1. 12 Dec, 2025 1 commit
  2. 01 Dec, 2025 1 commit
    • botbw's avatar
      [Language] support `T.gemm_sp_v2` on sm80 and sm89 (#1056) · 283a9a00
      botbw authored
      * [misc] add a cpp side wrapper for gemm_sp_py
      
      * [misc] typing
      
      * [IR] bind GemmSPWarpPolicy
      
      * [chore] add wrapper code
      
      * [IR] fix GemmSPWarpPolicy
      
      * [codegen] apply ptxas instructions
      
      * [intrinsic] add typical (unused) mma layout
      
      * [template] add uint16 debug func
      
      * [intrinsic] add b matrix layout
      
      * [gemm_sp] enable fp16/bf16 on sm8x
      
      * [layout] refactor fp16/bf16 layout
      
      * [gemm_sp] enable int8
      
      * [chore] update test case dtype
      
      * [gemm_sp] enable fp32
      
      * [layout] refactor layouts
      
      * [intrinsic] enable ldmatrix for mat A
      
      * [layout] enable ldsm for matrix b
      
      * [layout] add ldmatrix for fp32 and fp8
      
      * [chore] refine
      
      * [chore] refactor
      
      * [chore] add fp8 efactor
      
      * [chore] refactor
      
      * [chore] add remove negative zero util
      
      * [example] add a custom compress kernel
      
      * [chore] minor update
      
      * [test] refactor gemm_sp test
      
      * [refactor] make metadata layout func
      
      * [example] add option for using cutlass layout
      
      * [doc] add a gemm_sp doc
      
      * [doc] minor polish
      
      * [chore] remove unused
      
      * [bugfix] fix non replicate b case
      
      * [test] refactor
      
      * [chore] add a check
      
      * [bugfix] fix util bug
      
      * [wip] init a new test case for v2
      
      * [chore] minor refactor
      
      * [chore] minor update
      
      * [bugfix] enable 16bit rs
      
      * [language] enable rs
      
      * [language] enable gemm_sp_sr
      
      * [language] enable gemm_sp_rr
      
      * [test] enable more tests
      
      * [tvm] update ffi binding
      
      * [chore] remove print
      
      * [chore] fix benchmark script
      
      * [lint] precommit lint
      
      * [chore] apply feedback
      
      * [test] use arch 8.0
      
      * [chore] rollback ::ordered_metadata for backward compatibility
      
      * [bugfix] fix captialized
      
      * [example] keep gemm_sp on hopper
      
      * [test] fix no fp8 normal kernel
      
      * [test] reduce matmul size to satisfy accum error
      
      * [test] use cal_diff for assertion
      
      * [bugfix] expand float8 type
      
      * [lib] add make_int4 for short type
      
      * [language] add transpose E
      
      * [bugfix] fix wrong var
      
      * [format] format
      
      * [chore] refactor binding
      
      * [chore] fix wrong passing var
      283a9a00
  3. 26 Nov, 2025 1 commit
  4. 17 Nov, 2025 1 commit
  5. 27 Oct, 2025 1 commit
  6. 22 Oct, 2025 2 commits
  7. 19 Oct, 2025 2 commits
  8. 15 Sep, 2025 1 commit
    • botbw's avatar
      [feat] support gemm_sp for ampere and ada arch (#691) · 0b3683bf
      botbw authored
      
      
      * [feat] add an example mma atom
      
      * [fix] fix typo naming
      
      * [feat] add a template to enable compilation
      
      * [feat] add print util
      
      * [WIP] pass on single block tile
      
      * [feat] add sm80 metadata layout
      
      * [chore] clean codebase
      
      * [CI] format.sh
      
      * [feat] add sm80 compress utils
      
      * [bugfix] fix C fragment layout
      
      * [refactor] use nvcc version instead of str
      
      * [test] add test cases
      
      * [chore] add a param check
      
      * [chore] format a bit
      
      * [chore] rename func to satisfy PEP 8 and appease gemini
      
      * [chore] add check
      
      * [feat] support sm75 layout && add assertion && chore
      
      * [bug] fix illegal memory access when using two warps over N=32
      
      This could be a missing check related to cutlass 2.x implementation.
      Using the cutlass example can't trigger this cause it's bypassed by
      padding the input.
      
      For now I think it might be safe to increase the atom size and inve-
      sgate in the future.
      
      * [chore] add example
      
      * [chore] format
      
      * [example] update benchmark
      
      * [bugfix] fix namespace and format
      
      * [bugfix] fix incorrect param passing
      
      * [refactor] update variable declaration for clarity in gemm_layouts and gemm_sp
      
      * [Cleanup] Remove unnecessary blank lines in metadata layout functions in gemm_sp.py
      
      * [CI] fix arch
      
      * [example] add torch sparse benchmark
      
      * [misc] polish && add reference && apply review suggestionsi && format
      
      * [CI] format with clang-tidy
      
      * [Cleanup] Format and align template struct definitions in half.hpp, common.h, and gemm_sp_sm80.h
      
      * [Update] Modify CUDA version requirements in test_gemm_sp_sm80 and mark cutlass subproject as dirty
      
      ---------
      Co-authored-by: default avatarLeiWang1999 <leiwang1999@outlook.com>
      0b3683bf
  9. 13 Sep, 2025 1 commit
  10. 02 Sep, 2025 1 commit
    • Lei Wang's avatar
      [Cache] Introduce detailed target information for the disk kernel cache (#780) · 7ffc5b44
      Lei Wang authored
      * Fix type hint for target_host parameter in compile function to allow None value
      
      * Refactor target handling in compile function to utilize determine_target for improved clarity and consistency
      
      * Update PrintConst function in codegen_cuda.cc to use hexfloat format for bfloat16 and float8/float4 types, while adding scientific notation comments for clarity. This change enhances the representation of floating-point constants in the generated code.
      
      * Refactor PrintType function in codegen_cuda.cc to remove unnecessary failure conditions for floating-point types with lane counts greater than 4. This change simplifies the logic and improves code clarity.
      
      * Enhance benchmark_matmul.py to conditionally print Reference TFlops only if ref_latency is not None. Update param.py to ensure target is converted to string for consistency. Refactor tuner.py to utilize determine_target for improved clarity in target handling.
      
      * Remove automatic commit and push step from AMD and NVIDIA CI workflows to streamline the process and avoid unnecessary commits.
      7ffc5b44
  11. 22 Aug, 2025 1 commit
    • Lei Wang's avatar
      [Refactor] Merge bulk copy into copy and improve layout inference for bulk copy (#746) · 5c11d245
      Lei Wang authored
      * [Refactor] Merge bulk copy into copy and refactor layout inference for bulk copy
      
      * Deleted the `bulk_copy` operator implementation and its header file as it is no longer needed.
      * Introduced a new function `cuTensorMapType()` to return the data type for CUDA tensor mapping.
      * Updated related files to reflect these changes, ensuring that the codebase remains clean and maintainable.
      
      * lint fix
      
      * Fix typos in intrinsic names and remove unused print statement in block_sparse_attn_tilelang.py. Updated references from `ptx_ldmatirx` to `ptx_ldmatrix` across multiple files for consistency.
      
      * remove bulk copy
      
      * Refactor copy and atomic add operations to support TMA lower configuration
      
      - Updated `GetCopyInst` to accept a `disable_tma_lower` parameter, allowing for conditional usage of TMA in bulk load/store operations.
      - Modified `Lower` method in `Copy` to incorporate the new TMA configuration.
      - Refactored `AtomicAdd::Lower` to streamline layout inference and vectorization logic.
      - Removed unused `disable_tma_lower` field from `LowerArgs` structure for clarity.
      - Enhanced atomic add vectorization by replacing the buggy implementation with a more robust loop vectorization approach.
      
      * Enhance TMA bulk copy logic in `LowerBulkCopy` method
      
      - Added a condition to set `desc.swizzle` to `CU_TENSOR_MAP_SWIZZLE_NONE` when `shared_layout` matches `linear_layout`, improving clarity in layout handling.
      - Updated warning log to provide more detailed information about fallback scenarios, including source and destination buffer names and shapes, enhancing debugging capabilities.
      
      * lint fix
      
      * Remove fallback logging for non-swizzled global layout in `LowerBulkCopy` method to streamline the bulk copy logic. This change enhances code clarity by eliminating unnecessary warning messages related to inner box dimensions.
      
      * Enhance reshape kernel compilation in `run_reshape` and `run_reshape_smem_1d_2_2d` functions
      
      - Updated the `tl.compile` method to include `pass_configs` that disable TMA lower and warp specialization, addressing shared memory layout transformation limitations.
      - Added TODO comments to indicate the need for further improvements in shared memory handling.
      
      * Update `native_sparse_attention` function to include TMA configuration options
      
      - Added `pass_configs` to the JIT decorator to disable TMA lower and warp specialization, addressing potential issues with shared memory layout transformations.
      - Updated comments to clarify modifications in tensor shapes for inference, specifically setting `q` sequence length to 1.
      
      * Refactor JIT decorator formatting in `native_sparse_attention` function
      
      - Improved readability by reformatting the JIT decorator parameters for `native_sparse_attention`, ensuring consistent style across the codebase.
      - No functional changes were made; this update focuses on code clarity and maintainability.
      
      * Enhance thread management and logging in TileLang compilation
      
      - Added a method to check if printing is enabled during compilation, improving control over logging behavior.
      - Updated the JIT kernel class to utilize the new method for logging compilation status, ensuring consistent and clear output.
      - Added comments to clarify the purpose of changes and improve code readability.
      
      * Add warp specialization scope and refactor register management in TileLang
      
      - Introduced a new constant `kWarpSpecializationScope` in `builtin.h` for better attribute management.
      - Removed the `SetMaxNRegCollector` class and its related logic from `warp_specialized_rewriter.cc`, streamlining the warp specialization process.
      - Added functions `annotate_producer_reg_dealloc` and `annotate_consumer_reg_alloc` in `builtin.py` to facilitate register management.
      - Implemented `AnnotateWarpGroupRegAlloc` in `__init__.py` to inject register allocation calls into warp-specialized functions, enhancing the overall register handling in the compilation process.
      
      * Refactor test for InjectSetMaxNReg pass in TileLang
      
      - Improved readability by restructuring conditional checks and assertions in the test cases.
      - Enhanced clarity in the collection of `set_max_nreg` calls by simplifying the logic.
      - Ensured consistent formatting and spacing throughout the test functions for better maintainability.
      
      * Enhance bulk copy and store checks in `Copy` class
      
      - Updated scope validation for source and destination tensors in `CheckBulkLoad` and `CheckBulkStore` methods to include both `shared.dyn` and `shared` as valid options.
      - Modified `CheckLDSMCopy` and `CheckSTSMCopy` methods to accommodate the new scope validation, ensuring compatibility with shared memory configurations.
      - Improved logging in `LowerBulkCopy` to provide clearer warnings regarding unsupported swizzle layouts, including source and destination names for better debugging.
      
      * lint fix
      5c11d245
  12. 15 Aug, 2025 2 commits
  13. 30 Jul, 2025 1 commit
    • Siyuan Feng's avatar
      Refactor to support upstream tvm (#595) · a7c9a8b9
      Siyuan Feng authored
      
      
      **Summarize part of the rebase pr:**
      
      1. **Support T.thread_return() → CUDA return syntax**  
         Added support for translating `T.thread_return()` to CUDA's native `return` statement.
      
      2. **Dynamic type support for function inputs**  
         Functions now accept dynamically typed parameters using `typing`:
         ```python
         dyn_type = T.int32 or T.float
         @T.prim_func
         def main(
             a: dyn_type,
         )
         ```
      
      3. **Device Function Codegen**  
         Added support for generating `__device__` functions in CUDA:
         ```python
         @I.ir_module
         class Module:
             @T.prim_func(private=True)
             def add(a: T.int32, b: T.int32) -> T.int32:
                 return a + b
      
             @T.prim_func
             def main(
                 A: T.Buffer((128, 128), "int32"),
                 B: T.Buffer((128, 128), "int32"),
                 C: T.Buffer((128, 128), "int32"),
             ):
                 T.func_attr({"global_symbol": "main"})
                 length: T.int32 = Module.add(64, 64)  # Host call
                 for bx in T.thread_binding(length, "blockIdx.x"):
                     for tx in T.thread_binding(length, "threadIdx.x"):
                         C[bx, tx] = Module.add(A[bx, tx], B[bx, tx])  # Device call
         ```
         After compilation, `add` becomes a CUDA `__device__` function.
      
      4. **Cython-based Python/C++ interop**  
         Replaced ctypes with Cython for all Python/C++ interactions:
         - Python → C++ calls
         - C++ → Cython calls  
         This improves performance by around 100x and reduces CPU overhead during compile/runtime.
      
      5. **FP8 data type standardization**  
         Migrated `e5m2_float8` and similar types to Torch-standardized variants`float8_e5m2` and etc.
      
      
      
      * Refactor CMakeLists.txt to set default build type and manage dependencies for tvm_cython modules
      
      * Update default value of `check_well_formed` parameter in `prim_func` to False for improved flexibility in TIR function parsing.
      
      * Add StorageRewrite function to transform module
      
      Introduced the StorageRewrite function in the tilelang.transform module, which returns a TVM transform pass. This addition enhances the functionality of the module by providing a new transformation option for users.
      
      * Refactor null option handling in IR and layout inference
      
      - Updated instances of `NullOpt` to `std::nullopt` in `ir.cc` and `parallel.cc` for consistency with modern C++ practices.
      - Enhanced layout inference logic in `layout_inference.cc` to improve type safety by replacing `as<Fragment>().get()` with `as<FragmentNode>()`.
      - Adjusted error handling in `multi_version_buffer_rewriter.cc` and `persist_threadblock.cc` to use more concise null checks.
      - Cleaned up test files by commenting out `tilelang.testing.main()` and replacing it with specific test function calls for better clarity.
      - Removed unused test file `test_tilelang_kernel_deepseek_nsa.py` to streamline the testing suite.
      
      * Update TVM subproject and refactor cluster planning and tile operation handling
      
      - Updated the TVM subproject to a dirty commit state.
      - Refactored copyright headers in `cluster_planning.cc` to reflect the new licensing.
      - Enhanced error handling in `lower_tile_op.cc` to check for missing padding map annotations.
      - Modified test files to improve clarity and functionality, including adjustments to kernel compilation and test assertions.
      - Updated various test cases to ensure proper handling of annotations and configurations in the TileLang testing framework.
      
      * Update annotation type in warp specialized test for consistency
      
      - Changed the annotation type in the `test_warp_specialized` function from a literal integer to `T.int32(3)` for improved type safety and consistency with the TileLang framework.
      
      * Refactor test execution in warp specialized test
      
      - Replaced the direct call to `test_warp_specialized()` with `tilelang.testing.main()` in the test file to standardize test execution and improve integration with the TileLang testing framework.
      
      * refactor
      
      * [Enhancement] Add strict layout map for improved buffer layout inference (#594)
      
      - Introduced a `strict_layout_map` to enhance layout inference by ensuring that buffers with strict layout requirements are properly accounted for during the inference process.
      - Updated the inference logic to check for the presence of buffers in the `strict_layout_map` before applying layout changes, improving the accuracy of layout assignments.
      - Refactored the layout inference steps to include the copying of layouts into the new strict map, ensuring a clear separation of layout handling based on inference levels.
      
      * [Example] Update examples to use @tilelang.jit (#597)
      
      * [Example] Update kernel compilation in examples to use @tilelang.jit
      
      - Refactored multiple examples to eliminate the use of `tilelang.compile` for kernel creation, directly invoking the functions instead.
      - Added `@tilelang.jit` decorators with appropriate output indices to enhance performance and maintainability.
      - Improved code clarity by simplifying the kernel invocation process across various examples, ensuring consistency in how kernels are defined and executed.
      
      * format
      
      * Update example_tilelang_sparse_gqa_decode_varlen_indice.py
      
      * Update example_dequant_gemm_fine_grained.py
      
      * Update example_gemm_autotune.py
      
      ---------
      Co-authored-by: default avatarLei Wang <34334180+LeiWang1999@users.noreply.github.com>
      
      * [Enhancement] Refine error messaging in LowerBulkCopy for global and shared range checks (#599)
      
      * [Enhancement] Improve error messaging for global and shared range legality checks in LowerBulkCopy
      
      - Updated error messages in the LowerBulkCopy function to provide clearer context when global and shared ranges are illegal.
      - Enhanced the readability of the error output by including tensor names, improving debugging and validation processes during bulk copy operations.
      
      * [Enhancement] Refine error messaging in LowerBulkCopy for global and shared range checks
      
      - Improved the clarity of error messages in the LowerBulkCopy function by enhancing the output format.
      - Included additional context in error messages to aid debugging when global and shared ranges are found to be illegal, ensuring better traceability during bulk copy operations.
      
      * [Enhancement] Introduce PassConfig `TL_ENABLE_AGGRESSIVE_SHARED_MEMORY_MERGE` to enable aggressive shared memory reuse (#602)
      
      * [Enhancement] Add aggressive shared memory merge option in memory allocation
      
      - Introduced a new configuration option `tl.enable_aggressive_shared_memory_merge` to enable aggressive merging of shared memory allocations.
      - Updated the `SharedMemLinearAccessPatternFinder` class to support an aggressive merge strategy, allowing for improved memory reuse.
      - Modified the `MergeSharedMemoryAllocations` function to incorporate the new merging strategy based on the configuration.
      - Enhanced the `PassConfigKey` enumeration to include the new aggressive merge option, ensuring it can be configured appropriately.
      
      * lint fix
      
      * [Enhancement] Add aggressive shared memory merge configuration option
      
      - Introduced a new configuration option `kEnableAggressiveSharedMemoryMerge` to enable aggressive merging of shared memory allocations, enhancing memory management capabilities.
      
      * [Enhancement] Update MergeSharedMemoryAllocations to support aggressive merge option
      
      - Modified the `MergeSharedMemoryAllocations` function to accept an `enable_aggressive_merge` parameter, allowing for more flexible memory management.
      - Introduced a new helper function `should_enable_aggressive_merge` to determine the aggressive merge configuration based on the pass context and target.
      - Updated the relevant calls in the `phase.py` and `__init__.py` files to utilize the new aggressive merge functionality, enhancing the overall memory allocation strategy.
      
      * [Refactor] Update accumulation handling in gemm_sm90.h (#603)
      
      - Replaced the use of `tiled_mma.accumulate_ = GMMA::ScaleOut::Zero` with a call to `clear(acc)` for better clarity and maintainability in the accumulation logic.
      - This change enhances the readability of the code by standardizing the approach to clearing accumulation values across multiple sections of the file.
      
      * [Enhancement] Add tma bulk copy. (#600)
      
      * [Bugfix] Fixed mha_bwd shape inconsistency error (#604)
      
      * lint fix
      
      * Update requirements-lint.txt to maintain clang-format version consistency
      
      * [Bugfix] Avoid duplicate data access when cross thread buffer meet replicate register (#606)
      
      * [Enhancement] Improve debug output formatting in layout and fragment nodes
      
      - Updated the `DebugOutput` methods in `LayoutNode` and `FragmentNode` to provide more structured and informative output, including transformation details and thread range information.
      - Enhanced layout inference logic in `ParallelOp` to add predicates for cross-thread shared memory access, improving layout handling in parallel operations.
      - Minor adjustment in `layout_inference.cc` to ensure clarity in parallel loop handling.
      
      * lint fix
      
      * [Enhancement] Support tf32 gemm_rs (#607)
      
      - Added a line break in `quickstart.py` for better readability.
      - Simplified the JIT kernel compilation in `quickstart.py` by removing the unused execution backend option.
      - Modified `example_elementwise_add.py` to disable cache for `tilelang` and optimized the element-wise addition kernel by utilizing shared memory for input tensors, improving performance.
      - Updated default values for matrix dimensions and block sizes in the argument parser to enhance usability.
      
