1. 05 Jun, 2025 1 commit
    • Gabriel Wu's avatar
      [Enhancement] Add nvrtc execution backend (#461) · 17f7394f
      Gabriel Wu authored
      
      
      * [wip] feat: add nvrtc backend
      
      * [wip] fix: handle out_idx
      
      * [wip] refactor: move lib logic to libgen
      
      * feat: cache for nvrtc backend
      
      * fmt: run format
      
      * fix: handle cuda bindings import error
      
      * fix: handle cuda bindings import error
      
      * fix: handle cuda bindings import error
      
      * fix: handle cuda bindings import error
      
      * fix: get kernel source
      
      * refactor: speedup pyimport
      
      * Improve error handling for missing cuda-python dependency in nvrtc backend. Raise ImportError with detailed installation instructions instead of logging a warning.
      
      * Enhance nvrtc backend error handling by introducing a flag to check for cuda-python availability. Raise ImportError with detailed installation instructions during initialization if the nvrtc backend is unavailable, improving user experience and clarity.
      
      * Update README.md to include recent NVRTC Backend addition, highlighting reduced compilation time for CUDA templates.
      
      * fix tl_templates
      
      * ensure CUDA context
      
      ---------
      Co-authored-by: default avatarLeiWang1999 <leiwang1999@outlook.com>
      17f7394f
  2. 26 May, 2025 1 commit
    • Lei Wang's avatar
      [Enhancement] Add atomicAdd for FLOAT16x2 and FLOAT16x4 (#522) · 46798f25
      Lei Wang authored
      * [Enhancement] Add atomic addition functions for FLOAT16x2 and FLOAT16x4 in CUDA
      
      * Introduced `AtomicAddx2` and `AtomicAddx4` functions for performing atomic addition operations on double-width float types in CUDA.
      * Updated `customize.py` to include the new `atomic_addx4` function for external calls.
      * Modified `__init__.py` to export the new atomic addition function, ensuring accessibility in the module.
      
      * lint fix
      46798f25
  3. 09 May, 2025 1 commit
    • Lei Wang's avatar
      [Feature] Implement fast integer power operation and related API (#466) · 1f5eb492
      Lei Wang authored
      * [Refactor] Enhance TMA barrier validation and support for additional architectures (#463)
      
      * Updated the TMA barrier validation in `inject_tma_barrier.cc` to check for non-empty `barrier_id_to_range_` before raising an error for missing `create_list_of_mbarrier`.
      * Refactored architecture checks in `phase.py` to utilize a new constant `SUPPORTED_TMA_ARCHS`, allowing for easier updates and improved readability in the target architecture validation logic.
      
      * [Feature] Implement fast integer power operation and related API
      
      * Added a new math operation `tl.power_of_int` in `math.cc` for efficient integer exponentiation.
      * Introduced a corresponding Python API `pow_of_int` in `tir/op.py` to facilitate usage in TileLang.
      * Enhanced `common.h` with a template function for integer power calculations.
      * Updated documentation to reflect the new functionality and usage examples.
      1f5eb492
  4. 06 May, 2025 1 commit
    • Lei Wang's avatar
      [Feature] Add TILELANG_CHECK_LAST_ERROR macro for improved error handling in CUDA and HIP (#450) · 0a8c8b99
      Lei Wang authored
      * [Feature] Add TILELANG_CHECK_LAST_ERROR macro for improved error handling in CUDA and HIP
      
      * Introduced TILELANG_CHECK_LAST_ERROR macro to streamline error checking for kernel launches in both CUDA and HIP.
      * Updated kernel launch code in wrapper.py to utilize the new macro, enhancing readability and maintainability.
      * This change improves error reporting by providing detailed messages when kernel execution fails.
      
      * [Refactor] Standardize error message formatting in TILELANG_CHECK_LAST_ERROR macro
      
      * Updated the TILELANG_CHECK_LAST_ERROR macro in both CUDA and HIP implementations to ensure consistent formatting of error messages.
      * Enhanced readability by aligning the error message structure across different platforms, improving maintainability of error handling code.
      0a8c8b99
  5. 29 Apr, 2025 1 commit
    • Lei Wang's avatar
      [Bugfix] Fix layout inference for free fragment buffer (#443) · 2ea45ae9
      Lei Wang authored
      * [Enhancement] Improve layout inference accuracy in ParallelOp (#441)
      
      * Added logic to use non-replicated buffers as source buffers for more accurate layout inference.
      * Enhanced comments to clarify the rationale behind buffer selection in layout inference process.
      
      * [Enhancement] Add error handling macros and refactor loop partitioning logic
      
      * Introduced TILELANG_CHECK macro for improved error handling in CUDA and HIP code, providing detailed error messages for kernel launches.
      * Enhanced loop partitioning logic to handle fragment buffers more effectively, ensuring correct replication based on thread extent.
      * Added logging for thread range in PlanLoopPartition to aid in debugging and performance analysis.
      * Updated pass configuration management to streamline vectorization control in the optimization process.
      
      * lint fix
      
      * remove debug print
      2ea45ae9
  6. 11 Apr, 2025 1 commit
    • Lei Wang's avatar
      [Language] Introduce `T.any_of` and `T.all_of` to reduce a bool arrary (#371) · c4638d65
      Lei Wang authored
      
      
      * [Enhancement] Introduce logical operations `any_of` and `all_of` for buffer checks
      
      - Added new logical operations `any_of` and `all_of` to the TileLang language interface, allowing users to check conditions across buffer elements.
      - Implemented corresponding intrinsic calls for CUDA, enhancing the functionality of the TileLang framework.
      - Updated the `allocate.py` to handle boolean types correctly in shared memory allocations.
      - Introduced tests for the new logical operations to ensure correctness and performance.
      Co-authored-by: default avatarZhiwen Mo <zhiwen.mo25@ic.ac.uk>
      
      * lint fix
      
      ---------
      Co-authored-by: default avatarZhiwen Mo <zhiwen.mo25@ic.ac.uk>
      c4638d65
  7. 03 Apr, 2025 1 commit
  8. 28 Mar, 2025 1 commit
  9. 27 Mar, 2025 1 commit
    • Lei Wang's avatar
      [Bugfix] Enable bfloat16 atomic operations only for CUDA architectures greater than 7.5 (#291) · 83412458
      Lei Wang authored
      * [Refactor] Improve flash attention example and layout comparison logic
      
      - Removed unnecessary annotation for `lse_local_split` in the flash attention example to streamline the code.
      - Updated the handling of `lse_local_split` to utilize parallel processing for better performance.
      - Refactored kernel compilation and profiling logic to enhance clarity and maintainability in the flash attention example.
      - Added a condition in `FragmentNode::IsEqual` to handle broadcast cases, improving the robustness of layout comparisons.
      
      * lint fix
      
      * [Enhancement] Add support for shared memory scope in Fill operation
      
      - Introduced handling for `shared.dyn` and `shared` memory scopes in the Fill operation.
      - Implemented parallel operation and layout inference for improved performance in shared memory scenarios.
      - Updated thread loop partitioning and vectorization logic to accommodate new memory scope handling.
      
      * [Refactor] Remove deprecated decorator and enhance Cython kernel handling
      
      - Removed the deprecated decorator from the main module and added a new implementation in the utils module for better organization.
      - Introduced a pointer map in the Cython kernel adapter to manage pointer arguments, improving runtime shape resolution.
      - Updated the Cython kernel wrapper to utilize the new pointer map for handling kernel arguments.
      - Enhanced error checking in the tensor utility functions to ensure static shapes are enforced.
      - Added a new proxy module for buffer and tensor handling, streamlining the interface for TIR programs.
      
      * [Feature] Add matrix multiplication test and kernel implementation
      
      - Introduced a new test file `test_tilelang_language_ptr.py` that implements a matrix multiplication function using TileLang's primitives.
      - The `matmul_test` function defines a kernel for performing tile-level GEMM operations with customizable block sizes and data types.
      - Added a `run_matmul` function to compile and execute the kernel, along with a test function to validate the implementation.
      - Updated the `proxy.py` file to enhance type handling for buffer and tensor proxies, ensuring compatibility with TIR programs.
      - Minor formatting improvements in `deprecated.py` for better readability.
      
      * lint fix
      
      * [Refactor] Update tensor creation in matrix multiplication test
      
      - Replaced `T.Tensor.from_ptr` with `T.make_tensor` in `matmul_test` for improved clarity and consistency.
      - Updated imports in `__init__.py` to include `make_tensor`.
      - Added `make_tensor` function in `proxy.py` to streamline tensor creation from pointers.
      
      * [Refactor] Update tensor definitions across multiple files
      
      - Replaced instances of `T.Tensor` with updated tensor definitions in various benchmark and example files to enhance consistency and clarity.
      - Adjusted tensor shapes and types in functions related to matrix multiplication, attention mechanisms, and other operations.
      - Improved documentation in README and example files to reflect changes in tensor usage.
      
      * lint fix
      
      * [Refactor] Update tensor types in attention and matrix multiplication examples
      
      - Replaced instances of `T.Tensor` with `T.SharedTensor` and `T.FragmentTensor` in various attention and matrix multiplication functions to improve consistency and clarity.
      - Adjusted tensor definitions in benchmark and example files to align with the new tensor types.
      - Enhanced the overall structure and readability of the code by standardizing tensor usage across multiple files.
      
      * lint fix
      
      * [Refactor] Update tensor types in GEMM example and test files
      
      - Replaced instances of `T.Tensor` with `T.LocalTensor` and `T.Buffer` in the GEMM example and related test functions to improve consistency and clarity.
      - Enhanced the overall structure of the code by standardizing tensor usage across multiple files, aligning with recent updates in tensor definitions.
      
      * [Refactor] Update tensor usage in customize.py
      
      - Replaced instances of `T.Tensor` with `T.Buffer` in the `reshape` and `view` functions to enhance consistency with recent tensor definitions.
      - Improved code clarity by standardizing buffer usage across the file.
      
      * [Refactor] Update tensor types in test_tilelang_transform_annotate_device_regions.py
      
      - Replaced instances of `T.Tensor` with `T.Buffer` in the `before` and `expected` methods of the `TestAnnotateThreadExtent` and `TestAnnotateDeviceScope` classes to enhance consistency with recent tensor definitions.
      - Improved code clarity by standardizing buffer usage across the test file.
      
      * [Refactor] Update tensor types to SharedBuffer and FragmentBuffer
      
      - Replaced instances of `T.SharedTensor` and `T.FragmentTensor` with `T.SharedBuffer` and `T.FragmentBuffer` across multiple benchmark, example, and test files to enhance consistency with recent tensor definitions.
      - Improved code clarity and structure by standardizing buffer usage in attention and matrix multiplication functions.
      
      * [Refactor] Introduce Tensor alias for Buffer in proxy.py
      
      - Added a new alias `Tensor` for `Buffer` in `proxy.py` to facilitate JIT compilation, ensuring that inputs and outputs are mapped with `torch.Tensor`.
      - This change enhances clarity and consistency in tensor usage across the codebase.
      
      * [Refactor] Revamp cache management and enhance documentation in env.py and proxy.py
      
      - Replaced global cache functions with a CacheState class to improve encapsulation and management of kernel caching.
      - Updated the `from_ptr` method in BufferProxy and BaseTensorProxy classes to include detailed docstrings for better clarity on parameters and return values.
      - Enhanced class docstrings across various proxy classes to provide clearer descriptions of their purpose and functionality, improving overall code documentation.
      
      * [Refactor] Update imports in __init__.py for tir compatibility
      
      - Added imports for `prim_func` and `tir.op` to enhance compatibility with the upstream tir script.
      - Marked imports with `# noqa: F401` to suppress linting warnings for unused imports, indicating future removal once compatibility is achieved.
      
      * lint fix
      
      * [Refactor] Update imports in tir.ir.py for improved compatibility
      
      - Removed unused import of `PrimExpr` from `tvm.script.ir_builder.tir` and replaced it with the correct import from `tvm.tir`.
      - Added import for `tir.ir` in `__init__.py` to enhance module accessibility and maintain compatibility with upstream changes.
      
      * [Refactor] Update function calls in tir.ir.py to return values
      
      - Modified the `serial`, `parallel`, `vectorized`, `unroll`, `thread_binding`, and `grid` functions to return the results of their respective calls to `_ir` methods, enhancing clarity and ensuring proper value propagation.
      
      * bugfix
      
      * [Enhancement] Add support for uint16 data type in TLCUDASourceWrapper
      
      - Introduced the "uint16" mapping to the type dictionary in the TLCUDASourceWrapper class, expanding the range of supported data types for CUDA operations.
      
      * bugfix
      
      * [Update] Sync subproject commit and modify CUDA atomic add functions
      
      - Updated the subproject commit for TVM to edd35139a0481e9359aa269e3e50450b95ba2f5a.
      - Commented out the CUDA capability check in the example convolution script to prevent execution errors.
      - Refactored atomic add functions for BFLOAT16 in common.h to include a conditional compilation directive for improved compatibility with CUDA architectures.
      83412458
  10. 20 Mar, 2025 1 commit
    • Lei Wang's avatar
      [Refactor] Phaseout LLVM Dependency by Making it Optional (#247) · f2e99180
      Lei Wang authored
      * remove llvm build
      
      * [Refactor] Update kernel compilation and profiling in examples
      
      - Replaced `tilelang.lower` with `tilelang.compile` in multiple example scripts to streamline kernel compilation.
      - Updated profiling calls to utilize the new `get_profiler` method, enhancing performance measurement consistency.
      - Adjusted assertions and benchmarking methods to align with the new profiling structure across various examples, ensuring correctness and clarity in performance evaluations.
      
      * lint fix
      
      * License Update
      
      * [Refactor] Improve code formatting and documentation in CUDA header and HIP runtime files
      
      - Adjusted formatting in `cuda.h` for better readability, including alignment of comments and struct fields.
      - Cleaned up whitespace and improved comment clarity in `rt_mod_hip.cc` to enhance code maintainability.
      
      * [Refactor] Enhance formatting and clarity in CUDA header and HIP runtime files
      
      - Improved comment alignment and readability in `cuda.h`.
      - Cleaned up whitespace and formatting in `rt_mod_hip.cc` to enhance maintainability.
      
      * lint fix
      
      * lint fix
      
      * lint fix
      
      * lint fix
      
      * fix
      
      * License update
      
      * [Enhancement] Update JITKernel to use artifact for kernel source
      
      - Assigned the generated artifact to `self.artifact` for better management.
      - Updated kernel source references to use `artifact.kernel_source` for consistency in execution backend handling.
      
      * lint fix
      
      * Add @tilelang.testing.requires_llvm decorator to vectorization tests
      
      * Enhance setup.py and env.py for library management
      
      - Added functionality to remove original files after copying in CMakeBuild.
      - Updated TVM_LIBRARY_PATH in env.py to include the PyPI build library path for better integration.
      
      * Refactor TVM_LIBRARY_PATH assignment for improved readability in env.py
      
      * Refactor CMakeBuild file handling in setup.py
      
      - Added a check to ensure the target library directory exists before copying .so files.
      - Improved the logic for creating the target directory and copying files to enhance robustness.
      
      * bugfix
      
      * Rename BuildTLDebug to BuildTileLangCUDAWithoutCompile and update registration. Add @tilelang.testing.requires_llvm decorator to multiple tests for LLVM requirement.
      
      * lint fix
      
      * Enhance TileLang code generation by adding support for device code generation without compilation. Updated `host_codegen` and `device_codegen` functions to include new transformations and registration for `tilelang_hip_without_compile`. Refactored JIT kernel adapters to accommodate host and device modules, improving overall integration and flexibility.
      
      * lint fix
      
      * Add support for C target in device code generation
      
      - Updated `device_codegen_without_compile` to include handling for the C target by registering the `tilelang_cpp` function.
      
      * [Enhancement] Implement auto-clear cache feature based on environment variable
      
      * Added TILELANG_CLEAR_CACHE environment variable to control cache clearing.
      * Updated CI workflow to set TILELANG_CLEAR_CACHE during testing.
      * Modified cache initialization to clear cache if TILELANG_CLEAR_CACHE is set to true.
      
      * [Refactor] Update kernel invocation and import paths in tests and cache
      
      * Changed kernel invocation in `test_tilelang_kernel_dequantize_gemm.py` to return the result.
      * Updated import statements in `test_tilelang_kernel_int4_gemm_mma.py` to use `bitblas` instead of `tilelang`.
      * Refactored paths for artifact and parameters in `kernel_cache.py` for better maintainability.
      
      * [Refactor] Clean up whitespace and improve code formatting in kernel_cache.py
      
      * Removed unnecessary blank lines and adjusted spacing for better readability in the KernelCache class.
      * Enhanced overall code formatting to align with project standards.
      
      * [Enhancement] Add bfloat16 test case and improve kernel caching logic
      
      * Introduced a new test case for bfloat16 matrix multiplication in `test_tilelang_kernel_gemm_mma_intrinsic.py`.
      * Updated `KernelCache` to handle multiple kernel source files and improve error handling during saving and loading.
      * Refactored `JITKernel` to support instantiation from a database, enhancing flexibility in kernel management.
      * Adjusted `CtypesKernelAdapter` and `CythonKernelAdapter` to utilize the new kernel loading mechanism from the database.
      * Improved code formatting and readability across several files.
      
      * lint fix
      
      * Update bfloat16 matrix multiplication test case to use larger dimensions for improved coverage
      f2e99180
  11. 17 Mar, 2025 1 commit
    • Lei Wang's avatar
      [Bugfix] Disable force inline for ldmatrix (#227) · a1da26f2
      Lei Wang authored
      * Refactor GEMM and Bulk Copy operations to enhance layout handling and support for Hopper architecture
      
      - Update `ComputeWarpPartition` to include a new parameter for Hopper WGMMA support.
      - Modify layout checks in `LowerBulkCopy` to accommodate new GEMM layout types.
      - Enhance layout inference logic in `InferLayout` for better compatibility with Hopper architecture.
      - Include necessary header files for built-in operations and layout inference improvements.
      
      * Refactor parameter formatting in CUDA matrix load functions for consistency
      
      - Adjusted parameter alignment in `ptx_ldmatrix_x1`, `ptx_ldmatrix_x2`, `ptx_ldmatrix_x4`, and their transposed counterparts for improved readability.
      - Added a blank line in `get_tensor_supply` function in `tensor.py` to enhance code clarity.
      
      * Enhance tensor supply generation in `get_tensor_supply` function
      
      - Introduced handling for unsigned integer and float8 tensor types, allowing for specific random tensor generation based on data type.
      - Updated logic to return appropriate random tensors for different data types, improving flexibility and functionality of tensor supply generation.
      - Refactored existing conditions for clarity and maintainability.
      
      * Fix tensor supply generation logic in `get_tensor_supply` function
      
      - Updated the variable reference from `tensor` to `param` to ensure correct handling of tensor data types.
      - Improved the accuracy of unsigned integer and float8 checks for tensor supply generation, enhancing functionality and reliability.
      
      * Enhance tensor supply checks in `get_tensor_supply` function
      
      - Updated the logic for identifying unsigned integers and float8 types by using `removeprefix` on the dtype string, improving accuracy in tensor supply generation.
      - Ensured better handling of tensor data types for more reliable random tensor generation based on the updated checks.
      
      * Enhance KernelParam functionality and improve tensor supply checks
      
      - Added methods `is_unsigned` and `is_float8` to the `KernelParam` class for better type identification of parameters.
      - Updated the `get_tensor_supply` function to utilize the new methods, improving clarity and accuracy in tensor supply generation based on parameter types.
      a1da26f2
  12. 04 Mar, 2025 1 commit
    • Lei Wang's avatar
      [Bugfix] Add missing definition for AtomicAdd (#138) · 3960d3d0
      Lei Wang authored
      * Change default log level from WARNING to INFO in TileLang initialization
      
      * