1. 14 Mar, 2025 3 commits
    • Yu Cheng's avatar
      [Dev] Implement IfStmtBinding and MergeIfStmt transformations (#211) · 86f96f8a
      Yu Cheng authored
      
      
      * [Dev] Implement IfStmtBinding and MergeIfStmt transformations
      
      - Add IfStmtBinding to bind If statements to each statement in SeqStmt, enhancing the handling of conditional statements.
      - Introduce MergeIfStmt to merge consecutive If statements within SeqStmt, optimizing the structure of conditional logic.
      - Update phase.py to apply IfStmtBinding and MergeIfStmt transformations for the "sm_90" target.
      - Enhance __init__.py with new functions for IfStmtBinding and MergeIfStmt, providing a clear interface for these transformations.
      
      * Update license header in if_stmt_binding.cc
      
      * Update license header in merge_if_stmt.cc
      
      ---------
      Co-authored-by: default avatarLei Wang <34334180+LeiWang1999@users.noreply.github.com>
      86f96f8a
    • Lei Wang's avatar
      [Enhancement] Avoid tvm ffi handling when out_idx is specified (#209) · 227ed7ec
      Lei Wang authored
      * Optimize CMake build process with dynamic job count calculation
      
      - Modify build_csrc function to use 90% of available CPU cores
      - Ensure at least one job is used during compilation
      - Improve build performance by dynamically adjusting parallel job count
      
      * Optimize build_csrc function with multiprocessing module
      
      - Replace os.cpu_count() with multiprocessing.cpu_count()
      - Maintain existing 90% CPU utilization logic
      - Improve CPU core count calculation for build process
      
      * Add dynamic shape support with out_idx in Cython JIT kernel compilation
      
      - Implement `run_cython_dynamic_shape_with_out_idx` function in test_tilelang_jit_gemm_cython.py
      - Update Cython wrapper to handle dynamic symbolic shapes during tensor allocation
      - Add support for resolving dynamic shape dimensions using input tensor references
      - Enhance flexibility of JIT kernel compilation with symbolic shape handling
      
      * Enhance error reporting for dynamic symbolic shape resolution in Cython JIT kernel
      
      - Add detailed error message when a dynamic symbolic dimension is not found in dynamic_symbolic_map
      - Improve debugging by providing context about missing symbolic dimensions
      - Maintain existing dynamic shape resolution logic
      
      * Fix Copy operation handling for scalar and multi-dimensional tensors
      
      - Add special handling for scalar tensor copy operations
      - Enhance error reporting in MakeIndices method with more detailed diagnostic information
      - Improve SIMT loop generation to support zero-dimensional tensors
      - Add explicit check and handling for scalar tensor scenarios
      
      * Refactor Copy operation code formatting and improve readability
      
      - Improve code formatting in MakeIndices and MakeSIMTLoop methods
      - Add line breaks to enhance readability of complex ICHECK statements
      - Simplify code structure in scalar tensor handling
      - Remove unnecessary whitespace and improve code alignment
      
      * Simplify GEMM example with direct kernel compilation
      
      - Update copyright header to Tile-AI Corporation
      - Remove Profiler import and usage
      - Replace tilelang.lower() with tilelang.compile()
      - Simplify kernel execution workflow
      - Update kernel source retrieval method
      
      * Enhance block sparse attention implementation
      
      - Update `blocksparse_flashattn` to use 2 stages for improved performance.
      - Change `block_mask_dtype` from `int8` to `bool` for better memory efficiency.
      - Modify condition checks in the kernel to utilize boolean values.
      - Introduce a new example for top-k sparse attention and a benchmark for native sparse attention.
      - Add support for asynchronous copy in PTX and improve pipeline planning with condition handling.
      
      * Refactor and clean up code formatting across multiple files
      
      - Added whitespace for improved readability in `example_blocksparse_gemm.py`, `example_tilelang_nsa_fwd.py`, and `benchmark_nsa_fwd.py`.
      - Enhanced code structure and alignment in `inject_ptx_async_copy.cc` and `pipeline_planning.cc`.
      - Updated comments and documentation for clarity in `__init__.py` and `phase.py`.
      - Ensured consistent formatting and style across the codebase.
      
      * Add kernel source printing in example_tilelang_nsa_fwd.py and implement IfThenElse node replacement in inject_pipeline.cc
      
      - Added a print statement to output the kernel source in `example_tilelang_nsa_fwd.py` for debugging purposes.
      - Introduced a new function `replace_if_then_else` in `inject_pipeline.cc` to transform IfThenElse nodes while preserving attributes, enhancing the handling of conditional statements in the pipeline.
      
      * Refactor condition handling in inject_pipeline.cc
      
      - Change the data structure for mapping conditions to statements from a Map to an Array for improved performance and simplicity.
      - Update condition comparison logic to use StructuralEqual for better accuracy.
      - Enhance logging to provide detailed insights into condition changes and statement processing.
      - Adjust final statement construction to utilize the new data structure, ensuring correct handling of conditions and statements.
      
      * Improve logging and formatting in inject_pipeline.cc
      
      - Enhance logging statements for better clarity on condition changes and statement processing.
      - Adjust formatting for improved readability, including line breaks and consistent spacing.
      - Ensure accurate condition comparison and handling in the pipeline logic.
      
      * Refactor logging and clean up inject_pipeline.cc
      
      - Remove excessive logging statements to streamline the code and improve performance.
      - Simplify condition handling by eliminating unnecessary log outputs related to condition changes and statement processing.
      - Maintain the core functionality while enhancing code readability and maintainability.
      
      * Update Dockerfiles to specify exact version of libstdcxx-ng
      
      - Change installation command in multiple Dockerfiles to use `libstdcxx-ng=12` instead of `libstdcxx-ng-12` for consistency and to avoid potential issues with package resolution.
      - Ensure all Dockerfiles from cu118 to cu126 reflect this change for uniformity across builds.
      
      * Refactor and enhance examples and kernel handling
      
      - Adjusted the pipeline stages in `example_blocksparse_gemm.py` from 2 to 1 for improved performance.
      - Added kernel source printing in `benchmark_nsa_fwd.py` for better debugging and profiling insights.
      - Updated tensor allocation and parameter handling in `CtypesKernelAdapter` and `CythonKernelWrapper` to cache parameter dtypes and shapes, improving efficiency and clarity.
      - Enhanced the handling of dynamic shapes in the Cython JIT kernel compilation process.
      - Modified the benchmark script to accommodate new tensor output parameters and improved batch size defaults for testing.
      
      * Update copyright header in Cython wrapper to reflect Tile-AI Corporation
      
      * revert change
      227ed7ec
    • Lei Wang's avatar
      [Enhancement] Allow mma fallback when wgmma is not supported (#206) · 45559a1f
      Lei Wang authored
      * Enhance error message for constant size stack allocation in CUDA codegen. Include the actual constant size and buffer variable name in the error output for better debugging.
      
      * Refactor GEMM and Bulk Copy operations to enhance layout handling and support for Hopper architecture
      
      - Update `ComputeWarpPartition` to include a new parameter for Hopper WGMMA support.
      - Modify layout checks in `LowerBulkCopy` to accommodate new GEMM layout types.
      - Enhance layout inference logic in `InferLayout` for better compatibility with Hopper architecture.
      - Include necessary header files for built-in operations and layout inference improvements.
      
      * lint fix
      
      * Remove unused builtin.h include directive
      
      * Update include path for builtin.h
      45559a1f
  2. 13 Mar, 2025 2 commits
    • zqh-wz's avatar
      [Feature] Upgrade cutlass version and support fp8 T.gemm (#202) · 2cccf1f5
      zqh-wz authored
      
      
      * upgrade cutlass to upstream v3.8.0
      
      * Implement fp8 gemm and add example script
      
      * Fix dtype retrieval with map_torch_type for fp8 inputs
      
      * Disable vectorization of fp8 values
      
      * Make MMA declaration compatible with cutlass 3.4.0+
      
      * Add test for fp8 T.gemm
      
      * fix indent
      
      * fix indent
      
      * Add copyright and license header
      
      * Add copyright and license header
      
      * lint fix
      
      * Refactor matmul_nt and assert_matmul_correctness functions for improved readability by consolidating parameter definitions and adjusting formatting.
      
      * clang format lint
      
      ---------
      Co-authored-by: default avatarLei Wang <34334180+LeiWang1999@users.noreply.github.com>
      Co-authored-by: default avatarLeiWang1999 <leiwang1999@outlook.com>
      2cccf1f5
    • Lei Wang's avatar
      [Enhancement] Enhancing the handling of conditional statements in the pipeline (#201) · dda8ebff
      Lei Wang authored
      * Optimize CMake build process with dynamic job count calculation
      
      - Modify build_csrc function to use 90% of available CPU cores
      - Ensure at least one job is used during compilation
      - Improve build performance by dynamically adjusting parallel job count
      
      * Optimize build_csrc function with multiprocessing module
      
      - Replace os.cpu_count() with multiprocessing.cpu_count()
      - Maintain existing 90% CPU utilization logic
      - Improve CPU core count calculation for build process
      
      * Add dynamic shape support with out_idx in Cython JIT kernel compilation
      
      - Implement `run_cython_dynamic_shape_with_out_idx` function in test_tilelang_jit_gemm_cython.py
      - Update Cython wrapper to handle dynamic symbolic shapes during tensor allocation
      - Add support for resolving dynamic shape dimensions using input tensor references
      - Enhance flexibility of JIT kernel compilation with symbolic shape handling
      
      * Enhance error reporting for dynamic symbolic shape resolution in Cython JIT kernel
      
      - Add detailed error message when a dynamic symbolic dimension is not found in dynamic_symbolic_map
      - Improve debugging by providing context about missing symbolic dimensions
      - Maintain existing dynamic shape resolution logic
      
      * Fix Copy operation handling for scalar and multi-dimensional tensors
      
      - Add special handling for scalar tensor copy operations
      - Enhance error reporting in MakeIndices method with more detailed diagnostic information
      - Improve SIMT loop generation to support zero-dimensional tensors
      - Add explicit check and handling for scalar tensor scenarios
      
      * Refactor Copy operation code formatting and improve readability
      
      - Improve code formatting in MakeIndices and MakeSIMTLoop methods
      - Add line breaks to enhance readability of complex ICHECK statements
      - Simplify code structure in scalar tensor handling
      - Remove unnecessary whitespace and improve code alignment
      
      * Simplify GEMM example with direct kernel compilation
      
      - Update copyright header to Tile-AI Corporation
      - Remove Profiler import and usage
      - Replace tilelang.lower() with tilelang.compile()
      - Simplify kernel execution workflow
      - Update kernel source retrieval method
      
      * Enhance block sparse attention implementation
      
      - Update `blocksparse_flashattn` to use 2 stages for improved performance.
      - Change `block_mask_dtype` from `int8` to `bool` for better memory efficiency.
      - Modify condition checks in the kernel to utilize boolean values.
      - Introduce a new example for top-k sparse attention and a benchmark for native sparse attention.
      - Add support for asynchronous copy in PTX and improve pipeline planning with condition handling.
      
      * Refactor and clean up code formatting across multiple files
      
      - Added whitespace for improved readability in `example_blocksparse_gemm.py`, `example_tilelang_nsa_fwd.py`, and `benchmark_nsa_fwd.py`.
      - Enhanced code structure and alignment in `inject_ptx_async_copy.cc` and `pipeline_planning.cc`.
      - Updated comments and documentation for clarity in `__init__.py` and `phase.py`.
      - Ensured consistent formatting and style across the codebase.
      
      * Add kernel source printing in example_tilelang_nsa_fwd.py and implement IfThenElse node replacement in inject_pipeline.cc
      
      - Added a print statement to output the kernel source in `example_tilelang_nsa_fwd.py` for debugging purposes.
      - Introduced a new function `replace_if_then_else` in `inject_pipeline.cc` to transform IfThenElse nodes while preserving attributes, enhancing the handling of conditional statements in the pipeline.
      
      * Refactor condition handling in inject_pipeline.cc
      
      - Change the data structure for mapping conditions to statements from a Map to an Array for improved performance and simplicity.
      - Update condition comparison logic to use StructuralEqual for better accuracy.
      - Enhance logging to provide detailed insights into condition changes and statement processing.
      - Adjust final statement construction to utilize the new data structure, ensuring correct handling of conditions and statements.
      
      * Improve logging and formatting in inject_pipeline.cc
      
      - Enhance logging statements for better clarity on condition changes and statement processing.
      - Adjust formatting for improved readability, including line breaks and consistent spacing.
      - Ensure accurate condition comparison and handling in the pipeline logic.
      
      * Refactor logging and clean up inject_pipeline.cc
      
      - Remove excessive logging statements to streamline the code and improve performance.
      - Simplify condition handling by eliminating unnecessary log outputs related to condition changes and statement processing.
      - Maintain the core functionality while enhancing code readability and maintainability.
      dda8ebff
  3. 12 Mar, 2025 6 commits
    • Lei Wang's avatar
      [Feature] Support Async Pipeline inference within if scope (#198) · 7ccec53b
      Lei Wang authored
      * Optimize CMake build process with dynamic job count calculation
      
      - Modify build_csrc function to use 90% of available CPU cores
      - Ensure at least one job is used during compilation
      - Improve build performance by dynamically adjusting parallel job count
      
      * Optimize build_csrc function with multiprocessing module
      
      - Replace os.cpu_count() with multiprocessing.cpu_count()
      - Maintain existing 90% CPU utilization logic
      - Improve CPU core count calculation for build process
      
      * Add dynamic shape support with out_idx in Cython JIT kernel compilation
      
      - Implement `run_cython_dynamic_shape_with_out_idx` function in test_tilelang_jit_gemm_cython.py
      - Update Cython wrapper to handle dynamic symbolic shapes during tensor allocation
      - Add support for resolving dynamic shape dimensions using input tensor references
      - Enhance flexibility of JIT kernel compilation with symbolic shape handling
      
      * Enhance error reporting for dynamic symbolic shape resolution in Cython JIT kernel
      
      - Add detailed error message when a dynamic symbolic dimension is not found in dynamic_symbolic_map
      - Improve debugging by providing context about missing symbolic dimensions
      - Maintain existing dynamic shape resolution logic
      
      * Fix Copy operation handling for scalar and multi-dimensional tensors
      
      - Add special handling for scalar tensor copy operations
      - Enhance error reporting in MakeIndices method with more detailed diagnostic information
      - Improve SIMT loop generation to support zero-dimensional tensors
      - Add explicit check and handling for scalar tensor scenarios
      
      * Refactor Copy operation code formatting and improve readability
      
      - Improve code formatting in MakeIndices and MakeSIMTLoop methods
      - Add line breaks to enhance readability of complex ICHECK statements
      - Simplify code structure in scalar tensor handling
      - Remove unnecessary whitespace and improve code alignment
      
      * Simplify GEMM example with direct kernel compilation
      
      - Update copyright header to Tile-AI Corporation
      - Remove Profiler import and usage
      - Replace tilelang.lower() with tilelang.compile()
      - Simplify kernel execution workflow
      - Update kernel source retrieval method
      
      * Enhance block sparse attention implementation
      
      - Update `blocksparse_flashattn` to use 2 stages for improved performance.
      - Change `block_mask_dtype` from `int8` to `bool` for better memory efficiency.
      - Modify condition checks in the kernel to utilize boolean values.
      - Introduce a new example for top-k sparse attention and a benchmark for native sparse attention.
      - Add support for asynchronous copy in PTX and improve pipeline planning with condition handling.
      
      * Refactor and clean up code formatting across multiple files
      
      - Added whitespace for improved readability in `example_blocksparse_gemm.py`, `example_tilelang_nsa_fwd.py`, and `benchmark_nsa_fwd.py`.
      - Enhanced code structure and alignment in `inject_ptx_async_copy.cc` and `pipeline_planning.cc`.
      - Updated comments and documentation for clarity in `__init__.py` and `phase.py`.
      - Ensured consistent formatting and style across the codebase.
      7ccec53b
    • Yu Cheng's avatar
      [CMake] Add CUDA Major Version Detection for Conditional Compilation (#197) · 20f19611
      Yu Cheng authored
      * [Feature] Add TMA Store Synchronization Support
      
      - Introduce TMAStoreArrive and TMAStoreWait operations for CUDA TMA store synchronization
      - Add new builtin operations in op/builtin.cc and op/builtin.h
      - Implement TMAStoreSyncInjector to automatically inject TMA store synchronization calls
      - Update CUDA codegen to support new TMA store synchronization intrinsics
      - Add Python language bindings for new TMA store synchronization operations
      
      * [CMake] Add CUDA Major Version Detection for Conditional Compilation
      
      - Introduce CUDA_MAJOR_VERSION CMake variable to dynamically detect CUDA toolkit version
      - Update runtime and transform files to use CUDA_MAJOR_VERSION for version-specific code paths
      - Replace hardcoded __CUDACC_VER_MAJOR__ with dynamically set CUDA_MAJOR_VERSION
      - Improve cross-version compatibility for CUDA-dependent code sections
      20f19611
    • Yu Cheng's avatar
      [Feature] Add TMA Store Synchronization Support (#195) · eba7dd5a
      Yu Cheng authored
      - Introduce TMAStoreArrive and TMAStoreWait operations for CUDA TMA store synchronization
      - Add new builtin operations in op/builtin.cc and op/builtin.h
      - Implement TMAStoreSyncInjector to automatically inject TMA store synchronization calls
      - Update CUDA codegen to support new TMA store synchronization intrinsics
      - Add Python language bindings for new TMA store synchronization operations
      eba7dd5a
    • Yu Cheng's avatar
      [Refactor] Add SetMaxNRegCollector to Improve Register Hint Handling in Warp... · 94c758ad
      Yu Cheng authored
      [Refactor] Add SetMaxNRegCollector to Improve Register Hint Handling in Warp Specialized Rewriter (#194)
      
      * [Refactor] Add SetMaxNRegCollector to Improve Register Hint Handling in Warp Specialized Rewriter
      
      - Introduce `SetMaxNRegCollector` to collect register hints from SetMaxNReg calls
      - Modify `WarpSpecializedRewriter` to use collected register hints for producer and consumer code
      - Add validation checks for register hint values in the collector
      - Remove SetMaxNReg calls during code transformation
      - Enhance flexibility of register allocation in warp specialized rewriting
      
      * temporary remove check in lower_hopper_intrin
      94c758ad
    • penguin_wwy's avatar
      efb2b1d5
    • Lei Wang's avatar
      [Bugfix] Fix `T.copy` for scalar datatypes (#190) · 454248c7
      Lei Wang authored
      * Optimize CMake build process with dynamic job count calculation
      
      - Modify build_csrc function to use 90% of available CPU cores
      - Ensure at least one job is used during compilation
      - Improve build performance by dynamically adjusting parallel job count
      
      * Optimize build_csrc function with multiprocessing module
      
      - Replace os.cpu_count() with multiprocessing.cpu_count()
      - Maintain existing 90% CPU utilization logic
      - Improve CPU core count calculation for build process
      
      * Add dynamic shape support with out_idx in Cython JIT kernel compilation
      
      - Implement `run_cython_dynamic_shape_with_out_idx` function in test_tilelang_jit_gemm_cython.py
      - Update Cython wrapper to handle dynamic symbolic shapes during tensor allocation
      - Add support for resolving dynamic shape dimensions using input tensor references
      - Enhance flexibility of JIT kernel compilation with symbolic shape handling
      
      * Enhance error reporting for dynamic symbolic shape resolution in Cython JIT kernel
      
      - Add detailed error message when a dynamic symbolic dimension is not found in dynamic_symbolic_map
      - Improve debugging by providing context about missing symbolic dimensions
      - Maintain existing dynamic shape resolution logic
      
      * Fix Copy operation handling for scalar and multi-dimensional tensors
      
      - Add special handling for scalar tensor copy operations
      - Enhance error reporting in MakeIndices method with more detailed diagnostic information
      - Improve SIMT loop generation to support zero-dimensional tensors
      - Add explicit check and handling for scalar tensor scenarios
      
      * Refactor Copy operation code formatting and improve readability
      
      - Improve code formatting in MakeIndices and MakeSIMTLoop methods
      - Add line breaks to enhance readability of complex ICHECK statements
      - Simplify code structure in scalar tensor handling
      - Remove unnecessary whitespace and improve code alignment
      454248c7
  4. 11 Mar, 2025 1 commit
    • Yu Cheng's avatar
      [Dev][Bugfix] Add RMS Normalization Kernels and Fix Reduce Bug (#188) · fe0de672
      Yu Cheng authored
      * [Dev][Bugfix] Add RMS Normalization Kernels and Fix Reduce Bug
      
      - Implement two RMS normalization implementations in TileLang:
        * `rms_norm_splitk`: Split-K reduction approach for large matrices
        * `rms_norm`: Full reduction kernel with simplified implementation
      - Add reference implementation using PyTorch for validation
      - Include performance benchmarking for both kernel variants
      - Demonstrate flexible block size and matrix size configurations
      
      * [Examples] Simplify RMS Normalization Kernel Compilation
      
      - Remove commented-out code for split-K RMS normalization
      - Simplify kernel compilation by removing explicit TMA lowering configuration
      - Update copyright header to Tile-AI Corporation
      - Streamline main script for RMS normalization example
      fe0de672
  5. 10 Mar, 2025 2 commits
    • Lei Wang's avatar
      [Bugfix] Improve Thread Variable Handling in Layout Inference (#179) · c39e540a
      Lei Wang authored
      * [Refactor] Improve Thread Variable Handling in Layout Inference
      
      - Update layout inference to handle thread variables more robustly
      - Add explicit size check between infer_list_ and thread_var_vec_
      - Modify thread variable access to use per-iteration thread variable
      - Simplify thread predicate retrieval logic
      - Add minor code cleanup and return variable assignment
      
      * [Refactor] Update Layout Inference Copyright and Simplify Return Logic
      
      - Replace Apache License header with Microsoft Corporation copyright notice
      - Simplify LayoutInference function by directly returning substituted function
      - Remove unnecessary variable assignment in return statement
      
      * [Refactor] Update Layout Inference Copyright to Tile-AI Corporation
      
      - Change copyright notice from Microsoft Corporation to Tile-AI Corporation
      - Maintain existing file structure and licensing header
      c39e540a
    • Lei Wang's avatar
      [Refactor] Enhance GPU Kernel Launch with Environment Thread Creation (#178) · 8ccf6ea2
      Lei Wang authored
      - Introduce `CreateEnvThread` function to generate environment threads for GPU kernel launches
      - Modify `KernelLaunch` to use `CreateEnvThread` for block and thread indices
      - Improve thread variable naming with shorter, more descriptive identifiers (bx, by, bz, tx, ty, tz)
      - Ensure proper thread environment setup within PrimFunc context
      8ccf6ea2
  6. 09 Mar, 2025 2 commits
    • Lei Wang's avatar
      [Feat] Append Pass Context and TMA lowering configuration option (#175) · fb6b101c
      Lei Wang authored
      * Add TMA lowering configuration option and update copyright notices
      
      This commit introduces a new configuration option to disable TMA (Tensor Memory Access) lowering and updates copyright notices across multiple files. Key changes include:
      
      - Add `kDisableTMALower` configuration option in builtin.h and builtin.cc
      - Update copyright notices from Microsoft Corporation to Tile-AI Corporation
      - Modify `LowerArgs` struct to include `disable_tma_lower` flag
      - Update JIT compilation interfaces to support pass configuration
      - Enhance error reporting in bulk copy lowering
      - Propagate pass configuration through various adapter layers
      
      * lint fix
      fb6b101c
    • Lei Wang's avatar
      [Bugfix] Implement boundary check for the buffer shape with dynamic symbolic (#173) · 8344af52
      Lei Wang authored
      * [Refactor] Update BitBLAS Benchmark with TileLang Carver Imports and Roller Hints Generation
      
      - Replace BitBLAS imports with TileLang Carver imports in benchmark_matmul.py
      - Modify roller hints generation using new TileLang Carver template and utility functions
      - Update get_roller_hints_from_func to handle None cases and improve return logic
      - Adjust DefaultPolicy to handle different codegen dictionary formats
      
      * [Refactor] Update Thread Binding and Import Statements in TileLang Kernels
      
      - Replace T.thread_binding() with T.get_thread_binding() across multiple kernel test files
      - Update import statements for MMA layout and macro generator in dequantize GEMM and FP8 examples
      - Move map_torch_type utility function to tilelang.utils.tensor
      - Remove unnecessary imports and improve code organization
      
      * Refactor Native Sparse Attention Example with Enhanced Triton Kernel
      
      - Update parallel_nsa_fwd_kernel to support more flexible sparse attention computation
      - Add support for block counts and offsets in the Triton kernel
      - Modify kernel grid and computation logic for improved performance
      - Update example script to use naive_nsa_simple reference implementation
      - Improve type hints and kernel configuration
      
      * Add Native Sparse Attention Examples with Tilelang and Triton Implementations
      
      - Introduce new example scripts for native sparse attention:
        * example_tilelang_nsa_fwd.py: Forward pass implementation using TileLang
        * example_tilelang_nsa_decode.py: Decoding-specific sparse attention implementation
        * example_triton_nsa_fwd.py: Triton-based sparse attention forward pass
      - Update reference.py with naive implementations for sparse attention
      - Support different sparse attention scenarios including forward pass and inference
      - Add comprehensive testing and validation against reference implementations
      
      * lint fix
      
      * Add Variable-Length Native Sparse Attention Examples for TileLang and Triton
      
      - Introduce new example scripts for variable-length native sparse attention:
        * example_tilelang_nsa_fwd_varlen.py: TileLang implementation with variable sequence lengths
        * example_triton_nsa_fwd_varlen.py: Triton implementation with variable sequence lengths
      - Update reference.py to support variable-length sparse attention scenarios
      - Enhance existing sparse attention implementations to handle variable-length inputs
      - Add comprehensive testing and validation for variable-length sparse attention
      
      * Refactor Native Sparse Attention Examples: Code Style and Formatting Improvements
      
      - Standardize function and parameter formatting across NSA example files
      - Improve code readability by adjusting indentation and line breaks
      - Enhance type hints and parameter alignment
      - Remove unnecessary whitespaces and optimize imports
      - Maintain consistent code style across TileLang and Triton implementations
      
      * Add debug logging and extend execution backend in JIT and loop vectorization
      
      - Add detailed logging in loop vectorization to help diagnose buffer shape handling
      - Extend JIT execution backend to include 'cython' option
      - Improve boundary condition checks in BufferLoadNode visit method
      
      * Remove debug logging in loop vectorization BufferLoadNode visit method
      
      - Remove unnecessary INFO log statements in VisitExpr_ method
      - Simplify code by eliminating redundant logging
      - Maintain core logic for handling buffer load node visits
      8344af52
  7. 06 Mar, 2025 1 commit
    • xs-keju's avatar
      Add cpu jit with backend ctypes (#154) · 782ca9f6
      xs-keju authored
      
      
      * Add cpu jit with backend ctypes
      
      * Resolve some lint issues
      
      * Apply PR feedback on head file and kernel example
      
      * Add test cases
      
      * Resolve formatting issues
      
      * Resolve formatting issues
      
      ---------
      Co-authored-by: default avatarxxw <1990389406@qq.con>
      782ca9f6
  8. 05 Mar, 2025 2 commits
    • Lei Wang's avatar
      [Enhancement] Support debug print for unsigned char datatype (#145) · bb60f6ce
      Lei Wang authored
      * Fix debug print buffer template for unsigned char type
      
      - Update debug_print_buffer_value template specialization for unsigned char
      - Modify test_tilelang_debug_print.py to include additional dtype tests
      - Add test case for uint8 dtype in debug print buffer function
      
      * Refactor debug print buffer template formatting for unsigned char
      
      - Improve code formatting for debug_print_buffer_value template specialization
      - Adjust line breaks and indentation for better readability
      - Maintain consistent code style with other template specializations
      bb60f6ce
    • Yu Cheng's avatar
      [Dev] Adjust computation logic to avoid precision loss when casting acc_s from... · e1d82bf3
      Yu Cheng authored
      [Dev] Adjust computation logic to avoid precision loss when casting acc_s from float to float16 (#141)
      
      - Remove redundant `acc_s_0` fragment in flash attention kernel
      - Simplify memory copy and reduction operations
      - Reorder memory copy and scaling steps for improved performance
      - Add Hopper-specific synchronization method in CUDA reduce template
      - Update reduce operation to use architecture-specific synchronization
      e1d82bf3
  9. 04 Mar, 2025 1 commit
    • Lei Wang's avatar
      [Bugfix] Add missing definition for AtomicAdd (#138) · 3960d3d0
      Lei Wang authored
      * Change default log level from WARNING to INFO in TileLang initialization
      
      * Refactor Flash Attention Variable-Length MHA Example with Cython Backend Support
      
      - Update `example_mha_fwd_varlen.py` to use Cython backend for kernel compilation
      - Remove unused imports and simplify function signature
      - Modify `flashattn` function to handle max sequence length as a separate argument
      - Update kernel call to include max sequence length parameter
      - Improve code readability and remove commented-out code
      - Add print statement to confirm successful assertion
      
      * Refactor code formatting in TileLang lowering and example files
      
      - Improve line breaks and code formatting in `lower.py`, `wrapper.py`, and `tensor.py`
      - Simplify line breaks and reduce unnecessary whitespace
      - Enhance code readability by adjusting indentation and line breaks
      - Update example MHA forward pass script with cleaner tensor initialization
      
      * Update TileLang kernel test with import path changes for MMA layout and macro generator
      
      - Modify import statements in test_tilelang_kernel_dequantize_gemm.py
      - Replace bitblas imports with tilelang.intrinsics imports for MMA-related utilities
      - Update main function to use tilelang.testing.main()
      
      * Add Block Sparse Attention Examples for TileLang and Triton
      
      - Implement block sparse attention kernels for both TileLang and Triton
      - Add utility functions for generating sparse attention masks using top-k and threshold methods
      - Support causal and variable-length attention scenarios
      - Include test cases for different sequence length configurations
      - Demonstrate block-level sparse attention with configurable parameters
      
      * Refactor Block Sparse Attention Examples with Code Style Improvements
      
      - Improve code formatting in block_sparse_attn_tilelang.py and block_sparse_attn_triton.py
      - Enhance readability by adjusting line breaks and indentation
      - Simplify kernel and function calls with better formatting
      - Add whitespace and line break improvements for better code clarity
      
      * Enhance Layout Plotting with Multi-Replication and Dynamic Visualization
      
      - Update plot_layout function to support multiple replications in thread and value mapping
      - Improve thread and value mapping to handle replicated layouts
      - Dynamically adjust figure size and legend positioning
      - Add print statements for saved plot file paths
      - Modify example fragment_mma_load_a.py to uncomment and enable warp and block layout plotting
      
      * Refactor AtomicAdd functions in CUDA common header
      
      - Implement a generic template for AtomicAdd function
      - Specialize templates for half_t, bfloat16_t, and pointer types
      - Reorganize and clean up existing AtomicAdd implementations
      - Improve type handling and conversion in atomic operations
      
      * Remove unused import in MHA backward test file
      
      - Remove unnecessary argparse import from test_tilelang_kenrel_mha_bwd.py
      - Add blank line for improved code formatting
      - Minor code cleanup in test file
      3960d3d0
  10. 28 Feb, 2025 2 commits
    • Lei Wang's avatar
      [Dev] Remove buffer flatten when debug print a shared buffer (#129) · 20bbb91a
      Lei Wang authored
      * Add DeepSeek MLA decode example with Flash Attention implementation
      
      * Add GEMM SplitK and StreamK example implementations
      
      This commit introduces two new example scripts demonstrating advanced GEMM (matrix multiplication) techniques:
      - `example_tilelang_gemm_splitk.py`: Implements a Split-K GEMM kernel using TileLang
      - `example_tilelang_gemm_streamk.py`: Implements a Stream-K GEMM kernel using TileLang
      
      Both examples showcase different parallel computation strategies for matrix multiplication, with comprehensive testing using PyTorch reference implementations.
      