      * [Enhancement] Introduce option `TL_DISABLE_FAST_MATH` and `TL_ENABLE_PTXAS_VERBOSE_OUTPUT` (#609)
      
      * [Enhancement] Introduce new PassConfig options for fast math and PTXAS verbosity
      
      - Added `kDisableFastMath` and `kEnablePTXASVerboseOutput` configuration options to enhance control over compilation settings.
      - Updated `LibraryGenerator` to utilize these new pass configurations, allowing for more flexible compilation behavior based on user preferences.
      - Enhanced `PassConfigKey` enumeration to include the new options, ensuring they can be configured appropriately in the pass context.
      
      * [Refactor] Update PTXAS verbosity configuration key in LibraryGenerator
      
      - Changed the configuration key for PTXAS verbosity from `TL_VERBOSE_PTXAS_OUTPUT` to `TL_ENABLE_PTXAS_VERBOSE_OUTPUT` to align with the new naming convention introduced in recent enhancements.
      - This update ensures consistency in the configuration options used within the `LibraryGenerator` class, improving clarity and maintainability of the code.
      
      * lint fix
      
      * fix build
      
      * [Experimental][Language] add `T.GEMM_SP` for sm90 sparse tensor core (#526)
      
      * [experimental] add a draft gemm_sp
      
      * [3rdparty] bump cutlass to v3.9.3
      
      * [lint] run format.sh
      
      * [chore] rebase
      
      * [chore] use abs path
      
      * [gemm_sp] add metadata layout
      
      * [ci] add more example
      
      * [lint] run format.sh
      
      * [chore] polish
      
      * [chore] move gemm_sp to experimental
      
      * [chore] polish
      
      * [lint] run format.sh
      
      * [Enhancement] Improve bulk copy handling and update GEMM sparse tensor test
      
      * Added a warning log for unsupported non-swizzled global layouts in the bulk copy operation, ensuring fallback to normal copy.
      * Refactored the GEMM sparse tensor test by removing unnecessary imports and simplifying the kernel compilation process.
      * Updated the test to directly call the `run_gemm_sp` function, enhancing clarity and functionality.
      
      * Implement Test
      
      * [Enhancement] Update GEMM SP and SM89 templates for improved functionality
      
      * Refactored GEMM SP computation to enhance warp partitioning logic, ensuring compatibility with Hopper architecture.
      * Updated layout inference to support new WGMMA conditions and improved error messaging for unsupported targets.
      * Modified SM89 templates to utilize new MMA atom structures, enhancing performance and compatibility with fp8 types.
      * Added conditional inclusion for GEMM SP header based on CUDA architecture version.
      
      * lint fix
      
      * [gemm_sp] support more layout and data types
      
      * Enhancement: sync T.gemm_sp's layout inference with T.gemm
      
      * Enhancement: support more block_k in compress util
      
      * [Enhancement] enable block_k=64
      
      * [Lint] run format.sh
      
      * [Enhancement] compressor support more dtype
      
      * Enhancement: enable block_K=32
      
      * [Lint] format.sh
      
      * [Fixbug] fix shape
      
      * Refactor: sync gemm
      
      * [Enhancement] enable transpose
      
      * [Enhancement] enable fp8_e4m3
      
      * [Enhancement] enable int8
      
      * [Lint] run format.sh
      
      * [Benchmark] add gemm_sp benchmark
      
      * [Example] fix 256 threads hang
      
      * [CI] fix ci
      
      * [Chore] resolve gemini feedback
      
      * [Benchmark] increase search space
      
      * [Lint] format
      
      * [CI] skip sparse tensor core related tests as only sm90 is supported
      
      * [CI] pass local run
      
      * Update gemm_sm89.h
      
      * lint fix
      
      * lint fix
      
      * [Enhancement] Add support for sparse GEMM and initialize CUDA architecture flags
      
      - Introduced a new boolean flag `enable_sparse_gemm_` to control the inclusion of sparse GEMM functionality in CUDA code generation.
      - Updated the `Finish` method to conditionally include the sparse GEMM header based on the new flag.
      - Implemented logic in `VisitStmt_` to enable sparse GEMM when the corresponding external call is detected.
      - Added a function to initialize the `TORCH_CUDA_ARCH_LIST` environment variable based on the target compute version, enhancing compatibility with PyTorch.
      - Refactored the initialization function into the appropriate module and ensured it is called in the sparse utilities module.
      
      * Update test_compress_utils.py
      
      ---------
      Co-authored-by: default avatarLeiWang1999 <leiwang1999@outlook.com>
      Co-authored-by: default avatarLei Wang <34334180+LeiWang1999@users.noreply.github.com>
      
      * [Doc] Phaseout Legacy documentations (#610)
      
      - Added a new entry in the README for the introduction of `T.gemm_sp` supporting 2:4 sparse tensor core.
      - Removed several outdated documentation files related to convolution, flash attention, and other tutorials to streamline the documentation structure.
      
      * [Refactor] Phaseout Pass ParallelLoopTransformer (#611)
      
      * Refactor layout inference by removing the ParallelLoopTransformer class. Updated layout inference logic to streamline buffer access collection and condition handling in parallel loops. This change simplifies the code structure and enhances maintainability.
      
      * Update MHA backward test cases to use reduced dimensions for batch size and context length
      
      * fix build
      
      * [Enhancement] Update ReduceOp initialization values for integer types (#614)
      
      * [Enhancement] Update ReduceOp initialization values for integer types
      
      - Modified the `MakeInitValue` method in `ReduceOp` to handle integer data types correctly by returning appropriate minimum and maximum values based on the bit width.
      - Added checks for integer types to ensure correct initialization for `kMax` and `kMin` reduction types, enhancing the robustness of the reduction operations.
      
      * [Enhancement] Update ReduceOp to handle unsigned integer initialization values
      
      - Enhanced the `MakeInitValue` method in `ReduceOp` to include support for unsigned integer data types.
      - Added conditions to return appropriate initialization values for `kMax` and `kMin` reduction types based on the data type, improving the robustness of reduction operations.
      
      * Bump transformers from 4.50.0 to 4.51.0 in /examples/bitnet-1.58b (#615)
      
      Bumps [transformers](https://github.com/huggingface/transformers) from 4.50.0 to 4.51.0.
      - [Release notes](https://github.com/huggingface/transformers/releases)
      - [Commits](https://github.com/huggingface/transformers/compare/v4.50.0...v4.51.0
      
      )
      
      ---
      updated-dependencies:
      - dependency-name: transformers
        dependency-version: 4.51.0
        dependency-type: direct:production
      ...
      Signed-off-by: default avatardependabot[bot] <support@github.com>
      Co-authored-by: default avatardependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
      
      * [Refactor] refactor autotune examples (#617)
      
      * [Refactor] Update tilelang kernel functions and remove unused imports
      
      - Refactored the `flashattn_fwd`, `flashattn_bwd_preprocess`, and `flashattn_bwd_postprocess` functions to utilize direct kernel calls instead of cached versions, improving clarity and performance.
      - Added `@tilelang.jit` decorators with specified output indices to enhance kernel compilation.
      - Removed unused import of `cached` from `tilelang`, streamlining the code.
      - Commented out the main testing function call in `test_tilelang_kernel_mha_bwd.py` for potential future use.
      
      * [Refactor] Simplify configuration generation in benchmark and example scripts
      
      - Refactored the `get_configs` functions in multiple benchmark and example scripts to utilize a dictionary-based approach for parameter configuration, improving readability and maintainability.
      - Updated the `flashattn` and `chunk_scan_fwd` functions to directly accept configuration parameters, enhancing flexibility in kernel tuning.
      - Removed redundant code and streamlined the configuration generation process across various files, ensuring consistency in how configurations are defined and utilized.
      
      * [Refactor] Update configuration handling in benchmark scripts
      
      - Refactored the `get_configs` functions in benchmark scripts to accept a variable argument list, improving flexibility in configuration management.
      - Enhanced the `matmul` and `flashattn` functions to utilize the updated configuration approach, streamlining parameter handling for kernel tuning.
      - Added `@autotune` decorators to relevant functions, ensuring consistent autotuning behavior across benchmarks.
      - Cleaned up redundant code and improved overall readability in the affected files.
      
      * [Refactor] Clean up formatting and update subproject commit
      
      - Updated the subproject commit reference in the TVM directory to indicate a dirty state.
      - Removed unnecessary blank lines and improved formatting in the `benchmark_matmul` and `benchmark_matmul_fp8` scripts for better readability.
      - Streamlined the function definitions in the `flashattn` example script to enhance clarity and maintainability.
      
      * [Refactor] Update AutoTuner configuration handling
      
      - Modified the AutoTuner class to check if kernel parameters are set before processing tunable arguments, improving robustness in configuration handling.
      - Enhanced the logic for skipping compilation when tunable parameters are already provided, ensuring efficient use of resources.
      - Updated comments for clarity and maintainability.
      
      * lint fix
      
      * Update TVM subproject commit to indicate dirty state and modify MHA backward test cases
      
      - Updated the subproject commit reference in the TVM directory to reflect a dirty state.
      - Adjusted the `test_mha_bwd` function to use a new configuration for the MHA backward tests, changing the context size from 128 to 256.
      - Uncommented the main testing function call for potential execution.
      
      * lint fix
      
      * Bump transformers from 4.51.0 to 4.52.1 in /examples/bitnet-1.58b (#619)
      
      Bumps [transformers](https://github.com/huggingface/transformers) from 4.51.0 to 4.52.1.
      - [Release notes](https://github.com/huggingface/transformers/releases)
      - [Commits](https://github.com/huggingface/transformers/compare/v4.51.0...v4.52.1
      
      )
      
      ---
      updated-dependencies:
      - dependency-name: transformers
        dependency-version: 4.52.1
        dependency-type: direct:production
      ...
      Signed-off-by: default avatardependabot[bot] <support@github.com>
      Co-authored-by: default avatardependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
      
      * Fix PTXAS options flag in LibraryGenerator for consistency (#620)
      
      * Refactor FP8 type handling across multiple files to standardize usage of "float8_e4m3" and "float8_e5m2" instead of "e4m3_float8" and "e5m2_float8". This includes updates in benchmarks, examples, tests, and internal utilities.
      
