations - Utility functions for mask generation and benchmarking * Refactor block sparse attention benchmarks with code style improvements - Add Ruff linter ignore comments to benchmark files - Improve code formatting and line breaks - Remove unused imports - Standardize print statement formatting - Enhance code readability across multiple library benchmarks * lint fix * Add CUDA atomic operations for BFLOAT16 and update function naming - Implement AtomicAdd functions for BFLOAT16 and BFLOAT16x2 in CUDA common header - Rename existing atomic add functions to use PascalCase (atomicAdd -> AtomicAdd) - Add a new __pack_nv_bfloat162 function for packing BFLOAT16 values - Update kernel and language customization to use new function names - Add return type annotations in profiler module * lint fix * Add example for Group Query Attention (GQA) forward pass using Flash Attention in TileLang This commit introduces a new example script `example_gqa_fwd_bshd.py` that demonstrates: - Group Query Attention (GQA) implementation - Flash Attention forward pass - Performance benchmarking - Configurable parameters for batch, heads, sequence length, and dimension - Autotuning support - Reference implementation comparison * Refactor IR lowering pipeline into modular phases This commit introduces a new module `phase.py` to modularize the IR lowering process by splitting the complex lowering pipeline into two distinct phases: - `LowerAndLegalize`: Handles initial IR legalization and transformation - `OptimizeForTarget`: Applies target-specific optimizations The changes simplify the lowering logic in multiple files by extracting the transformation steps into reusable functions, improving code readability and maintainability. * lintfix * nas kernel * Enhance Native Sparse Attention Examples with Code Improvements and Parameter Updates - Updated example_tilelang_nsa.py and example_triton_nsa.py with code formatting and style improvements - Increased default number of heads and selected blocks in TileLang NSA example - Added Ruff linter ignore comments to reference.py - Standardized function signatures and improved code readability across NSA implementations * Add utility math functions for integer operations - Implement `next_power_of_2()` to calculate the next power of 2 for an integer - Add `cdiv()` function for ceiling division of integers * Add utility math functions for integer operations - Implement `next_power_of_2()` to calculate the next power of 2 for an integer - Add `cdiv()` function for ceiling division of integers * Refactor DeepSeek MLA Decode Example with Enhanced Flash Attention Implementation - Update flash attention kernel to support positional embeddings (PE) - Modify reference implementation to handle PE and group query attention - Increase default batch size and adjust benchmarking parameters - Improve kernel performance and readability - Add einops and torch operations for more flexible tensor manipulation * Update README.md with corrected Flash MLA Decoding example path - Modify the example link for Flash MLA Decoding to point to the correct directory - Ensure accurate navigation to the DeepSeek MLA decoding example * Refactor Native Sparse Attention Kernel and Improve Utility Functions This commit introduces several improvements: - Simplified native sparse attention kernel by inlining macro functions in example_tilelang_nsa.py - Enhanced error handling in loop_partition.cc with more informative error messages - Updated print.py to support multi-dimensional buffer printing - Improved torch_assert_close in testing/__init__.py with more detailed mismatch reporting - Reduced default absolute tolerance in torch comparison from 1e-3 to 1e-2 - Added shape validation and detailed mismatch information in tensor comparison * Refactor Code Formatting and Improve Utility Functions This commit introduces several code formatting and utility improvements: - Add Ruff linter ignore comment in example_tilelang_nsa.py - Enhance code readability in loop_partition.cc and lower_tile_op.cc with improved line breaks - Simplify print_flat_buffer_with_condition in print.py - Refactor torch_assert_close in testing/__init__.py with improved line formatting
-
Yu Cheng authored