      * Refactor GEMM SplitK and StreamK example implementations
      
      Clean up and improve code formatting for the SplitK and StreamK GEMM example scripts:
      - Remove unused import (Profiler) in splitk example
      - Simplify line breaks and improve code readability
      - Standardize indentation and remove unnecessary whitespace
      - Optimize atomic add and copy operations for better clarity
      
      * Add block sparse attention benchmarks for multiple libraries
      
      This commit introduces comprehensive block sparse attention benchmarks for different libraries:
      - TileLang block sparse FMHA implementation
      - Triton block sparse FMHA implementation
      - PyTorch reference block sparse FMHA implementation
      - FlashAttention dense FMHA reference implementation
      
      The benchmarks include:
      - Configurable benchmark parameters (batch size, heads, sequence length, etc.)
      - Sparse mask generation using top-k and threshold methods
      - Performance measurement for different sparse attention configurations
      - Utility functions for mask generation and benchmarking
      
      * Refactor block sparse attention benchmarks with code style improvements
      
      - Add Ruff linter ignore comments to benchmark files
      - Improve code formatting and line breaks
      - Remove unused imports
      - Standardize print statement formatting
      - Enhance code readability across multiple library benchmarks
      
      * lint fix
      
      * Add CUDA atomic operations for BFLOAT16 and update function naming
      
      - Implement AtomicAdd functions for BFLOAT16 and BFLOAT16x2 in CUDA common header
      - Rename existing atomic add functions to use PascalCase (atomicAdd -> AtomicAdd)
      - Add a new __pack_nv_bfloat162 function for packing BFLOAT16 values
      - Update kernel and language customization to use new function names
      - Add return type annotations in profiler module
      
      * lint fix
      
      * Add example for Group Query Attention (GQA) forward pass using Flash Attention in TileLang
      
      This commit introduces a new example script `example_gqa_fwd_bshd.py` that demonstrates:
      - Group Query Attention (GQA) implementation
      - Flash Attention forward pass
      - Performance benchmarking
      - Configurable parameters for batch, heads, sequence length, and dimension
      - Autotuning support
      - Reference implementation comparison
      
      * Refactor IR lowering pipeline into modular phases
      
      This commit introduces a new module `phase.py` to modularize the IR lowering process by splitting the complex lowering pipeline into two distinct phases:
      - `LowerAndLegalize`: Handles initial IR legalization and transformation
      - `OptimizeForTarget`: Applies target-specific optimizations
      
      The changes simplify the lowering logic in multiple files by extracting the transformation steps into reusable functions, improving code readability and maintainability.
      
      * lintfix
      
      * nas kernel
      
      * Enhance Native Sparse Attention Examples with Code Improvements and Parameter Updates
      
      - Updated example_tilelang_nsa.py and example_triton_nsa.py with code formatting and style improvements
      - Increased default number of heads and selected blocks in TileLang NSA example
      - Added Ruff linter ignore comments to reference.py
      - Standardized function signatures and improved code readability across NSA implementations
      
      * Add utility math functions for integer operations
      
      - Implement `next_power_of_2()` to calculate the next power of 2 for an integer
      - Add `cdiv()` function for ceiling division of integers
      
      * Add utility math functions for integer operations
      
      - Implement `next_power_of_2()` to calculate the next power of 2 for an integer
      - Add `cdiv()` function for ceiling division of integers
      
      * Refactor DeepSeek MLA Decode Example with Enhanced Flash Attention Implementation
      
      - Update flash attention kernel to support positional embeddings (PE)
      - Modify reference implementation to handle PE and group query attention
      - Increase default batch size and adjust benchmarking parameters
      - Improve kernel performance and readability
      - Add einops and torch operations for more flexible tensor manipulation
      
      * Update README.md with corrected Flash MLA Decoding example path
      
      - Modify the example link for Flash MLA Decoding to point to the correct directory
      - Ensure accurate navigation to the DeepSeek MLA decoding example
      
      * Refactor Native Sparse Attention Kernel and Improve Utility Functions
      
      This commit introduces several improvements:
      - Simplified native sparse attention kernel by inlining macro functions in example_tilelang_nsa.py
      - Enhanced error handling in loop_partition.cc with more informative error messages
      - Updated print.py to support multi-dimensional buffer printing
      - Improved torch_assert_close in testing/__init__.py with more detailed mismatch reporting
      - Reduced default absolute tolerance in torch comparison from 1e-3 to 1e-2
      - Added shape validation and detailed mismatch information in tensor comparison
      
      * Refactor Code Formatting and Improve Utility Functions
      
      This commit introduces several code formatting and utility improvements:
      - Add Ruff linter ignore comment in example_tilelang_nsa.py
      - Enhance code readability in loop_partition.cc and lower_tile_op.cc with improved line breaks
      - Simplify print_flat_buffer_with_condition in print.py
      - Refactor torch_assert_close in testing/__init__.py with improved line formatting
      20bbb91a
    • Yu Cheng's avatar
      [Dev][Bugfix] Fix bug in ThreadTagChecker; Add WgmmaSync rewriter and add MHA... · 0d873fcf
      Yu Cheng authored
      [Dev][Bugfix] Fix bug in ThreadTagChecker; Add WgmmaSync rewriter and add MHA WGMMA pipelined example (#128)
      
      * [Dev] Add RetNet Linear Attention example
      
      * [Dev] Add WgmmaSync rewriter for pipelined WGMMA operations and add MHA WGMMA pipelined example (FA3-like scheduling)
      
      This commit introduces a new transformation pass `RewriteWgmmaSync` to optimize warp group matrix multiply accumulate (WGMMA) operations in the TileLang compiler:
      
      - Implemented `WgmmaSyncRewriter` in `src/transform/wgmma_sync_rewriter.cc`
      - Added pass registration for `RewriteWgmmaSync`
      - Updated `tilelang/engine/phase.py` to include the new transformation pass
      - Updated `tilelang/transform/__init__.py` to expose the new pass
      
      The rewriter intelligently manages synchronization and dependencies between WGMMA operations, improving pipeline efficiency for complex matrix multiplication kernels.
      
      * [Bugfix] Fix bug in ThreadTagChecker for warp specialization
      
      Improve thread tag validation in warp specialized rewriter to prevent unintended transformations:
      - Add more precise checks for threadIdx.y and threadIdx.z
      - Validate thread extent to ensure only single-extent thread bindings are allowed
      - Prevent warp specialization for multi-extent thread bindings in y and z dimensions
      
      * lint
      
      * [CI] Add TMA descriptor attribute to transformed module in test case
      0d873fcf
  11. 27 Feb, 2025 1 commit
    • Lei Wang's avatar
      [JIT] Enhance cython/ctypes wrapper for tma descriptor (#126) · 7b74bb01
      Lei Wang authored
      
      
      * refactor code
      
      * enhance tutorial
      
      * Enhance error handling and code generation in CUDA and TileLang components
      
      This commit introduces several improvements across multiple files:
      - Added more informative error messages in GEMM layout checks
      - Updated CUDA codegen to support more flexible function signature generation
      - Improved TMA descriptor initialization and kernel dispatch logic
      - Refined library generation and source code parsing utilities
      - Enhanced error handling in various adapter and wrapper classes
      
      * Add thread tag validation for warp specialization
      
      Introduce a ThreadTagChecker to validate that a PrimFunc only uses threadIdx.x before applying warp specialization. This prevents unintended transformations on kernels with complex thread binding and provides a clear warning to users about potential issues with warp specialization.
      