      * [Refactor] Add parallel loop transform pass for condition extraction (#618)
      
      * [Refactor] Add parallel loop transform
      
      * done format check
      
      * pull 3rdparty repo
      
      * Refactor loop variable handling in transformation utilities
      
      - Updated the logic in `loop_parallel_transform_utils.h` to simplify the handling of related loop variables.
      - Removed the check that enforced a single related loop variable, replacing it with a return statement when multiple variables are detected, enhancing clarity and maintainability of the transformation process.
      
      * Update loop_parallel_transform_utils.h
      
      * Refactor loop variable handling in transformation utilities
      
      - Enhanced the logic in `loop_parallel_transform_utils.h` to improve clarity and maintainability by simplifying the handling of related loop variables.
      - Replaced the previous enforcement of a single related loop variable with a return statement for multiple variables detected.
      
      * remove disable cache flag as commit id has been key component
      
      * lint fix
      
      ---------
      Co-authored-by: default avatarLeiWang1999 <leiwang1999@outlook.com>
      Co-authored-by: default avatarLei Wang <34334180+LeiWang1999@users.noreply.github.com>
      
      * [Dev] Update linear attention examples to enhance performance on Hopper GPUs (#621)
      
      * Tune linear attention examples on H100
      
      * Add retnet fwd kernel
      
      * fix lint
      
      * [Enhancement] Add ahead of time cython compilation in setup.py (#622)
      
      * [Enhancement] Add Cython support and compiler detection in setup.py
      
      - Introduced a new `CythonExtension` class for building Cython-based extensions, enhancing the build process for Cython projects.
      - Implemented functions to detect the Cython compiler and C++ compiler, improving compatibility and user experience.
      - Updated the build process to handle Cython extensions alongside CMake extensions, ensuring a seamless integration for users.
      - Added caching mechanisms for Cython compilation to optimize build times and reduce unnecessary recompilation.
      
      * [Enhancement] Add Cython dependency and enable CMake extension building
      
      - Added Cython as a required dependency in `pyproject.toml` to support Cython-based extensions.
      - Updated `setup.py` to enable building CMake extensions, improving the build process for projects utilizing both Cython and CMake.
      - Modified the Cython compiler detection logic to streamline installation instructions for users.
      
      * [Enhancement] Support more flexible layout host pythonic expr (#623)
      
      * [Refactor] Enhance expression handling in utils.py and update wrapper to use pythonic_expr
      
      - Added support for additional TIR expressions (FloorDiv, Min, Max, Add, Sub, FloorMod) in the pythonic_expr function to improve string representation.
      - Replaced the deprecated legalize_c function calls in TLCUDASourceWrapper and TLCPUSourceWrapper with pythonic_expr for better expression handling in kernel launch code.
      
      * [Refactor] Simplify expression handling in pythonic_expr function
      
      - Consolidated binary and min/max operation handling in the pythonic_expr function to improve readability and maintainability.
      - Replaced individual checks for binary operations with a mapping approach, streamlining the code and enhancing performance in expression representation.
      
      * [Enhancement] Improve expression representation in pythonic_expr function
      
      - Added operator precedence handling to the pythonic_expr function, enhancing the conversion of TVM PrimExpr to Python-style strings.
      - Updated the visitor logic to intelligently add parentheses based on operator precedence, improving the accuracy of expression representation.
      - Included a docstring for better clarity on the function's purpose and usage.
      
      * test fix
      
      * [Enhancement] support composable expression for shape with symbolic vars (#624)
      
      * [Refactor] Enhance expression handling in utils.py and update wrapper to use pythonic_expr
      
      - Added support for additional TIR expressions (FloorDiv, Min, Max, Add, Sub, FloorMod) in the pythonic_expr function to improve string representation.
      - Replaced the deprecated legalize_c function calls in TLCUDASourceWrapper and TLCPUSourceWrapper with pythonic_expr for better expression handling in kernel launch code.
      
      * [Refactor] Simplify expression handling in pythonic_expr function
      
      - Consolidated binary and min/max operation handling in the pythonic_expr function to improve readability and maintainability.
      - Replaced individual checks for binary operations with a mapping approach, streamlining the code and enhancing performance in expression representation.
      
      * [Enhancement] Improve expression representation in pythonic_expr function
      
      - Added operator precedence handling to the pythonic_expr function, enhancing the conversion of TVM PrimExpr to Python-style strings.
      - Updated the visitor logic to intelligently add parentheses based on operator precedence, improving the accuracy of expression representation.
      - Included a docstring for better clarity on the function's purpose and usage.
      
      * test fix
      
      * minor update
      
      * 🐍
      
      Fix the file name "test_exmaple_tilelang_nsa" (#629)
      
      * [Enhancement] Add CPU utilization and count settings for Auto-Tuning (#630)
      
      * [Enhancement] Add CPU utilization and count settings for Auto-Tuning
      
      - Introduced environment variables for CPU utilization, counts, and maximum CPU count for auto-tuning.
      - Updated the AutoTuner class to utilize these new settings, improving flexibility and performance in multi-threaded environments.
      - Enhanced logging to provide better insights into the auto-tuning process based on the configured CPU settings.
      
      * typo fix
      
      * [AutoTune] Support `with set_autotune_inputs` to set auto tuning input tensors (#632)
      
      * [Refactor] Simplify and modularize autotuner implementation
      
      - Removed unused imports and extensive code sections from the autotuner module to enhance readability and maintainability.
      - Modularized the code by introducing new imports for autotuning and capturing functionalities, streamlining the overall structure.
      - Improved logging setup and removed redundant timeout handling functions, focusing on core autotuning logic.
      - Updated the AutoTuner class to better utilize the new modular structure, ensuring efficient performance during auto-tuning processes.
      
      * [Refactor] Clean up and enhance capture and tuner modules
      
      - Improved code readability by removing unnecessary blank lines and organizing imports in `capture.py` and `tuner.py`.
      - Enhanced logging in the `AutoTuner` class to provide clearer warnings regarding the usage of `supply_prog` in the context of auto-tuning.
      - Streamlined the `CaptureStack` class for better thread-local context management.
      
      * lint fix
      
      * [Refactor] Simplify configuration and autotuning logic in blocksparse GEMM example
      
      - Updated `get_configs` function to reduce the number of configurations, enhancing performance and clarity.
      - Removed the `get_best_config` function, integrating its logic directly into the `blocksparse_matmul` function with the `@autotune` decorator for streamlined autotuning.
      - Adjusted the main function to directly utilize the autotuned kernel, simplifying the overall structure and improving readability.
      - Deleted obsolete test file for autotuning decorator, cleaning up the codebase.
      
      * [Refactor] Improve code formatting and readability in autotune test file
      
      - Reformatted the `matmul` function and `get_configs` function for better readability by adjusting line breaks and indentation.
      - Fixed a typo in the `enable_rasteration` parameter name to ensure consistency.
      - Cleaned up unnecessary blank lines to enhance overall code clarity.
      
      * Update example_blocksparse_gemm.py
      
      * Update capture.py
      
      * [Pass] Introduce flag to diable cp async lowering (#633)
      
      * [Enhancement] Update PipelinePlanner to support async copy configuration
      
      - Modified the `Substitute` method in `PipelinePlanner` to accept a `use_async_copy` parameter, allowing for more flexible pipeline planning based on async copy requirements.
      - Updated the constructor of `PipelinePlanner` to initialize the `use_async_copy_` member variable.
      - Adjusted the logic in the pipeline planning process to conditionally apply async copy annotations based on the new parameter.
      - Commented out the `LoopVectorizeDynamic` call in `LowerAndLegalize` to prevent unintended modifications during the legalizing phase.
      
      * Refactor PipelinePlanning function for improved readability
      
      - Adjusted the formatting of the `use_async_copy` variable assignment in the `PipelinePlanning` function to enhance code clarity and maintainability.
      
      * fix typo (#635)
      
      * [Pass][Simplify] Introduce symbolic level simplify for condition expression (#634)
      
      * [Enhancement] Add argument simplification option to StmtSimplifier
      
      - Introduced a new `simplify_arguments` flag in the `StmtSimplifier::Apply` method to control argument simplification behavior.
      - Updated the `Simplify` function to accept the new flag, allowing for enhanced flexibility in the simplification process.
      - Adjusted the `LowerAndLegalize` and `_Simplify` functions to utilize the new argument, ensuring consistent behavior across the codebase.
      - Added comments to clarify the purpose of the new flag and its impact on simplification logic.
      
      * lint fix
      
      * [Enhancement] Improve layout inference and reduce operation handling
      
      - Updated `ParallelOp::InferLayout` to check for pure buffer stores, enhancing layout inference logic.
      - Modified `ReduceOp::Lower` to include all threads in the AllReduce operation, improving performance on specific architectures.
      - Added a TODO comment in `AllReduce` to consider merging synchronization barriers for optimization.
      
      * lint fix
      
      * [Enhancement] Add input validation for GEMM parameters
      
      - Introduced checks to ensure that the dimensions M and N are divisible by their respective warp sizes (kMPerWarp and kNPerWarp) in the Gemm::ComputeWarpPartition method.
      - Added informative error messages to assist in debugging when the input parameters do not meet the required conditions.
      
      * bug fix
      
      * Enhance test coverage by adding LLVM requirement decorator to multiple function call tests. This ensures that tests for argument count, type code, null data pointer, and dimensionality checks are only executed when LLVM is available, improving test reliability and clarity.
      
      * lint fix
      
      * Fix software pipeline stage annotation and update optional config handling in StmtSimplifier
      
      * Add Python executable detection in CMake configuration and update TVM submodule reference. Remove unused vectorization tests for improved clarity.
      
      * Update TVM submodule reference and refactor FFI registration to use static initialization blocks for improved organization and clarity.
      
