- 09 May, 2025 1 commit
-
-
Lei Wang authored
* [Refactor] Enhance TMA barrier validation and support for additional architectures (#463) * Updated the TMA barrier validation in `inject_tma_barrier.cc` to check for non-empty `barrier_id_to_range_` before raising an error for missing `create_list_of_mbarrier`. * Refactored architecture checks in `phase.py` to utilize a new constant `SUPPORTED_TMA_ARCHS`, allowing for easier updates and improved readability in the target architecture validation logic. * [Feature] Implement fast integer power operation and related API * Added a new math operation `tl.power_of_int` in `math.cc` for efficient integer exponentiation. * Introduced a corresponding Python API `pow_of_int` in `tir/op.py` to facilitate usage in TileLang. * Enhanced `common.h` with a template function for integer power calculations. * Updated documentation to reflect the new functionality and usage examples.
-
- 06 May, 2025 1 commit
-
-
Lei Wang authored
* [Feature] Add TILELANG_CHECK_LAST_ERROR macro for improved error handling in CUDA and HIP * Introduced TILELANG_CHECK_LAST_ERROR macro to streamline error checking for kernel launches in both CUDA and HIP. * Updated kernel launch code in wrapper.py to utilize the new macro, enhancing readability and maintainability. * This change improves error reporting by providing detailed messages when kernel execution fails. * [Refactor] Standardize error message formatting in TILELANG_CHECK_LAST_ERROR macro * Updated the TILELANG_CHECK_LAST_ERROR macro in both CUDA and HIP implementations to ensure consistent formatting of error messages. * Enhanced readability by aligning the error message structure across different platforms, improving maintainability of error handling code.
-
- 29 Apr, 2025 1 commit
-
-
Lei Wang authored
* [Enhancement] Improve layout inference accuracy in ParallelOp (#441) * Added logic to use non-replicated buffers as source buffers for more accurate layout inference. * Enhanced comments to clarify the rationale behind buffer selection in layout inference process. * [Enhancement] Add error handling macros and refactor loop partitioning logic * Introduced TILELANG_CHECK macro for improved error handling in CUDA and HIP code, providing detailed error messages for kernel launches. * Enhanced loop partitioning logic to handle fragment buffers more effectively, ensuring correct replication based on thread extent. * Added logging for thread range in PlanLoopPartition to aid in debugging and performance analysis. * Updated pass configuration management to streamline vectorization control in the optimization process. * lint fix * remove debug print
-
- 11 Apr, 2025 1 commit
-
-
Lei Wang authored
* [Enhancement] Introduce logical operations `any_of` and `all_of` for buffer checks - Added new logical operations `any_of` and `all_of` to the TileLang language interface, allowing users to check conditions across buffer elements. - Implemented corresponding intrinsic calls for CUDA, enhancing the functionality of the TileLang framework. - Updated the `allocate.py` to handle boolean types correctly in shared memory allocations. - Introduced tests for the new logical operations to ensure correctness and performance. Co-authored-by:
Zhiwen Mo <zhiwen.mo25@ic.ac.uk> * lint fix --------- Co-authored-by:
Zhiwen Mo <zhiwen.mo25@ic.ac.uk>
-
- 03 Apr, 2025 1 commit
-
-
botbw authored
* [bug] fix T.abs on float16 * [lint] lint
-
- 28 Mar, 2025 1 commit
-
-
Lei Wang authored
- Added conditional compilation for BFLOAT16 atomic operations to ensure compatibility with CUDA architectures greater than 7.5. - Improved code clarity by organizing the AtomicAdd functions and adding relevant comments for better understanding.
-
- 27 Mar, 2025 1 commit
-
-
Lei Wang authored
* [Refactor] Improve flash attention example and layout comparison logic - Removed unnecessary annotation for `lse_local_split` in the flash attention example to streamline the code. - Updated the handling of `lse_local_split` to utilize parallel processing for better performance. - Refactored kernel compilation and profiling logic to enhance clarity and maintainability in the flash attention example. - Added a condition in `FragmentNode::IsEqual` to handle broadcast cases, improving the robustness of layout comparisons. * lint fix * [Enhancement] Add support for shared memory scope in Fill operation - Introduced handling for `shared.dyn` and `shared` memory scopes in the Fill operation. - Implemented parallel operation and layout inference for improved performance in shared memory scenarios. - Updated thread loop partitioning and vectorization logic to accommodate new memory scope handling. * [Refactor] Remove deprecated decorator and enhance Cython kernel handling - Removed the deprecated decorator from the main module and added a new implementation in the utils module for better organization. - Introduced a pointer map in the Cython kernel adapter to manage pointer arguments, improving runtime shape resolution. - Updated the Cython kernel wrapper to utilize the new pointer map for handling kernel arguments. - Enhanced error checking in the tensor utility functions to ensure static shapes are enforced. - Added a new proxy module for buffer and tensor handling, streamlining the interface for TIR programs. * [Feature] Add matrix multiplication test and kernel implementation - Introduced a new test file `test_tilelang_language_ptr.py` that implements a matrix multiplication function using TileLang's primitives. - The `matmul_test` function defines a kernel for performing tile-level GEMM operations with customizable block sizes and data types. - Added a `run_matmul` function to compile and execute the kernel, along with a test function to validate the implementation. - Updated the `proxy.py` file to enhance type handling for buffer and tensor proxies, ensuring compatibility with TIR programs. - Minor formatting improvements in `deprecated.py` for better readability. * lint fix * [Refactor] Update tensor creation in matrix multiplication test - Replaced `T.Tensor.from_ptr` with `T.make_tensor` in `matmul_test` for improved clarity and consistency. - Updated imports in `__init__.py` to include `make_tensor`. - Added `make_tensor` function in `proxy.py` to streamline tensor creation from pointers. * [Refactor] Update tensor definitions across multiple files - Replaced instances of `T.Tensor` with updated tensor definitions in various benchmark and example files to enhance consistency and clarity. - Adjusted tensor shapes and types in functions related to matrix multiplication, attention mechanisms, and other operations. - Improved documentation in README and example files to reflect changes in tensor usage. * lint fix * [Refactor] Update tensor types in attention and matrix multiplication examples - Replaced instances of `T.Tensor` with `T.SharedTensor` and `T.FragmentTensor` in various attention and matrix multiplication functions to improve consistency and clarity. - Adjusted tensor definitions in benchmark and example files to align with the new tensor types. - Enhanced the overall structure and readability of the code by standardizing tensor usage across multiple files. * lint fix * [Refactor] Update tensor types in GEMM example and test files - Replaced instances of `T.Tensor` with `T.LocalTensor` and `T.Buffer` in the GEMM example and related test functions to improve consistency and clarity. - Enhanced the overall structure of the code by standardizing tensor usage across multiple files, aligning with recent updates in tensor definitions. * [Refactor] Update tensor usage in customize.py - Replaced instances of `T.Tensor` with `T.Buffer` in the `reshape` and `view` functions to enhance consistency with recent tensor definitions. - Improved code clarity by standardizing buffer usage across the file. * [Refactor] Update tensor types in test_tilelang_transform_annotate_device_regions.py - Replaced instances of `T.Tensor` with `T.Buffer` in the `before` and `expected` methods of the `TestAnnotateThreadExtent` and `TestAnnotateDeviceScope` classes to enhance consistency with recent tensor definitions. - Improved code clarity by standardizing buffer usage across the test file. * [Refactor] Update tensor types to SharedBuffer and FragmentBuffer - Replaced instances of `T.SharedTensor` and `T.FragmentTensor` with `T.SharedBuffer` and `T.FragmentBuffer` across multiple benchmark, example, and test files to enhance consistency with recent tensor definitions. - Improved code clarity and structure by standardizing buffer usage in attention and matrix multiplication functions. * [Refactor] Introduce Tensor alias for Buffer in proxy.py - Added a new alias `Tensor` for `Buffer` in `proxy.py` to facilitate JIT compilation, ensuring that inputs and outputs are mapped with `torch.Tensor`. - This change enhances clarity and consistency in tensor usage across the codebase. * [Refactor] Revamp cache management and enhance documentation in env.py and proxy.py - Replaced global cache functions with a CacheState class to improve encapsulation and management of kernel caching. - Updated the `from_ptr` method in BufferProxy and BaseTensorProxy classes to include detailed docstrings for better clarity on parameters and return values. - Enhanced class docstrings across various proxy classes to provide clearer descriptions of their purpose and functionality, improving overall code documentation. * [Refactor] Update imports in __init__.py for tir compatibility - Added imports for `prim_func` and `tir.op` to enhance compatibility with the upstream tir script. - Marked imports with `# noqa: F401` to suppress linting warnings for unused imports, indicating future removal once compatibility is achieved. * lint fix * [Refactor] Update imports in tir.ir.py for improved compatibility - Removed unused import of `PrimExpr` from `tvm.script.ir_builder.tir` and replaced it with the correct import from `tvm.tir`. - Added import for `tir.ir` in `__init__.py` to enhance module accessibility and maintain compatibility with upstream changes. * [Refactor] Update function calls in tir.ir.py to return values - Modified the `serial`, `parallel`, `vectorized`, `unroll`, `thread_binding`, and `grid` functions to return the results of their respective calls to `_ir` methods, enhancing clarity and ensuring proper value propagation. * bugfix * [Enhancement] Add support for uint16 data type in TLCUDASourceWrapper - Introduced the "uint16" mapping to the type dictionary in the TLCUDASourceWrapper class, expanding the range of supported data types for CUDA operations. * bugfix * [Update] Sync subproject commit and modify CUDA atomic add functions - Updated the subproject commit for TVM to edd35139a0481e9359aa269e3e50450b95ba2f5a. - Commented out the CUDA capability check in the example convolution script to prevent execution errors. - Refactored atomic add functions for BFLOAT16 in common.h to include a conditional compilation directive for improved compatibility with CUDA architectures.
-
- 20 Mar, 2025 1 commit
-
-
Lei Wang authored
* remove llvm build * [Refactor] Update kernel compilation and profiling in examples - Replaced `tilelang.lower` with `tilelang.compile` in multiple example scripts to streamline kernel compilation. - Updated profiling calls to utilize the new `get_profiler` method, enhancing performance measurement consistency. - Adjusted assertions and benchmarking methods to align with the new profiling structure across various examples, ensuring correctness and clarity in performance evaluations. * lint fix * License Update * [Refactor] Improve code formatting and documentation in CUDA header and HIP runtime files - Adjusted formatting in `cuda.h` for better readability, including alignment of comments and struct fields. - Cleaned up whitespace and improved comment clarity in `rt_mod_hip.cc` to enhance code maintainability. * [Refactor] Enhance formatting and clarity in CUDA header and HIP runtime files - Improved comment alignment and readability in `cuda.h`. - Cleaned up whitespace and formatting in `rt_mod_hip.cc` to enhance maintainability. * lint fix * lint fix * lint fix * lint fix * fix * License update * [Enhancement] Update JITKernel to use artifact for kernel source - Assigned the generated artifact to `self.artifact` for better management. - Updated kernel source references to use `artifact.kernel_source` for consistency in execution backend handling. * lint fix * Add @tilelang.testing.requires_llvm decorator to vectorization tests * Enhance setup.py and env.py for library management - Added functionality to remove original files after copying in CMakeBuild. - Updated TVM_LIBRARY_PATH in env.py to include the PyPI build library path for better integration. * Refactor TVM_LIBRARY_PATH assignment for improved readability in env.py * Refactor CMakeBuild file handling in setup.py - Added a check to ensure the target library directory exists before copying .so files. - Improved the logic for creating the target directory and copying files to enhance robustness. * bugfix * Rename BuildTLDebug to BuildTileLangCUDAWithoutCompile and update registration. Add @tilelang.testing.requires_llvm decorator to multiple tests for LLVM requirement. * lint fix * Enhance TileLang code generation by adding support for device code generation without compilation. Updated `host_codegen` and `device_codegen` functions to include new transformations and registration for `tilelang_hip_without_compile`. Refactored JIT kernel adapters to accommodate host and device modules, improving overall integration and flexibility. * lint fix * Add support for C target in device code generation - Updated `device_codegen_without_compile` to include handling for the C target by registering the `tilelang_cpp` function. * [Enhancement] Implement auto-clear cache feature based on environment variable * Added TILELANG_CLEAR_CACHE environment variable to control cache clearing. * Updated CI workflow to set TILELANG_CLEAR_CACHE during testing. * Modified cache initialization to clear cache if TILELANG_CLEAR_CACHE is set to true. * [Refactor] Update kernel invocation and import paths in tests and cache * Changed kernel invocation in `test_tilelang_kernel_dequantize_gemm.py` to return the result. * Updated import statements in `test_tilelang_kernel_int4_gemm_mma.py` to use `bitblas` instead of `tilelang`. * Refactored paths for artifact and parameters in `kernel_cache.py` for better maintainability. * [Refactor] Clean up whitespace and improve code formatting in kernel_cache.py * Removed unnecessary blank lines and adjusted spacing for better readability in the KernelCache class. * Enhanced overall code formatting to align with project standards. * [Enhancement] Add bfloat16 test case and improve kernel caching logic * Introduced a new test case for bfloat16 matrix multiplication in `test_tilelang_kernel_gemm_mma_intrinsic.py`. * Updated `KernelCache` to handle multiple kernel source files and improve error handling during saving and loading. * Refactored `JITKernel` to support instantiation from a database, enhancing flexibility in kernel management. * Adjusted `CtypesKernelAdapter` and `CythonKernelAdapter` to utilize the new kernel loading mechanism from the database. * Improved code formatting and readability across several files. * lint fix * Update bfloat16 matrix multiplication test case to use larger dimensions for improved coverage
-
- 17 Mar, 2025 1 commit
-
-
Lei Wang authored
* Refactor GEMM and Bulk Copy operations to enhance layout handling and support for Hopper architecture - Update `ComputeWarpPartition` to include a new parameter for Hopper WGMMA support. - Modify layout checks in `LowerBulkCopy` to accommodate new GEMM layout types. - Enhance layout inference logic in `InferLayout` for better compatibility with Hopper architecture. - Include necessary header files for built-in operations and layout inference improvements. * Refactor parameter formatting in CUDA matrix load functions for consistency - Adjusted parameter alignment in `ptx_ldmatrix_x1`, `ptx_ldmatrix_x2`, `ptx_ldmatrix_x4`, and their transposed counterparts for improved readability. - Added a blank line in `get_tensor_supply` function in `tensor.py` to enhance code clarity. * Enhance tensor supply generation in `get_tensor_supply` function - Introduced handling for unsigned integer and float8 tensor types, allowing for specific random tensor generation based on data type. - Updated logic to return appropriate random tensors for different data types, improving flexibility and functionality of tensor supply generation. - Refactored existing conditions for clarity and maintainability. * Fix tensor supply generation logic in `get_tensor_supply` function - Updated the variable reference from `tensor` to `param` to ensure correct handling of tensor data types. - Improved the accuracy of unsigned integer and float8 checks for tensor supply generation, enhancing functionality and reliability. * Enhance tensor supply checks in `get_tensor_supply` function - Updated the logic for identifying unsigned integers and float8 types by using `removeprefix` on the dtype string, improving accuracy in tensor supply generation. - Ensured better handling of tensor data types for more reliable random tensor generation based on the updated checks. * Enhance KernelParam functionality and improve tensor supply checks - Added methods `is_unsigned` and `is_float8` to the `KernelParam` class for better type identification of parameters. - Updated the `get_tensor_supply` function to utilize the new methods, improving clarity and accuracy in tensor supply generation based on parameter types.
-
- 04 Mar, 2025 1 commit
-
-
Lei Wang authored
* Change default log level from WARNING to INFO in TileLang initialization * Refactor Flash Attention Variable-Length MHA Example with Cython Backend Support - Update `example_mha_fwd_varlen.py` to use Cython backend for kernel compilation - Remove unused imports and simplify function signature - Modify `flashattn` function to handle max sequence length as a separate argument - Update kernel call to include max sequence length parameter - Improve code readability and remove commented-out code - Add print statement to confirm successful assertion * Refactor code formatting in TileLang lowering and example files - Improve line breaks and code formatting in `lower.py`, `wrapper.py`, and `tensor.py` - Simplify line breaks and reduce unnecessary whitespace - Enhance code readability by adjusting indentation and line breaks - Update example MHA forward pass script with cleaner tensor initialization * Update TileLang kernel test with import path changes for MMA layout and macro generator - Modify import statements in test_tilelang_kernel_dequantize_gemm.py - Replace bitblas imports with tilelang.intrinsics imports for MMA-related utilities - Update main function to use tilelang.testing.main() * Add Block Sparse Attention Examples for TileLang and Triton - Implement block sparse attention kernels for both TileLang and Triton - Add utility functions for generating sparse attention masks using top-k and threshold methods - Support causal and variable-length attention scenarios - Include test cases for different sequence length configurations - Demonstrate block-level sparse attention with configurable parameters * Refactor Block Sparse Attention Examples with Code Style Improvements - Improve code formatting in block_sparse_attn_tilelang.py and block_sparse_attn_triton.py - Enhance readability by adjusting line breaks and indentation - Simplify kernel and function calls with better formatting - Add whitespace and line break improvements for better code clarity * Enhance Layout Plotting with Multi-Replication and Dynamic Visualization - Update plot_layout function to support multiple replications in thread and value mapping - Improve thread and value mapping to handle replicated layouts - Dynamically adjust figure size and legend positioning - Add print statements for saved plot file paths - Modify example fragment_mma_load_a.py to uncomment and enable warp and block layout plotting * Refactor AtomicAdd functions in CUDA common header - Implement a generic template for AtomicAdd function - Specialize templates for half_t, bfloat16_t, and pointer types - Reorganize and clean up existing AtomicAdd implementations - Improve type handling and conversion in atomic operations * Remove unused import in MHA backward test file - Remove unnecessary argparse import from test_tilelang_kenrel_mha_bwd.py - Add blank line for improved code formatting - Minor code cleanup in test file
-
- 24 Feb, 2025 1 commit
-
-
Lei Wang authored
* Add DeepSeek MLA decode example with Flash Attention implementation * Add GEMM SplitK and StreamK example implementations This commit introduces two new example scripts demonstrating advanced GEMM (matrix multiplication) techniques: - `example_tilelang_gemm_splitk.py`: Implements a Split-K GEMM kernel using TileLang - `example_tilelang_gemm_streamk.py`: Implements a Stream-K GEMM kernel using TileLang Both examples showcase different parallel computation strategies for matrix multiplication, with comprehensive testing using PyTorch reference implementations. * Refactor GEMM SplitK and StreamK example implementations Clean up and improve code formatting for the SplitK and StreamK GEMM example scripts: - Remove unused import (Profiler) in splitk example - Simplify line breaks and improve code readability - Standardize indentation and remove unnecessary whitespace - Optimize atomic add and copy operations for better clarity * Add block sparse attention benchmarks for multiple libraries This commit introduces comprehensive block sparse attention benchmarks for different libraries: - TileLang block sparse FMHA implementation - Triton block sparse FMHA implementation - PyTorch reference block sparse FMHA implementation - FlashAttention dense FMHA reference implementation The benchmarks include: - Configurable benchmark parameters (batch size, heads, sequence length, etc.) - Sparse mask generation using top-k and threshold methods - Performance measurement for different sparse attention configurations - Utility functions for mask generation and benchmarking * Refactor block sparse attention benchmarks with code style improvements - Add Ruff linter ignore comments to benchmark files - Improve code formatting and line breaks - Remove unused imports - Standardize print statement formatting - Enhance code readability across multiple library benchmarks * lint fix * Add CUDA atomic operations for BFLOAT16 and update function naming - Implement AtomicAdd functions for BFLOAT16 and BFLOAT16x2 in CUDA common header - Rename existing atomic add functions to use PascalCase (atomicAdd -> AtomicAdd) - Add a new __pack_nv_bfloat162 function for packing BFLOAT16 values - Update kernel and language customization to use new function names - Add return type annotations in profiler module * lint fix
-
- 09 Feb, 2025 1 commit
-
-
Lei Wang authored
* [Enhancement] Add VectorizeLoop function and update imports for compatibility * [CI][Test] Improve test cases for vectorization and fix typos in parser comments * lint fix * Fix incorrect module reference for VectorizeLoop transformation * Refactor vectorize_loop transformation by removing unused extent mutation logic * [Enhancement] Add support for FP8 data types and global barriers in CUDA codegen * Fix formatting in CUDA FP8 header file for consistency * Refactor CI workflow to use 'tilelang_ci' virtual environment and update CUDA type printing for better clarity * Update submodule 'tvm' to latest commit for improved functionality * Refactor execution backend references from 'dl_pack' to 'dlpack' for consistency and clarity; add apply_simplify function to simplify PrimFunc or IRModule. * Refactor CUDA code for improved readability; clean up formatting and remove unnecessary whitespace in multiple files. * Refactor import statement in test_tilelang_kernel_dequantize_gemm.py to use 'tilelang.language' for consistency * Add CUDA requirements to FP8 test cases and update references for clarity * Add a blank line for improved readability in test_tilelang_kernel_fp8_gemm_mma.py * Fix data type in reference result calculation for consistency in test_tilelang_kernel_gemm_mma_intrinsic.py * Add CUDA requirements and FP8 test cases for matmul and gemv simulations * Remove debug print statements and use tilelang's testing assertion for result validation in test_tilelang_kernel_gemm_mma_intrinsic.py * Remove outdated comment regarding FP8 tests in test_tilelang_kernel_gemv_simt.py * Add BF16 support to matrix multiplication and introduce corresponding test cases * Add a blank line for improved readability in BF16 GEMM test * Update acknowledgements in README to include supervision by Zhi Yang at Peking University * enhance acknowledgement * Replace tutorial on memory layout optimization with new tutorial on writing high-performance kernels with thread primitives * Update subproject commit for TVM dependency * Update subproject commit for TVM dependency * Add int4_t type and functions for packing char values in CUDA common header * Add plot_layout example and implement GetForwardVars method in layout classes * Refactor code for improved readability by adjusting line breaks and formatting in layout and test files * Fix formatting by removing unnecessary line break in layout.h * Refactor make_int4 function for improved readability by adjusting parameter formatting
-
- 06 Feb, 2025 1 commit
-
-
Lei Wang authored
* [Enhancement] Add VectorizeLoop function and update imports for compatibility * [CI][Test] Improve test cases for vectorization and fix typos in parser comments * lint fix * Fix incorrect module reference for VectorizeLoop transformation * Refactor vectorize_loop transformation by removing unused extent mutation logic * [Enhancement] Add support for FP8 data types and global barriers in CUDA codegen * Fix formatting in CUDA FP8 header file for consistency * Refactor CI workflow to use 'tilelang_ci' virtual environment and update CUDA type printing for better clarity * Update submodule 'tvm' to latest commit for improved functionality * Refactor execution backend references from 'dl_pack' to 'dlpack' for consistency and clarity; add apply_simplify function to simplify PrimFunc or IRModule. * Refactor CUDA code for improved readability; clean up formatting and remove unnecessary whitespace in multiple files. * Refactor import statement in test_tilelang_kernel_dequantize_gemm.py to use 'tilelang.language' for consistency * Add CUDA requirements to FP8 test cases and update references for clarity * Add a blank line for improved readability in test_tilelang_kernel_fp8_gemm_mma.py * Fix data type in reference result calculation for consistency in test_tilelang_kernel_gemm_mma_intrinsic.py * Add CUDA requirements and FP8 test cases for matmul and gemv simulations * Remove debug print statements and use tilelang's testing assertion for result validation in test_tilelang_kernel_gemm_mma_intrinsic.py * Remove outdated comment regarding FP8 tests in test_tilelang_kernel_gemv_simt.py