      * Update TileLang Profiling and Compilation in Flash Decoding Examples
      
      Refactor the profiling and compilation workflow in two flash decoding example scripts:
      - Replace `tilelang.lower()` and `tilelang.Profiler()` with `tilelang.compile()`
      - Simplify profiler initialization using `get_profiler()`
      - Update method calls to use the new profiler and compiled kernel objects
      - Maintain existing performance benchmarking and validation logic
      
      * Refactor and clean up code formatting in TileLang testing and adapter modules
      
      This commit includes several code style and formatting improvements:
      - Adjust whitespace and line breaks in test files
      - Improve code formatting in CUDA source wrapper and adapter utilities
      - Enhance readability of function calls and argument handling
      - Remove unnecessary whitespace and standardize indentation
      - Simplify function signatures and argument parsing
      
      * Refactor CUDA codegen and improve code formatting
      
      This commit includes several improvements to CUDA code generation and formatting:
      - Enhance function signature generation in CodeGenTileLangCUDA
      - Improve code formatting and readability in CUDA-related files
      - Simplify parameter handling and type annotations
      - Clean up whitespace and line breaks in codegen and layout files
      
      ---------
      Co-authored-by: default avatarUbuntu <dlisuser@h100testl730RPS.xu5snccwrbtejcqqalluoku5hb.xx.internal.cloudapp.net>
      7b74bb01
  12. 24 Feb, 2025 1 commit
    • Lei Wang's avatar
      [Dev] Support vectorized value pack and atomicAdd for BFloat16 DType (#116) · 62843b88
      Lei Wang authored
      * Add DeepSeek MLA decode example with Flash Attention implementation
      
      * Add GEMM SplitK and StreamK example implementations
      
      This commit introduces two new example scripts demonstrating advanced GEMM (matrix multiplication) techniques:
      - `example_tilelang_gemm_splitk.py`: Implements a Split-K GEMM kernel using TileLang
      - `example_tilelang_gemm_streamk.py`: Implements a Stream-K GEMM kernel using TileLang
      
      Both examples showcase different parallel computation strategies for matrix multiplication, with comprehensive testing using PyTorch reference implementations.
      
      * Refactor GEMM SplitK and StreamK example implementations
      
      Clean up and improve code formatting for the SplitK and StreamK GEMM example scripts:
      - Remove unused import (Profiler) in splitk example
      - Simplify line breaks and improve code readability
      - Standardize indentation and remove unnecessary whitespace
      - Optimize atomic add and copy operations for better clarity
      
      * Add block sparse attention benchmarks for multiple libraries
      
      This commit introduces comprehensive block sparse attention benchmarks for different libraries:
      - TileLang block sparse FMHA implementation
      - Triton block sparse FMHA implementation
      - PyTorch reference block sparse FMHA implementation
      - FlashAttention dense FMHA reference implementation
      
      The benchmarks include:
      - Configurable benchmark parameters (batch size, heads, sequence length, etc.)
      - Sparse mask generation using top-k and threshold methods
      - Performance measurement for different sparse attention configurations
      - Utility functions for mask generation and benchmarking
      
      * Refactor block sparse attention benchmarks with code style improvements
      
      - Add Ruff linter ignore comments to benchmark files
      - Improve code formatting and line breaks
      - Remove unused imports
      - Standardize print statement formatting
      - Enhance code readability across multiple library benchmarks
      
      * lint fix
      
      * Add CUDA atomic operations for BFLOAT16 and update function naming
      
      - Implement AtomicAdd functions for BFLOAT16 and BFLOAT16x2 in CUDA common header
      - Rename existing atomic add functions to use PascalCase (atomicAdd -> AtomicAdd)
      - Add a new __pack_nv_bfloat162 function for packing BFLOAT16 values
      - Update kernel and language customization to use new function names
      - Add return type annotations in profiler module
      
      * lint fix
      62843b88
  13. 22 Feb, 2025 1 commit
    • Lei Wang's avatar
      [Example] Implement simple block sparse kernel (#106) · c7462abf
      Lei Wang authored
      * Remove Torch CPP backend and update execution backend options
      
      - Remove TorchCPPKernelAdapter and related code from JIT modules
      - Update execution backend options in jit/__init__.py, kernel.py, and adapter/__init__.py
      - Remove "torch_cpp" from supported execution backend literals
      - Simplify backend validation and remove unused torch_cpp-related code
      。
      
      * lint fix
      
      * Add block sparse attention implementations for TileLang and Triton
      
      - Implement block sparse attention kernels for TileLang and Triton
      - Add example scripts for block sparse attention with top-k and threshold-based masking
      - Include utility functions for generating sparse attention masks
      - Demonstrate causal attention with block-level sparsity
      - Add test cases to validate sparse attention implementations against PyTorch reference
      c7462abf
  14. 15 Feb, 2025 1 commit
    • Lei Wang's avatar
      [Backend][WebGPU] Support WebGPU WGSL code generation (#86) · c8fc0cbb
      Lei Wang authored
      * bump version into v0.1.0
      
      * [Enhancement] Add custom develop command for editable installs and update .gitignore
      
      * [Documentation] Update README to include system dependencies installation instructions
      
      * [Build] Update setup.py to support library file copying for both release and develop modes
      
      * [Build] Refactor library file copying logic in setup.py
      
      * [Documentation] Remove unnecessary install section header in Installation.md
      
      * [Build] Add tox configuration and local distribution script for multi-Python version support
      
      * [Build] Improve git submodule update function with better error handling
      
      * [Build] Update LLVM configuration path in ROCm installation script
      
      * [Build] Add .tox/ to .gitignore for tox testing environment
      
      * [Build] Add support for TVM prebuild path configuration in CMakeLists.txt
      
      * [Cleanup] Remove unused TVM runtime error codes header
      
      * [Cleanup] Fix TVM grid constant type reference in CUDA module
      
      * [Cleanup] Remove unused customized_code function from IR module
      
      * [Feature] Add TileLang thread synchronization and storage access analysis passes
      
      * [Build] Reorder DLL search path directories for more flexible library loading
      
      * [Refactor] Improve thread synchronization and library path handling
      
      - Rename ThreadSync and TileLangThreadSync functions in C++ code
      - Update Python docstring for ThreadSync with more detailed description
      - Reorder library path detection in tilelang environment setup
      - Minor comment and code cleanup in CUDA and warp specialization modules
      
      * [Refactor] Improve thread synchronization code style and formatting
      
      - Standardize pointer type spacing in storage_access.h and storage_access.cc
      - Update whitespace and indentation in thread_storage_sync.cc
      - Reorder include statements in thread_partial_sync.cc
      - Minor code formatting improvements across thread synchronization files
      
      * [Refactor] Fix global function registration for ThreadSync
      
      - Correct global function registration to use ThreadSync instead of TileLangThreadSync
      - Update TVM global registration to match recent refactoring efforts
      
      * [Refactor] Simplify ThreadSync global function registration
      
      - Remove unnecessary whitespace in global function registration
      - Compact the TVM global registration line for ThreadSync
      
      * [Feature] Add WebGPU code generation support in TileLang
      
      - Implement WebGPU code generator (codegen_webgpu.cc and codegen_webgpu.h)
      - Add WebGPU target support in lower.py and target.py
      - Update CMakeLists.txt to include WebGPU codegen source files
      - Introduce WebGPU-specific code generation for WGSL shader language
      
      * [Refactor] Improve WebGPU code generation formatting and readability
      
      - Enhance code formatting in codegen_webgpu.cc and codegen_webgpu.h
      - Standardize pointer type spacing and indentation
      - Improve line breaks and reduce line length for better readability
      - Minor code style improvements in WebGPU code generation
      