[Dev][Bugfix] Fix bug in ThreadTagChecker; Add WgmmaSync rewriter and add MHA WGMMA pipelined example (#128) * [Dev] Add RetNet Linear Attention example * [Dev] Add WgmmaSync rewriter for pipelined WGMMA operations and add MHA WGMMA pipelined example (FA3-like scheduling) This commit introduces a new transformation pass `RewriteWgmmaSync` to optimize warp group matrix multiply accumulate (WGMMA) operations in the TileLang compiler: - Implemented `WgmmaSyncRewriter` in `src/transform/wgmma_sync_rewriter.cc` - Added pass registration for `RewriteWgmmaSync` - Updated `tilelang/engine/phase.py` to include the new transformation pass - Updated `tilelang/transform/__init__.py` to expose the new pass The rewriter intelligently manages synchronization and dependencies between WGMMA operations, improving pipeline efficiency for complex matrix multiplication kernels. * [Bugfix] Fix bug in ThreadTagChecker for warp specialization Improve thread tag validation in warp specialized rewriter to prevent unintended transformations: - Add more precise checks for threadIdx.y and threadIdx.z - Validate thread extent to ensure only single-extent thread bindings are allowed - Prevent warp specialization for multi-extent thread bindings in y and z dimensions * lint * [CI] Add TMA descriptor attribute to transformed module in test case
-
- 27 Feb, 2025 1 commit
-
-
Lei Wang authored
* refactor code * enhance tutorial * Enhance error handling and code generation in CUDA and TileLang components This commit introduces several improvements across multiple files: - Added more informative error messages in GEMM layout checks - Updated CUDA codegen to support more flexible function signature generation - Improved TMA descriptor initialization and kernel dispatch logic - Refined library generation and source code parsing utilities - Enhanced error handling in various adapter and wrapper classes * Add thread tag validation for warp specialization Introduce a ThreadTagChecker to validate that a PrimFunc only uses threadIdx.x before applying warp specialization. This prevents unintended transformations on kernels with complex thread binding and provides a clear warning to users about potential issues with warp specialization. * Update TileLang Profiling and Compilation in Flash Decoding Examples Refactor the profiling and compilation workflow in two flash decoding example scripts: - Replace `tilelang.lower()` and `tilelang.Profiler()` with `tilelang.compile()` - Simplify profiler initialization using `get_profiler()` - Update method calls to use the new profiler and compiled kernel objects - Maintain existing performance benchmarking and validation logic * Refactor and clean up code formatting in TileLang testing and adapter modules This commit includes several code style and formatting improvements: - Adjust whitespace and line breaks in test files - Improve code formatting in CUDA source wrapper and adapter utilities - Enhance readability of function calls and argument handling - Remove unnecessary whitespace and standardize indentation - Simplify function signatures and argument parsing * Refactor CUDA codegen and improve code formatting This commit includes several improvements to CUDA code generation and formatting: - Enhance function signature generation in CodeGenTileLangCUDA - Improve code formatting and readability in CUDA-related files - Simplify parameter handling and type annotations - Clean up whitespace and line breaks in codegen and layout files --------- Co-authored-by:Ubuntu <dlisuser@h100testl730RPS.xu5snccwrbtejcqqalluoku5hb.xx.internal.cloudapp.net>
-
- 24 Feb, 2025 1 commit
-
-
Lei Wang authored
* Add DeepSeek MLA decode example with Flash Attention implementation * Add GEMM SplitK and StreamK example implementations This commit introduces two new example scripts demonstrating advanced GEMM (matrix multiplication) techniques: - `example_tilelang_gemm_splitk.py`: Implements a Split-K GEMM kernel using TileLang - `example_tilelang_gemm_streamk.py`: Implements a Stream-K GEMM kernel using TileLang Both examples showcase different parallel computation strategies for matrix multiplication, with comprehensive testing using PyTorch reference implementations. * Refactor GEMM SplitK and StreamK example implementations Clean up and improve code formatting for the SplitK and StreamK GEMM example scripts: - Remove unused import (Profiler) in splitk example - Simplify line breaks and improve code readability - Standardize indentation and remove unnecessary whitespace - Optimize atomic add and copy operations for better clarity * Add block sparse attention benchmarks for multiple libraries This commit introduces comprehensive block sparse attention benchmarks for different libraries: - TileLang block sparse FMHA implementation - Triton block sparse FMHA implementation - PyTorch reference block sparse FMHA implementation - FlashAttention dense FMHA reference implementation The benchmarks include: - Configurable benchmark parameters (batch size, heads, sequence length, etc.) - Sparse mask generation using top-k and threshold methods - Performance measurement for different sparse attention configurations - Utility functions for mask generation and benchmarking * Refactor block sparse attention benchmarks with code style improvements - Add Ruff linter ignore comments to benchmark files - Improve code formatting and line breaks - Remove unused imports - Standardize print statement formatting - Enhance code readability across multiple library benchmarks * lint fix * Add CUDA atomic operations for BFLOAT16 and update function naming - Implement AtomicAdd functions for BFLOAT16 and BFLOAT16x2 in CUDA common header - Rename existing atomic add functions to use PascalCase (atomicAdd -> AtomicAdd) - Add a new __pack_nv_bfloat162 function for packing BFLOAT16 values - Update kernel and language customization to use new function names - Add return type annotations in profiler module * lint fix