      * Refactor attribute handling in layout and IR nodes to use reflection registration. This change replaces the VisitAttrs method with a RegisterReflection method for improved clarity and organization across multiple classes, including KernelLaunchFrameNode, WarpSpecializeFrameNode, LayoutNode, FragmentNode, and SwizzledLayoutNode.
      
      * finish rebase
      
      * tvm update
      
      * Refactor FFI registration across tilelang modules to use the updated `tvm.ffi` namespace. This includes changes in various files to replace `tvm._ffi` with `tvm.ffi`, enhancing consistency and clarity in the codebase.
      
      * lint fix
      
      * Update TVM submodule reference and modify CUDA runtime argument handling to use the new runtime constants for improved clarity and consistency.
      
      * lint fix
      
      * Refactor tensor data type references from "e4m3_float8" and "e5m2_float8" to "float8_e4m3" and "float8_e5m2" across multiple files for consistency and clarity.
      
      * lint fix
      
      * Refactor forward_index initialization in Fragment class to default to an empty array instead of None, ensuring consistent handling of optional outputs.
      
      * test fix
      
      * lint fix
      
      * bugfix
      
      * lint fix
      
      * reduce fix
      
      * lint fix
      
      * carver fix
      
      * cast fix
      
      * Update submodule and enhance kernel launch functionality with optional block size parameter; add device kernel launch transformation.
      
      * lint fix
      
      * bugfix
      
      * Refactor test execution in test_tilelang_cpu_gemm.py and enhance device call checks in lower.py to exclude C packed functions from kernel launch conditions.
      
      * lint fix
      
      * Update runtime.cc
      
      * phase out lisence
      
      * Update subproject commit for TVM to 555cc71
      
      * Update subproject commit for TVM to d39953fa
      
      * Update subproject commit for TVM to 9574805f
      
      * Update subproject commit for TVM to a08b7c3
      
      * fix ci
      
      * ci fix
      
      ---------
      Signed-off-by: default avatardependabot[bot] <support@github.com>
      Co-authored-by: default avatarLeiWang1999 <leiwang1999@outlook.com>
      Co-authored-by: default avatarLei Wang <34334180+LeiWang1999@users.noreply.github.com>
      Co-authored-by: default avatarCunxiao Ni <85601223+Cunxiao2002@users.noreply.github.com>
      Co-authored-by: default avatarYuxi Chi <cherichy@outlook.com>
      Co-authored-by: default avatarNathan Chen <120630832+Nathancgy@users.noreply.github.com>
      Co-authored-by: default avatarbotbw <wang1570@e.ntu.edu.sg>
      Co-authored-by: default avatardependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
      Co-authored-by: default avatarxs-keju <93414213+xs-keju@users.noreply.github.com>
      Co-authored-by: default avatarTong WU <109033598+Rachmanino@users.noreply.github.com>
      Co-authored-by: default avatarKadir Nar <kadir.nar@hotmail.com>
      Co-authored-by: default avatarYuqing Xia <35415939+xiayuqing0622@users.noreply.github.com>
      Co-authored-by: default avatarxwhzz <wh.xie@outlook.com>
      
      
      a7c9a8b9
  14. 23 Jul, 2025 1 commit
  15. 08 Jul, 2025 1 commit
    • Lei Wang's avatar
      [Refactor] refactor autotune examples (#617) · d110d087
      Lei Wang authored
      * [Refactor] Update tilelang kernel functions and remove unused imports
      
      - Refactored the `flashattn_fwd`, `flashattn_bwd_preprocess`, and `flashattn_bwd_postprocess` functions to utilize direct kernel calls instead of cached versions, improving clarity and performance.
      - Added `@tilelang.jit` decorators with specified output indices to enhance kernel compilation.
      - Removed unused import of `cached` from `tilelang`, streamlining the code.
      - Commented out the main testing function call in `test_tilelang_kernel_mha_bwd.py` for potential future use.
      
      * [Refactor] Simplify configuration generation in benchmark and example scripts
      
      - Refactored the `get_configs` functions in multiple benchmark and example scripts to utilize a dictionary-based approach for parameter configuration, improving readability and maintainability.
      - Updated the `flashattn` and `chunk_scan_fwd` functions to directly accept configuration parameters, enhancing flexibility in kernel tuning.
      - Removed redundant code and streamlined the configuration generation process across various files, ensuring consistency in how configurations are defined and utilized.
      
      * [Refactor] Update configuration handling in benchmark scripts
      
      - Refactored the `get_configs` functions in benchmark scripts to accept a variable argument list, improving flexibility in configuration management.
      - Enhanced the `matmul` and `flashattn` functions to utilize the updated configuration approach, streamlining parameter handling for kernel tuning.
      - Added `@autotune` decorators to relevant functions, ensuring consistent autotuning behavior across benchmarks.
      - Cleaned up redundant code and improved overall readability in the affected files.
      
      * [Refactor] Clean up formatting and update subproject commit
      
      - Updated the subproject commit reference in the TVM directory to indicate a dirty state.
      - Removed unnecessary blank lines and improved formatting in the `benchmark_matmul` and `benchmark_matmul_fp8` scripts for better readability.
      - Streamlined the function definitions in the `flashattn` example script to enhance clarity and maintainability.
      
      * [Refactor] Update AutoTuner configuration handling
      
      - Modified the AutoTuner class to check if kernel parameters are set before processing tunable arguments, improving robustness in configuration handling.
      - Enhanced the logic for skipping compilation when tunable parameters are already provided, ensuring efficient use of resources.
      - Updated comments for clarity and maintainability.
      
      * lint fix
      
      * Update TVM subproject commit to indicate dirty state and modify MHA backward test cases
      
      - Updated the subproject commit reference in the TVM directory to reflect a dirty state.
      - Adjusted the `test_mha_bwd` function to use a new configuration for the MHA backward tests, changing the context size from 128 to 256.
      - Uncommented the main testing function call for potential execution.
      d110d087
  16. 03 Jul, 2025 1 commit
    • botbw's avatar
      [Experimental][Language] add `T.GEMM_SP` for sm90 sparse tensor core (#526) · be44758c
      botbw authored
      
      
      * [experimental] add a draft gemm_sp
      
      * [3rdparty] bump cutlass to v3.9.3
      
      * [lint] run format.sh
      
      * [chore] rebase
      
      * [chore] use abs path
      
      * [gemm_sp] add metadata layout
      
      * [ci] add more example
      
      * [lint] run format.sh
      
      * [chore] polish
      
      * [chore] move gemm_sp to experimental
      
      * [chore] polish
      
      * [lint] run format.sh
      
      * [Enhancement] Improve bulk copy handling and update GEMM sparse tensor test
      
      * Added a warning log for unsupported non-swizzled global layouts in the bulk copy operation, ensuring fallback to normal copy.
      * Refactored the GEMM sparse tensor test by removing unnecessary imports and simplifying the kernel compilation process.
      * Updated the test to directly call the `run_gemm_sp` function, enhancing clarity and functionality.
      
      * Implement Test
      
      * [Enhancement] Update GEMM SP and SM89 templates for improved functionality
      
      * Refactored GEMM SP computation to enhance warp partitioning logic, ensuring compatibility with Hopper architecture.
      * Updated layout inference to support new WGMMA conditions and improved error messaging for unsupported targets.
      * Modified SM89 templates to utilize new MMA atom structures, enhancing performance and compatibility with fp8 types.
      * Added conditional inclusion for GEMM SP header based on CUDA architecture version.
      
      * lint fix
      
      * [gemm_sp] support more layout and data types
      
      * Enhancement: sync T.gemm_sp's layout inference with T.gemm
      
      * Enhancement: support more block_k in compress util
      
      * [Enhancement] enable block_k=64
      
      * [Lint] run format.sh
      
      * [Enhancement] compressor support more dtype
      
      * Enhancement: enable block_K=32
      
      * [Lint] format.sh
      
      * [Fixbug] fix shape
      
      * Refactor: sync gemm
      
      * [Enhancement] enable transpose
      
      * [Enhancement] enable fp8_e4m3
      
      * [Enhancement] enable int8
      
      * [Lint] run format.sh
      
      * [Benchmark] add gemm_sp benchmark
      
      * [Example] fix 256 threads hang
      
      * [CI] fix ci
      
      * [Chore] resolve gemini feedback
      
      * [Benchmark] increase search space
      
      * [Lint] format
      
      * [CI] skip sparse tensor core related tests as only sm90 is supported
      
      * [CI] pass local run
      
      * Update gemm_sm89.h
      
      * lint fix
      
      * lint fix
      
      * [Enhancement] Add support for sparse GEMM and initialize CUDA architecture flags
      
      - Introduced a new boolean flag `enable_sparse_gemm_` to control the inclusion of sparse GEMM functionality in CUDA code generation.
      - Updated the `Finish` method to conditionally include the sparse GEMM header based on the new flag.
      - Implemented logic in `VisitStmt_` to enable sparse GEMM when the corresponding external call is detected.
      - Added a function to initialize the `TORCH_CUDA_ARCH_LIST` environment variable based on the target compute version, enhancing compatibility with PyTorch.
      - Refactored the initialization function into the appropriate module and ensured it is called in the sparse utilities module.
      
      * Update test_compress_utils.py
      
      ---------
      Co-authored-by: default avatarLeiWang1999 <leiwang1999@outlook.com>
      Co-authored-by: default avatarLei Wang <34334180+LeiWang1999@users.noreply.github.com>
      be44758c
  17. 28 May, 2025 1 commit
    • Lei Wang's avatar
      [Autotune] Introduce cache mechanism for auto tuner (#527) · 7171aff6
      Lei Wang authored
      * [Enhancement] Add commit ID to versioning and improve logging initialization
      
      * Updated `get_tilelang_version` to include an optional commit ID in the version string.
      * Enhanced the `TileLangBuilPydCommand` to write the version with commit ID to the VERSION file during the build process.
      * Introduced a new function `get_git_commit_id` in `version.py` to retrieve the current git commit hash.
      * Refactored logger initialization in `autotuner/__init__.py` to ensure handlers are set up only once, improving performance and clarity.
      * Minor fixes in `flatten_buffer.cc` and `kernel_cache.py` for better handling of versioning and logging.
      