      * [Test] Add WebGPU matrix multiplication code generation test
      
      - Implement test_webgpu_codegen.py for WebGPU matrix multiplication
      - Add assert_gemm_codegen function to validate WebGPU code generation
      - Include basic matrix multiplication kernel test case
      
      * Update README with WebGPU codegen support announcement
      c8fc0cbb
  15. 14 Feb, 2025 1 commit
    • Lei Wang's avatar
      [Refactor] Separate tilelang Pass Thread Sync (with Hopper support) from tvm (#85) · ec84188f
      Lei Wang authored
      * bump version into v0.1.0
      
      * [Enhancement] Add custom develop command for editable installs and update .gitignore
      
      * [Documentation] Update README to include system dependencies installation instructions
      
      * [Build] Update setup.py to support library file copying for both release and develop modes
      
      * [Build] Refactor library file copying logic in setup.py
      
      * [Documentation] Remove unnecessary install section header in Installation.md
      
      * [Build] Add tox configuration and local distribution script for multi-Python version support
      
      * [Build] Improve git submodule update function with better error handling
      
      * [Build] Update LLVM configuration path in ROCm installation script
      
      * [Build] Add .tox/ to .gitignore for tox testing environment
      
      * [Build] Add support for TVM prebuild path configuration in CMakeLists.txt
      
      * [Cleanup] Remove unused TVM runtime error codes header
      
      * [Cleanup] Fix TVM grid constant type reference in CUDA module
      
      * [Cleanup] Remove unused customized_code function from IR module
      
      * [Feature] Add TileLang thread synchronization and storage access analysis passes
      
      * [Build] Reorder DLL search path directories for more flexible library loading
      
      * [Refactor] Improve thread synchronization and library path handling
      
      - Rename ThreadSync and TileLangThreadSync functions in C++ code
      - Update Python docstring for ThreadSync with more detailed description
      - Reorder library path detection in tilelang environment setup
      - Minor comment and code cleanup in CUDA and warp specialization modules
      
      * [Refactor] Improve thread synchronization code style and formatting
      
      - Standardize pointer type spacing in storage_access.h and storage_access.cc
      - Update whitespace and indentation in thread_storage_sync.cc
      - Reorder include statements in thread_partial_sync.cc
      - Minor code formatting improvements across thread synchronization files
      
      * [Refactor] Fix global function registration for ThreadSync
      
      - Correct global function registration to use ThreadSync instead of TileLangThreadSync
      - Update TVM global registration to match recent refactoring efforts
      
      * [Refactor] Simplify ThreadSync global function registration
      
      - Remove unnecessary whitespace in global function registration
      - Compact the TVM global registration line for ThreadSync
      ec84188f
  16. 09 Feb, 2025 1 commit
    • Lei Wang's avatar
      [Tools] Introduce `plot_layout` to visualize the fragment layout (#68) · f9b6a92e
      Lei Wang authored
      * [Enhancement] Add VectorizeLoop function and update imports for compatibility
      
      * [CI][Test] Improve test cases for vectorization and fix typos in parser comments
      
      * lint fix
      
      * Fix incorrect module reference for VectorizeLoop transformation
      
      * Refactor vectorize_loop transformation by removing unused extent mutation logic
      
      * [Enhancement] Add support for FP8 data types and global barriers in CUDA codegen
      
      * Fix formatting in CUDA FP8 header file for consistency
      
      * Refactor CI workflow to use 'tilelang_ci' virtual environment and update CUDA type printing for better clarity
      
      * Update submodule 'tvm' to latest commit for improved functionality
      
      * Refactor execution backend references from 'dl_pack' to 'dlpack' for consistency and clarity; add apply_simplify function to simplify PrimFunc or IRModule.
      
      * Refactor CUDA code for improved readability; clean up formatting and remove unnecessary whitespace in multiple files.
      
      * Refactor import statement in test_tilelang_kernel_dequantize_gemm.py to use 'tilelang.language' for consistency
      
      * Add CUDA requirements to FP8 test cases and update references for clarity
      
      * Add a blank line for improved readability in test_tilelang_kernel_fp8_gemm_mma.py
      
      * Fix data type in reference result calculation for consistency in test_tilelang_kernel_gemm_mma_intrinsic.py
      
      * Add CUDA requirements and FP8 test cases for matmul and gemv simulations
      
      * Remove debug print statements and use tilelang's testing assertion for result validation in test_tilelang_kernel_gemm_mma_intrinsic.py
      
      * Remove outdated comment regarding FP8 tests in test_tilelang_kernel_gemv_simt.py
      
      * Add BF16 support to matrix multiplication and introduce corresponding test cases
      
      * Add a blank line for improved readability in BF16 GEMM test
      
      * Update acknowledgements in README to include supervision by Zhi Yang at Peking University
      
      * enhance acknowledgement
      
      * Replace tutorial on memory layout optimization with new tutorial on writing high-performance kernels with thread primitives
      
      * Update subproject commit for TVM dependency
      
      * Update subproject commit for TVM dependency
      
      * Add int4_t type and functions for packing char values in CUDA common header
      
      * Add plot_layout example and implement GetForwardVars method in layout classes
      
      * Refactor code for improved readability by adjusting line breaks and formatting in layout and test files
      
      * Fix formatting by removing unnecessary line break in layout.h
      
      * Refactor make_int4 function for improved readability by adjusting parameter formatting
      f9b6a92e
  17. 06 Feb, 2025 1 commit
    • Lei Wang's avatar
      [Dev] Support FP8 Codegen for cuda backend (#64) · 61de5288
      Lei Wang authored
      * [Enhancement] Add VectorizeLoop function and update imports for compatibility
      
      * [CI][Test] Improve test cases for vectorization and fix typos in parser comments
      
      * lint fix
      
      * Fix incorrect module reference for VectorizeLoop transformation
      
      * Refactor vectorize_loop transformation by removing unused extent mutation logic
      
      * [Enhancement] Add support for FP8 data types and global barriers in CUDA codegen
      
      * Fix formatting in CUDA FP8 header file for consistency
      
      * Refactor CI workflow to use 'tilelang_ci' virtual environment and update CUDA type printing for better clarity
      
      * Update submodule 'tvm' to latest commit for improved functionality
      
      * Refactor execution backend references from 'dl_pack' to 'dlpack' for consistency and clarity; add apply_simplify function to simplify PrimFunc or IRModule.
      
      * Refactor CUDA code for improved readability; clean up formatting and remove unnecessary whitespace in multiple files.
      
      * Refactor import statement in test_tilelang_kernel_dequantize_gemm.py to use 'tilelang.language' for consistency
      
      * Add CUDA requirements to FP8 test cases and update references for clarity
      
      * Add a blank line for improved readability in test_tilelang_kernel_fp8_gemm_mma.py
      
      * Fix data type in reference result calculation for consistency in test_tilelang_kernel_gemm_mma_intrinsic.py
      
      * Add CUDA requirements and FP8 test cases for matmul and gemv simulations
      
      * Remove debug print statements and use tilelang's testing assertion for result validation in test_tilelang_kernel_gemm_mma_intrinsic.py
      
      * Remove outdated comment regarding FP8 tests in test_tilelang_kernel_gemv_simt.py
      61de5288
  18. 03 Feb, 2025 1 commit
    • Lei Wang's avatar
      [Dev] Separate `LoopVectorize` Pass from upstream tvm (#62) · 7111239d
      Lei Wang authored
      * [Enhancement] Add VectorizeLoop function and update imports for compatibility
      
      * [CI][Test] Improve test cases for vectorization and fix typos in parser comments
      
      * lint fix
      
      * Fix incorrect module reference for VectorizeLoop transformation
      
      * Refactor vectorize_loop transformation by removing unused extent mutation logic
      7111239d
  19. 27 Jan, 2025 1 commit
    • Yu Cheng's avatar
      [CI][Test] Add test cases for tilelang transform LowerHopperIntrin (#59) · 7d4156df
      Yu Cheng authored
      * [Dev] Add FlashDecoding example
      