-
- 11 Jan, 2025 2 commits
-
-
Lei Wang authored
* README.md fixed * update test ci * Lint and Typo Fix * Clang Format Lint Fix
-
Lei Wang authored
* Add format.sh script for code formatting and linting * docs update * center align the title * lint fix * add ignore * Add .gitignore for 3rdparty directory * Add requirements-dev.txt, requirements-test.txt, and requirements.txt * 3rdparty * Add gemm.h, CMakeLists.txt, _ffi_api.py, __init__.py, runtime.h, reduce.h, loop_partition.h, utils.h, and loop_vectorize.h * Refactor CMakeLists.txt and include statements - Update CMakeLists.txt to use a newer version of CMake and add project name - Remove unnecessary include directories Fix include paths in layout.cc, codegen.cc, codegen.h, rt_mod.cc, frontend_legalize.cc, inject_pipeline.cc, layout_inference.cc, loop_vectorize.cc, and lower_tile_op.cc - Update include paths to use relative paths instead of absolute paths * Update submodule for 3rdparty/tvm * update * load dll first * Refactor CMakeLists.txt and include statements * Refactor CMakeLists.txt and include statements * git keep update * Refactor CMakeLists.txt and include statements * Refactor CMakeLists.txt and include statements * refactor code structure * Update Readme * CMakeLists Customized * update readme * update README * update readme * update usage * with TVM_IMPORT_PYTHON_PATH to handle own tvm build python import * annotate lower transform global func with `transform` prefix * Migrate Simplify Pass from tilelang tvm branch * enhance system environment handling with __init__ and CMake * Initial commit * CODE_OF_CONDUCT.md committed * LICENSE committed * README.md committed * SECURITY.md committed * SUPPORT.md committed * CODE_OF_CONDUCT Commit * LICENSE Commit * SECURITY Commit * SUPPORT Commit * Modify Support * Update README.md * security ci update * remove examples * Update and implement clang-format * add composable kernel components * Migrate from latest update * submodule update * Test update * Update License * Spell check * lint fix * add clang-tidy to apply static analysis for c source * update tilelang examples * Update Install Docs * Refactor filetree * Enhance Install * conflict resloved * annotate_version * Initial Update * test fix * install * Implement setup.py * lint fix * Separate Init * Separate test * docker file commit * add logo * Update Readme and Examples * update readme * update logo * Implement AMD Installation * Add License * Update AMD MI300x Benchmark * update README * update mi300 benchmark scripts * update ignore * enhance build scirpt * update image * enhance setup.py to remove duplicated libraries * remove debug files * update readme * update image * update gemm examples * update flashattention README * readme update * add cmake into requirements * libinfo fix * auto update submodule * lint fix * Fix AMD Build and Test * Update check for transpose attribute for CDNA Arch * typo fix for amd * Implement Matmul Benchmark * Refactor Code * [TypoFix] Fix GEMM Example * [Docs] Init Linear Attention README * [TYPO] Typo fix * [Lint] Lint Fix * enhance example with intrinsics * [Enhancement] Improve Buffer Collection during IR Parser * [Dev] Introduce Current classmethod to get current frame * submodule update * fake test pass update * support thread_extent_api * code optimize * Add GEMM function implementation for matrix multiplication * Update logging format to reflect TileLang in logger messages * Refactor CMakeLists.txt for improved readability and set default build type to Release * Support Gemm SS Primitives Implementation * [README] Upload Tile Language Logo (#5) * update logo * Update README.md to enhance formatting and center the title --------- Co-authored-by:
microsoft-github-operations[bot] <55726097+microsoft-github-operations[bot]@users.noreply.github.com> Co-authored-by:
Microsoft Open Source <microsoftopensource@users.noreply.github.com> Co-authored-by:
Yu Cheng <yu.cheng@pku.edu.cn>
-