      * [Refactor] Enhance AutoTuner and JITKernel for improved performance and caching
      
      * Refactored the AutoTuner class to include new methods for setting compilation and profiling arguments, enhancing configurability.
      * Introduced caching mechanisms for tuning results, allowing for faster retrieval of previously computed configurations.
      * Updated JITKernel to store tuning results, including latency and configuration details, improving the kernel's performance tracking.
      * Added new methods for generating cache keys and saving/loading results to/from disk, streamlining the tuning process.
      * Enhanced the overall structure and readability of the autotuning logic, ensuring better maintainability and clarity.
      * Minor adjustments in related modules to support the new caching and profiling features.
      
      * [Refactor] Clean up code formatting and improve readability in AutoTuner and related modules
      
      * Consolidated import statements and removed unnecessary line breaks for better readability.
      * Standardized function argument formatting across the AutoTuner and CompileArgs classes.
      * Enhanced consistency in the use of whitespace and indentation throughout the codebase.
      * Minor adjustments in the Profiler and JITKernel classes to improve clarity and maintainability.
      * Ensured that all changes adhere to the project's coding style guidelines.
      
      * [Refactor] Remove redundant type hints in AutoTuner modules
      
      * Simplified import statements in `__init__.py` and `param.py` by removing unnecessary duplicate type hints for `Any`.
      * Improved code readability and maintainability by streamlining type imports across the AutoTuner module.
      
      * [Refactor] Update AutoTuner configuration for improved profiling and target detection
      
      * Enhanced the AutoTuner configuration across multiple examples by adding `set_profile_args` to better manage profiling settings.
      * Standardized the use of `target="auto"` in compile arguments to ensure automatic target detection.
      * Removed redundant target specifications in certain instances to streamline the configuration process.
      * Improved overall clarity and maintainability of the autotuning logic in various example scripts.
      
      * [Refactor] Simplify code formatting and improve readability in example scripts
      
      * Consolidated function argument formatting in `benchmark_mla_decode_amd_tilelang.py`, `example_elementwise_add.py`, and `performance.py` for better clarity.
      * Removed unnecessary line breaks and standardized argument placement across multiple files.
      * Enhanced overall code readability and maintainability in autotuning examples and performance scripts.
      
      * [Refactor] Update JIT decorator usage across multiple files
      
      * Removed redundant parameters from the JIT decorator in various benchmark and example scripts, simplifying the code.
      * Standardized the import of the JIT decorator from `tilelang`, enhancing consistency across the codebase.
      * Improved overall readability and maintainability by consolidating import statements and cleaning up function definitions.
      
      * [Refactor] Standardize JIT decorator formatting across benchmark and example scripts
      
      * Simplified the formatting of the JIT decorator in multiple files by removing unnecessary line breaks.
      * Enhanced code readability and consistency in the usage of the JIT decorator across benchmark and example scripts.
      * Improved overall maintainability by ensuring uniformity in function definitions and decorator usage.
      7171aff6
  18. 03 Apr, 2025 1 commit
    • Lei Wang's avatar
      [Feat] Enhance CUDA Property Handling (#322) · c0378aa9
      Lei Wang authored
      
      
      * [Enhancement] Introduce CUDA driver module and refactor CUDA device handling
      
      - Added a new `cuda_driver` module to encapsulate CUDA device properties and functionalities.
      - Updated `CUDA` class in `cuda.py` to utilize the new driver for fetching device name and shared memory capabilities.
      - Introduced `get_device_name` and `get_shared_memory_per_block` functions in the `cuda_driver` for improved device property management.
      - This refactor enhances code organization and maintainability while improving the handling of CUDA device attributes.
      
      * [Refactor] Clean up whitespace in CUDA-related files
      
      - Removed unnecessary blank lines in `cuda.py`, `__init__.py`, and `cuda_driver.py` to improve code readability and maintainability.
      - This change enhances the overall organization of the codebase without altering functionality.
      
      * [Benchmark] Add FP8 Matrix Multiplication Benchmark Script
      
      - Introduced a new benchmark script for FP8 matrix multiplication in `benchmark/matmul_fp8/benchmark_matmul.py`.
      - The script includes functions for reference matrix multiplication, configuration generation for autotuning, and an autotuned kernel for performance measurement.
      - Added command-line argument parsing for matrix dimensions and the option to enable BitBLAS roller for search space exploration.
      - The benchmark computes and prints the best latency and performance metrics, enhancing the benchmarking capabilities for FP8 operations.
      
      * lint fix
      
      ---------
      Co-authored-by: default avatarLeiWang1999 <wyatuestc@gmail.com>
      c0378aa9
  19. 31 Mar, 2025 1 commit
    • Lei Wang's avatar
      [Bugfix] Updated autotune usage in the examples to align with the latest changes (#309) · 66c7f6a1
      Lei Wang authored
      * [Enhancement] Add support for CUDA architecture 8.9 in GEMM template
      
      - Introduced conditional inclusion of "gemm_sm89.h" for CUDA architectures 8.9 and above, enhancing compatibility with newer hardware.
      - This change ensures that the GEMM template can leverage optimizations specific to the 8.9 architecture, improving performance for users with compatible GPUs.
      
      * lintfix
      
      * [Refactor] Clean up includes in gemm_sm89.h
      
      - Removed duplicate inclusion of "common.h" and added "cuda_fp8.h" for improved clarity and organization.
      - This change enhances the maintainability of the code by ensuring that header files are included only once and in a logical order.
      
      * [Enhancement] Improve KernelCache with in-memory caching and detailed docstrings
      
      - Added an in-memory cache to the KernelCache class to enhance performance by reducing disk access.
      - Updated the __new__ method to initialize the memory cache and added logic to check the cache before loading from disk.
      - Enhanced docstrings across multiple methods to provide clearer explanations of parameters and return values, improving code readability and maintainability.
      - Implemented a clear_cache method to clear both in-memory and disk caches, ensuring efficient cache management.
      
      * lint fix
      
      * typofix
      
      * [Refactor] Update matmul and flashattn function calls to return structured results
      
      - Modified the matmul and flashattn function calls to return a single object containing latency, configuration, and reference latency, improving code clarity and reducing the number of returned variables.
      - Updated all relevant instances in benchmark and example scripts to accommodate the new return structure, ensuring consistent usage across the codebase.
      
      * lint fix
      66c7f6a1
  20. 26 Mar, 2025 1 commit
    • Lei Wang's avatar
      [Refactor] Deprecated `T.Buffer` as arguments and rename related calls into `T.Tensor` (#281) · bf8a6fc1
      Lei Wang authored
      * [Refactor] Improve flash attention example and layout comparison logic
      
      - Removed unnecessary annotation for `lse_local_split` in the flash attention example to streamline the code.
      - Updated the handling of `lse_local_split` to utilize parallel processing for better performance.
      - Refactored kernel compilation and profiling logic to enhance clarity and maintainability in the flash attention example.
      - Added a condition in `FragmentNode::IsEqual` to handle broadcast cases, improving the robustness of layout comparisons.
      
      * lint fix
      
      * [Enhancement] Add support for shared memory scope in Fill operation
      
      - Introduced handling for `shared.dyn` and `shared` memory scopes in the Fill operation.
      - Implemented parallel operation and layout inference for improved performance in shared memory scenarios.
      - Updated thread loop partitioning and vectorization logic to accommodate new memory scope handling.
      
      * [Refactor] Remove deprecated decorator and enhance Cython kernel handling
      
      - Removed the deprecated decorator from the main module and added a new implementation in the utils module for better organization.
      - Introduced a pointer map in the Cython kernel adapter to manage pointer arguments, improving runtime shape resolution.
      - Updated the Cython kernel wrapper to utilize the new pointer map for handling kernel arguments.
      - Enhanced error checking in the tensor utility functions to ensure static shapes are enforced.
      - Added a new proxy module for buffer and tensor handling, streamlining the interface for TIR programs.
      
      * [Feature] Add matrix multiplication test and kernel implementation
      
      - Introduced a new test file `test_tilelang_language_ptr.py` that implements a matrix multiplication function using TileLang's primitives.
      - The `matmul_test` function defines a kernel for performing tile-level GEMM operations with customizable block sizes and data types.
      - Added a `run_matmul` function to compile and execute the kernel, along with a test function to validate the implementation.
      - Updated the `proxy.py` file to enhance type handling for buffer and tensor proxies, ensuring compatibility with TIR programs.
      - Minor formatting improvements in `deprecated.py` for better readability.
      
      * lint fix
      
      * [Refactor] Update tensor creation in matrix multiplication test
      
      - Replaced `T.Tensor.from_ptr` with `T.make_tensor` in `matmul_test` for improved clarity and consistency.
      - Updated imports in `__init__.py` to include `make_tensor`.
      - Added `make_tensor` function in `proxy.py` to streamline tensor creation from pointers.
      
      * [Refactor] Update tensor definitions across multiple files
      
      - Replaced instances of `T.Tensor` with updated tensor definitions in various benchmark and example files to enhance consistency and clarity.
      - Adjusted tensor shapes and types in functions related to matrix multiplication, attention mechanisms, and other operations.
      - Improved documentation in README and example files to reflect changes in tensor usage.
      
      * lint fix
      
      * [Refactor] Update tensor types in attention and matrix multiplication examples
      
      - Replaced instances of `T.Tensor` with `T.SharedTensor` and `T.FragmentTensor` in various attention and matrix multiplication functions to improve consistency and clarity.
      - Adjusted tensor definitions in benchmark and example files to align with the new tensor types.
      - Enhanced the overall structure and readability of the code by standardizing tensor usage across multiple files.
      
      * lint fix
      
      * [Refactor] Update tensor types in GEMM example and test files
      
      - Replaced instances of `T.Tensor` with `T.LocalTensor` and `T.Buffer` in the GEMM example and related test functions to improve consistency and clarity.
      - Enhanced the overall structure of the code by standardizing tensor usage across multiple files, aligning with recent updates in tensor definitions.
      