      * [CI][Test] Add test cases for tilelang kernel convolution
      
      * [CI][Test] Add test cases for tilelang kernel FlashAttention
      
      * Reduce the number of stages to ensure the shared memory allocation is valid
      
      * Temporarily remove the dim128 case
      
      * lint
      
      * update einops in requirements-dev.txt
      
      * update einops in requirements-test.txt
      
      * remove einops in requirements-dev.txt
      
      * [CI][Test] Add test cases for tilelang transform ClusterPlanning
      
      * [CI][Test] Add test cases for tilelang transform LowerHopperIntrin
      7d4156df
  20. 26 Jan, 2025 1 commit
    • Lei Wang's avatar
      [Doc] Addd debug relevant testing and documentations (#58) · 5e259239
      Lei Wang authored
      * implement jit test case
      
      * [Dev] implement auto tune test case for matrix multiplication
      
      * Implement test for legalize memory access and vectorized loop
      
      * lint fix
      
      * introduce run_once
      
      * Refactor callback function names for consistency and improve code readability
      
      * enhance documentations
      
      * lint fix
      
      * lint fix
      
      * lint fix
      
      * lint fix
      
      * fix formatting issues in rt_mod_hip.cc
      
      * add random seed initialization for deterministic testing
      5e259239
  21. 25 Jan, 2025 1 commit
  22. 24 Jan, 2025 1 commit
    • Lei Wang's avatar
      [Debug] Introduce `T.print` for buffer and variables logging on frontend (#45) · 8cdc185b
      Lei Wang authored
      * [Doc] Update documentation structure and content: add overview section, revise project name, and change theme to Furo
      
      * [Feature] Add device-side debug printing functions and integrate into kernel interface
      
      * lint fix
      
      * remove debug print
      
      * implement test for debug
      
      * lint fix
      
      * add some comments
      
      * Enhance fragment design and assert fragment print
      
      * enhance debug print
      
      * add test for msg
      
      * lint fix
      8cdc185b
  23. 23 Jan, 2025 1 commit
    • Lei Wang's avatar
      [Bugfix] Replace thread binding detector in LayoutInference Pass (#31) · 34e0883d
      Lei Wang authored
      * [Refactor] Rename AllocateCollector to ThreadBindingCollector and streamline thread binding logic
      
      * [Refactor] Adjust formatting in ThreadBindingCollector for consistency
      
      * [Refactor] Enhance clang-tidy check to handle cases with no changed C/C++ files
      
      * [Refactor] Remove clang-tidy checks from format script to streamline formatting process
      34e0883d
  24. 17 Jan, 2025 1 commit
  25. 11 Jan, 2025 2 commits
    • Lei Wang's avatar
      [Lint] Overall Typo and Linting Fixes (#13) · fa511857
      Lei Wang authored
      * README.md fixed
      
      * update test ci
      
      * Lint and Typo Fix
      
      * Clang Format Lint Fix
      fa511857
    • Lei Wang's avatar
      [Initialization] Migration of Codebase from Dev Branch into Main (#10) · 57ab687c
      Lei Wang authored
      
      
      * Add format.sh script for code formatting and linting
      
      * docs update
      
      * center align the title
      
      * lint fix
      
      * add ignore
      
      * Add .gitignore for 3rdparty directory
      
      * Add requirements-dev.txt, requirements-test.txt, and requirements.txt
      
      * 3rdparty
      
      * Add gemm.h, CMakeLists.txt, _ffi_api.py, __init__.py, runtime.h, reduce.h, loop_partition.h, utils.h, and loop_vectorize.h
      
      * Refactor CMakeLists.txt and include statements
      
      - Update CMakeLists.txt to use a newer version of CMake and add project name
      - Remove unnecessary include directories
      
      Fix include paths in layout.cc, codegen.cc, codegen.h, rt_mod.cc, frontend_legalize.cc, inject_pipeline.cc, layout_inference.cc, loop_vectorize.cc, and lower_tile_op.cc
      
      - Update include paths to use relative paths instead of absolute paths
      
      * Update submodule for 3rdparty/tvm
      
      * update
      
      * load dll first
      
      * Refactor CMakeLists.txt and include statements
      
      * Refactor CMakeLists.txt and include statements
      
      * git keep update
      
      * Refactor CMakeLists.txt and include statements
      
      * Refactor CMakeLists.txt and include statements
      
      * refactor code structure
      
      * Update Readme
      
      * CMakeLists Customized
      
      * update readme
      
      * update README
      
      * update readme
      
      * update usage
      
      * with TVM_IMPORT_PYTHON_PATH to handle own tvm build python import
      
      * annotate lower transform global func with `transform` prefix
      
      * Migrate Simplify Pass from tilelang tvm branch
      
      * enhance system environment handling with __init__ and CMake
      
      * Initial commit
      
      * CODE_OF_CONDUCT.md committed
      
      * LICENSE committed
      
      * README.md committed
      
      * SECURITY.md committed
      
      * SUPPORT.md committed
      
      * CODE_OF_CONDUCT Commit
      
      * LICENSE Commit
      
      * SECURITY Commit
      
      * SUPPORT Commit
      
      * Modify Support
      
      * Update README.md
      
      * security ci update
      
      * remove examples
      
      * Update and implement clang-format
      
      * add composable kernel components
      
      * Migrate from latest update
      
      * submodule update
      
      * Test update
      
      * Update License
      
      * Spell check
      
      * lint fix
      
      * add clang-tidy to apply static analysis for c source
      
      * update tilelang examples
      
      * Update Install Docs
      
      * Refactor filetree
      
      * Enhance Install
      
      * conflict resloved
      
      * annotate_version
      
      * Initial Update
      
      * test fix
      
      * install
      
      * Implement setup.py
      
      * lint fix
      
      * Separate Init
      
      * Separate test
      
      * docker file commit
      
      * add logo
      
      * Update Readme and Examples
      
      * update readme
      
      * update logo
      
      * Implement AMD Installation
      
      * Add License
      
      * Update AMD MI300x Benchmark
      
      * update README
      
      * update mi300 benchmark scripts
      
      * update ignore
      
      * enhance build scirpt
      
      * update image
      
      * enhance setup.py to remove duplicated libraries
      
      * remove debug files
      
      * update readme
      
      * update image
      
      * update gemm examples
      
      * update flashattention README
      
      * readme update
      
      * add cmake into requirements
      
      * libinfo fix
      
      * auto update submodule
      
      * lint fix
      
      * Fix AMD Build and Test
      
      * Update check for transpose attribute for CDNA Arch
      
      * typo fix for amd
      
      * Implement Matmul Benchmark
      
      * Refactor Code
      
      * [TypoFix] Fix GEMM Example
      
      * [Docs] Init Linear Attention README
      
      * [TYPO] Typo fix
      
      * [Lint] Lint Fix
      
      * enhance example with intrinsics
      
      * [Enhancement] Improve Buffer Collection during IR Parser
      
      * [Dev] Introduce Current classmethod to get current frame
      
      * submodule update
      
      * fake test pass update
      
      * support thread_extent_api
      
      * code optimize
      
      * Add GEMM function implementation for matrix multiplication
      
      * Update logging format to reflect TileLang in logger messages
      
      * Refactor CMakeLists.txt for improved readability and set default build type to Release
      
      * Support Gemm SS Primitives Implementation
      
      * [README] Upload Tile Language Logo (#5)
      
      * update logo
      
      * Update README.md to enhance formatting and center the title
      
      ---------
      Co-authored-by: default avatarmicrosoft-github-operations[bot] <55726097+microsoft-github-operations[bot]@users.noreply.github.com>
      Co-authored-by: default avatarMicrosoft Open Source <microsoftopensource@users.noreply.github.com>
      Co-authored-by: default avatarYu Cheng <yu.cheng@pku.edu.cn>
      57ab687c