-
- 22 Feb, 2025 1 commit
-
-
Lei Wang authored
* Remove Torch CPP backend and update execution backend options - Remove TorchCPPKernelAdapter and related code from JIT modules - Update execution backend options in jit/__init__.py, kernel.py, and adapter/__init__.py - Remove "torch_cpp" from supported execution backend literals - Simplify backend validation and remove unused torch_cpp-related code 。 * lint fix * Add block sparse attention implementations for TileLang and Triton - Implement block sparse attention kernels for TileLang and Triton - Add example scripts for block sparse attention with top-k and threshold-based masking - Include utility functions for generating sparse attention masks - Demonstrate causal attention with block-level sparsity - Add test cases to validate sparse attention implementations against PyTorch reference
-
- 15 Feb, 2025 1 commit
-
-
Lei Wang authored
* bump version into v0.1.0 * [Enhancement] Add custom develop command for editable installs and update .gitignore * [Documentation] Update README to include system dependencies installation instructions * [Build] Update setup.py to support library file copying for both release and develop modes * [Build] Refactor library file copying logic in setup.py * [Documentation] Remove unnecessary install section header in Installation.md * [Build] Add tox configuration and local distribution script for multi-Python version support * [Build] Improve git submodule update function with better error handling * [Build] Update LLVM configuration path in ROCm installation script * [Build] Add .tox/ to .gitignore for tox testing environment * [Build] Add support for TVM prebuild path configuration in CMakeLists.txt * [Cleanup] Remove unused TVM runtime error codes header * [Cleanup] Fix TVM grid constant type reference in CUDA module * [Cleanup] Remove unused customized_code function from IR module * [Feature] Add TileLang thread synchronization and storage access analysis passes * [Build] Reorder DLL search path directories for more flexible library loading * [Refactor] Improve thread synchronization and library path handling - Rename ThreadSync and TileLangThreadSync functions in C++ code - Update Python docstring for ThreadSync with more detailed description - Reorder library path detection in tilelang environment setup - Minor comment and code cleanup in CUDA and warp specialization modules * [Refactor] Improve thread synchronization code style and formatting - Standardize pointer type spacing in storage_access.h and storage_access.cc - Update whitespace and indentation in thread_storage_sync.cc - Reorder include statements in thread_partial_sync.cc - Minor code formatting improvements across thread synchronization files * [Refactor] Fix global function registration for ThreadSync - Correct global function registration to use ThreadSync instead of TileLangThreadSync - Update TVM global registration to match recent refactoring efforts * [Refactor] Simplify ThreadSync global function registration - Remove unnecessary whitespace in global function registration - Compact the TVM global registration line for ThreadSync * [Feature] Add WebGPU code generation support in TileLang - Implement WebGPU code generator (codegen_webgpu.cc and codegen_webgpu.h) - Add WebGPU target support in lower.py and target.py - Update CMakeLists.txt to include WebGPU codegen source files - Introduce WebGPU-specific code generation for WGSL shader language * [Refactor] Improve WebGPU code generation formatting and readability - Enhance code formatting in codegen_webgpu.cc and codegen_webgpu.h - Standardize pointer type spacing and indentation - Improve line breaks and reduce line length for better readability - Minor code style improvements in WebGPU code generation * [Test] Add WebGPU matrix multiplication code generation test - Implement test_webgpu_codegen.py for WebGPU matrix multiplication - Add assert_gemm_codegen function to validate WebGPU code generation - Include basic matrix multiplication kernel test case * Update README with WebGPU codegen support announcement
-