      * [Refactor] Update tensor usage in customize.py
      
      - Replaced instances of `T.Tensor` with `T.Buffer` in the `reshape` and `view` functions to enhance consistency with recent tensor definitions.
      - Improved code clarity by standardizing buffer usage across the file.
      
      * [Refactor] Update tensor types in test_tilelang_transform_annotate_device_regions.py
      
      - Replaced instances of `T.Tensor` with `T.Buffer` in the `before` and `expected` methods of the `TestAnnotateThreadExtent` and `TestAnnotateDeviceScope` classes to enhance consistency with recent tensor definitions.
      - Improved code clarity by standardizing buffer usage across the test file.
      
      * [Refactor] Update tensor types to SharedBuffer and FragmentBuffer
      
      - Replaced instances of `T.SharedTensor` and `T.FragmentTensor` with `T.SharedBuffer` and `T.FragmentBuffer` across multiple benchmark, example, and test files to enhance consistency with recent tensor definitions.
      - Improved code clarity and structure by standardizing buffer usage in attention and matrix multiplication functions.
      
      * [Refactor] Introduce Tensor alias for Buffer in proxy.py
      
      - Added a new alias `Tensor` for `Buffer` in `proxy.py` to facilitate JIT compilation, ensuring that inputs and outputs are mapped with `torch.Tensor`.
      - This change enhances clarity and consistency in tensor usage across the codebase.
      bf8a6fc1
  21. 23 Mar, 2025 1 commit
    • Lei Wang's avatar
      Refactor matrix multiplication benchmark and autotuner logging (#263) · 8c94de32
      Lei Wang authored
      - Updated `ref_program` in `benchmark_matmul.py` to remove the unused parameter `C`, simplifying the function signature.
      - Changed logging level in `autotuner/__init__.py` from `INFO` to `DEBUG` for more detailed logging during autotuning.
      - Modified the error handling in the autotuner to provide clearer messages and log errors at the debug level.
      - Enhanced error reporting in the JIT adapter by adding detailed context to error messages in `cython_wrapper.pyx` when kernel calls fail.
      8c94de32
  22. 22 Mar, 2025 1 commit
    • Chaofan Lin's avatar
      [Bugfix] Fix Benchmark/Example Code for Autotuning (#254) · 0430cfe7
      Chaofan Lin authored
      
      
      * fix tune args
      
      * lint
      
      * Refactor gemm example and autotuner logging
      
      - Updated `ref_program` in `example_gemm.py` to return the result of matrix multiplication instead of modifying an input parameter.
      - Changed logging filename in `__init__.py` from 'out.log' to 'autotuner.log' for better clarity.
      - Modified JIT kernel compilation process to include `out_idx` directly in the adapter creation, enhancing flexibility.
      - Improved validation of `result_idx` in `BaseKernelAdapter` to ensure it falls within valid bounds.
      
      * Refactor `ref_program` in `benchmark_matmul_intrinsic.py` to use the `@` operator for matrix multiplication instead of `torch.matmul`, simplifying the implementation by removing the unused parameter `C`.
      
      ---------
      Co-authored-by: default avatarLeiWang1999 <leiwang1999@outlook.com>
      0430cfe7
  23. 20 Mar, 2025 1 commit
    • Lei Wang's avatar
      [Refactor] Phaseout LLVM Dependency by Making it Optional (#247) · f2e99180
      Lei Wang authored
      * remove llvm build
      
      * [Refactor] Update kernel compilation and profiling in examples
      
      - Replaced `tilelang.lower` with `tilelang.compile` in multiple example scripts to streamline kernel compilation.
      - Updated profiling calls to utilize the new `get_profiler` method, enhancing performance measurement consistency.
      - Adjusted assertions and benchmarking methods to align with the new profiling structure across various examples, ensuring correctness and clarity in performance evaluations.
      
      * lint fix
      
      * License Update
      
      * [Refactor] Improve code formatting and documentation in CUDA header and HIP runtime files
      
      - Adjusted formatting in `cuda.h` for better readability, including alignment of comments and struct fields.
      - Cleaned up whitespace and improved comment clarity in `rt_mod_hip.cc` to enhance code maintainability.
      
      * [Refactor] Enhance formatting and clarity in CUDA header and HIP runtime files
      
      - Improved comment alignment and readability in `cuda.h`.
      - Cleaned up whitespace and formatting in `rt_mod_hip.cc` to enhance maintainability.
      
      * lint fix
      
      * lint fix
      
      * lint fix
      
      * lint fix
      
      * fix
      
      * License update
      
      * [Enhancement] Update JITKernel to use artifact for kernel source
      
      - Assigned the generated artifact to `self.artifact` for better management.
      - Updated kernel source references to use `artifact.kernel_source` for consistency in execution backend handling.
      
      * lint fix
      
      * Add @tilelang.testing.requires_llvm decorator to vectorization tests
      
      * Enhance setup.py and env.py for library management
      
      - Added functionality to remove original files after copying in CMakeBuild.
      - Updated TVM_LIBRARY_PATH in env.py to include the PyPI build library path for better integration.
      
      * Refactor TVM_LIBRARY_PATH assignment for improved readability in env.py
      
      * Refactor CMakeBuild file handling in setup.py
      
      - Added a check to ensure the target library directory exists before copying .so files.
      - Improved the logic for creating the target directory and copying files to enhance robustness.
      
      * bugfix
      
      * Rename BuildTLDebug to BuildTileLangCUDAWithoutCompile and update registration. Add @tilelang.testing.requires_llvm decorator to multiple tests for LLVM requirement.
      
      * lint fix
      
      * Enhance TileLang code generation by adding support for device code generation without compilation. Updated `host_codegen` and `device_codegen` functions to include new transformations and registration for `tilelang_hip_without_compile`. Refactored JIT kernel adapters to accommodate host and device modules, improving overall integration and flexibility.
      
      * lint fix
      
      * Add support for C target in device code generation
      
      - Updated `device_codegen_without_compile` to include handling for the C target by registering the `tilelang_cpp` function.
      
      * [Enhancement] Implement auto-clear cache feature based on environment variable
      
      * Added TILELANG_CLEAR_CACHE environment variable to control cache clearing.
      * Updated CI workflow to set TILELANG_CLEAR_CACHE during testing.
      * Modified cache initialization to clear cache if TILELANG_CLEAR_CACHE is set to true.
      
      * [Refactor] Update kernel invocation and import paths in tests and cache
      
      * Changed kernel invocation in `test_tilelang_kernel_dequantize_gemm.py` to return the result.
      * Updated import statements in `test_tilelang_kernel_int4_gemm_mma.py` to use `bitblas` instead of `tilelang`.
      * Refactored paths for artifact and parameters in `kernel_cache.py` for better maintainability.
      
      * [Refactor] Clean up whitespace and improve code formatting in kernel_cache.py
      
      * Removed unnecessary blank lines and adjusted spacing for better readability in the KernelCache class.
      * Enhanced overall code formatting to align with project standards.
      
      * [Enhancement] Add bfloat16 test case and improve kernel caching logic
      
      * Introduced a new test case for bfloat16 matrix multiplication in `test_tilelang_kernel_gemm_mma_intrinsic.py`.
      * Updated `KernelCache` to handle multiple kernel source files and improve error handling during saving and loading.
      * Refactored `JITKernel` to support instantiation from a database, enhancing flexibility in kernel management.
      * Adjusted `CtypesKernelAdapter` and `CythonKernelAdapter` to utilize the new kernel loading mechanism from the database.
      * Improved code formatting and readability across several files.
      
      * lint fix
      
      * Update bfloat16 matrix multiplication test case to use larger dimensions for improved coverage
      f2e99180
  24. 12 Mar, 2025 1 commit
    • Lei Wang's avatar
      [Feature] Support Async Pipeline inference within if scope (#198) · 7ccec53b
      Lei Wang authored
      * Optimize CMake build process with dynamic job count calculation
      
      - Modify build_csrc function to use 90% of available CPU cores
      - Ensure at least one job is used during compilation
      - Improve build performance by dynamically adjusting parallel job count
      
      * Optimize build_csrc function with multiprocessing module
      
      - Replace os.cpu_count() with multiprocessing.cpu_count()
      - Maintain existing 90% CPU utilization logic
      - Improve CPU core count calculation for build process
      
      * Add dynamic shape support with out_idx in Cython JIT kernel compilation
      
      - Implement `run_cython_dynamic_shape_with_out_idx` function in test_tilelang_jit_gemm_cython.py
      - Update Cython wrapper to handle dynamic symbolic shapes during tensor allocation
      - Add support for resolving dynamic shape dimensions using input tensor references
      - Enhance flexibility of JIT kernel compilation with symbolic shape handling
      
      * Enhance error reporting for dynamic symbolic shape resolution in Cython JIT kernel
      
      - Add detailed error message when a dynamic symbolic dimension is not found in dynamic_symbolic_map
      - Improve debugging by providing context about missing symbolic dimensions
      - Maintain existing dynamic shape resolution logic
      
      * Fix Copy operation handling for scalar and multi-dimensional tensors
      
      - Add special handling for scalar tensor copy operations
      - Enhance error reporting in MakeIndices method with more detailed diagnostic information
      - Improve SIMT loop generation to support zero-dimensional tensors
      - Add explicit check and handling for scalar tensor scenarios
      
      * Refactor Copy operation code formatting and improve readability
      
      - Improve code formatting in MakeIndices and MakeSIMTLoop methods
      - Add line breaks to enhance readability of complex ICHECK statements
      - Simplify code structure in scalar tensor handling
      - Remove unnecessary whitespace and improve code alignment
      
      * Simplify GEMM example with direct kernel compilation
      
      - Update copyright header to Tile-AI Corporation
      - Remove Profiler import and usage
      - Replace tilelang.lower() with tilelang.compile()
      - Simplify kernel execution workflow
      - Update kernel source retrieval method
      
      * Enhance block sparse attention implementation
      
      - Update `blocksparse_flashattn` to use 2 stages for improved performance.
      - Change `block_mask_dtype` from `int8` to `bool` for better memory efficiency.
      - Modify condition checks in the kernel to utilize boolean values.
      - Introduce a new example for top-k sparse attention and a benchmark for native sparse attention.
      - Add support for asynchronous copy in PTX and improve pipeline planning with condition handling.
      
      * Refactor and clean up code formatting across multiple files
      
      - Added whitespace for improved readability in `example_blocksparse_gemm.py`, `example_tilelang_nsa_fwd.py`, and `benchmark_nsa_fwd.py`.
      - Enhanced code structure and alignment in `inject_ptx_async_copy.cc` and `pipeline_planning.cc`.
      - Updated comments and documentation for clarity in `__init__.py` and `phase.py`.
      - Ensured consistent formatting and style across the codebase.
      7ccec53b
  25. 06 Mar, 2025 2 commits
    • Chaofan Lin's avatar
      [Carver] Multi-Threads Compilation for Fast Auto Tuning (#156) · 18be9e07
      Chaofan Lin authored
      * [Carver] Multi-Threads Compilation for Fast Auto Tuning
      
      * Add progress bar for compilation
      
      * lint
      18be9e07
    • Lei Wang's avatar
      [Carver] Enhance Carver Adaptation for MatMul Benchmarking (#153) · 3c53297b
      Lei Wang authored
      * [Refactor] Consolidate GemmWarpPolicy Enum and Add Utility Method
      
      - Move GemmWarpPolicy from copy.py and gemm.py to primitives/gemm/base.py
      - Implement from_warp_partition class method to determine warp policy
      - Add docstring with examples for policy determination
      - Remove duplicate GemmWarpPolicy class definitions
      
      * [Enhancement] Add TensorCore Intrinsic Matrix Multiplication Benchmarks
      
      - Implement two new matrix multiplication benchmark scripts:
        1. `benchmark_matmul_intrinsic.py`: Uses TensorCore intrinsics with advanced configuration
        2. `benchmark_matmul.py`: Provides a more generic matrix multiplication benchmark
      
      - Add support for roller-based configuration generation in both benchmarks
      - Enhance MMA macro generator to handle 2D and 4D output buffer layouts
      - Implement flexible autotuning configurations with multiple parameters
      - Support different data types and accumulation modes
      - Add command-line arguments for matrix dimensions and roller configuration
      
      * lint fix
      
      * Fix roller hints generation in get_roller_hints_from_func
      
      - Simplify roller hints generation logic
      - Ensure policy-based configuration is always emitted when a policy is available
      - Remove redundant None check for roller hints
      
      * Add shared memory for matrix multiplication in benchmark and quickstart examples
      
      - Modify benchmark_matmul.py and quickstart.py to include C_shared allocation
      - Change accumulation dtype from float16 to float in benchmark_matmul.py
      - Update matrix multiplication kernels to use shared memory for result storage
      - Enable CUDA kernel source printing in quickstart example
      3c53297b
  26. 05 Mar, 2025 2 commits
  27. 24 Feb, 2025 1 commit
    • Lei Wang's avatar
      [Benchmark] Add benchmark scripts for block sparse attention (#114) · f2f67571
      Lei Wang authored
      * Add DeepSeek MLA decode example with Flash Attention implementation
      
      * Add GEMM SplitK and StreamK example implementations
      
      This commit introduces two new example scripts demonstrating advanced GEMM (matrix multiplication) techniques:
      - `example_tilelang_gemm_splitk.py`: Implements a Split-K GEMM kernel using TileLang
      - `example_tilelang_gemm_streamk.py`: Implements a Stream-K GEMM kernel using TileLang
      
      Both examples showcase different parallel computation strategies for matrix multiplication, with comprehensive testing using PyTorch reference implementations.
      
      * Refactor GEMM SplitK and StreamK example implementations
      
      Clean up and improve code formatting for the SplitK and StreamK GEMM example scripts:
      - Remove unused import (Profiler) in splitk example
      - Simplify line breaks and improve code readability
      - Standardize indentation and remove unnecessary whitespace
      - Optimize atomic add and copy operations for better clarity
      
      * Add block sparse attention benchmarks for multiple libraries
      
      This commit introduces comprehensive block sparse attention benchmarks for different libraries:
      - TileLang block sparse FMHA implementation
      - Triton block sparse FMHA implementation
      - PyTorch reference block sparse FMHA implementation
      - FlashAttention dense FMHA reference implementation
      
      The benchmarks include:
      - Configurable benchmark parameters (batch size, heads, sequence length, etc.)
      - Sparse mask generation using top-k and threshold methods
      - Performance measurement for different sparse attention configurations
      - Utility functions for mask generation and benchmarking
      
      * Refactor block sparse attention benchmarks with code style improvements
      
      - Add Ruff linter ignore comments to benchmark files
      - Improve code formatting and line breaks
      - Remove unused imports
      - Standardize print statement formatting
      - Enhance code readability across multiple library benchmarks
      
      * lint fix
      f2f67571
  28. 11 Jan, 2025 1 commit
    • Lei Wang's avatar
      [Initialization] Migration of Codebase from Dev Branch into Main (#10) · 57ab687c
      Lei Wang authored
      
      
      * Add format.sh script for code formatting and linting
      
      * docs update
      
      * center align the title
      
      * lint fix
      
      * add ignore
      
      * Add .gitignore for 3rdparty directory
      
      * Add requirements-dev.txt, requirements-test.txt, and requirements.txt
      
      * 3rdparty
      
      * Add gemm.h, CMakeLists.txt, _ffi_api.py, __init__.py, runtime.h, reduce.h, loop_partition.h, utils.h, and loop_vectorize.h
      
      * Refactor CMakeLists.txt and include statements
      
      - Update CMakeLists.txt to use a newer version of CMake and add project name
      - Remove unnecessary include directories
      
      Fix include paths in layout.cc, codegen.cc, codegen.h, rt_mod.cc, frontend_legalize.cc, inject_pipeline.cc, layout_inference.cc, loop_vectorize.cc, and lower_tile_op.cc
      
      - Update include paths to use relative paths instead of absolute paths
      
      * Update submodule for 3rdparty/tvm
      
      * update
      
      * load dll first
      
      * Refactor CMakeLists.txt and include statements
      
      * Refactor CMakeLists.txt and include statements
      
      * git keep update
      
      * Refactor CMakeLists.txt and include statements
      
      * Refactor CMakeLists.txt and include statements
      
      * refactor code structure
      
      * Update Readme
      
      * CMakeLists Customized
      
      * update readme
      
      * update README
      
      * update readme
      
      * update usage
      
      * with TVM_IMPORT_PYTHON_PATH to handle own tvm build python import
      
      * annotate lower transform global func with `transform` prefix
      
      * Migrate Simplify Pass from tilelang tvm branch
      
      * enhance system environment handling with __init__ and CMake
      
      * Initial commit
      
      * CODE_OF_CONDUCT.md committed
      
      * LICENSE committed
      
      * README.md committed
      
      * SECURITY.md committed
      
      * SUPPORT.md committed
      
      * CODE_OF_CONDUCT Commit
      
      * LICENSE Commit
      
      * SECURITY Commit
      
      * SUPPORT Commit
      
      * Modify Support
      
      * Update README.md
      
      * security ci update
      
      * remove examples
      
      * Update and implement clang-format
      
      * add composable kernel components
      
      * Migrate from latest update
      
      * submodule update
      
      * Test update
      
      * Update License
      
      * Spell check
      
      * lint fix
      
      * add clang-tidy to apply static analysis for c source
      
      * update tilelang examples
      
      * Update Install Docs
      
      * Refactor filetree
      
      * Enhance Install
      
      * conflict resloved
      
      * annotate_version
      
      * Initial Update
      
      * test fix
      
      * install
      
      * Implement setup.py
      
      * lint fix
      
      * Separate Init
      
      * Separate test
      
      * docker file commit
      
      * add logo
      
      * Update Readme and Examples
      
      * update readme
      
      * update logo
      
      * Implement AMD Installation
      
      * Add License
      
      * Update AMD MI300x Benchmark
      
      * update README
      
      * update mi300 benchmark scripts
      
      * update ignore
      
      * enhance build scirpt
      
      * update image
      
      * enhance setup.py to remove duplicated libraries
      
      * remove debug files
      
      * update readme
      
      * update image
      
      * update gemm examples
      
      * update flashattention README
      
      * readme update
      
      * add cmake into requirements
      
      * libinfo fix
      
      * auto update submodule
      
      * lint fix
      
      * Fix AMD Build and Test
      
      * Update check for transpose attribute for CDNA Arch
      
      * typo fix for amd
      
      * Implement Matmul Benchmark
      
      * Refactor Code
      
      * [TypoFix] Fix GEMM Example
      
      * [Docs] Init Linear Attention README
      
      * [TYPO] Typo fix
      
      * [Lint] Lint Fix
      
      * enhance example with intrinsics
      
      * [Enhancement] Improve Buffer Collection during IR Parser
      
      * [Dev] Introduce Current classmethod to get current frame
      
      * submodule update
      
      * fake test pass update
      
      * support thread_extent_api
      
      * code optimize
      
      * Add GEMM function implementation for matrix multiplication
      
      * Update logging format to reflect TileLang in logger messages
      
      * Refactor CMakeLists.txt for improved readability and set default build type to Release
      
      * Support Gemm SS Primitives Implementation
      
      * [README] Upload Tile Language Logo (#5)
      
      * update logo
      
      * Update README.md to enhance formatting and center the title
      
      ---------
      Co-authored-by: default avatarmicrosoft-github-operations[bot] <55726097+microsoft-github-operations[bot]@users.noreply.github.com>
      Co-authored-by: default avatarMicrosoft Open Source <microsoftopensource@users.noreply.github.com>
      Co-authored-by: default avatarYu Cheng <yu.cheng@pku.edu.cn>
      57ab687c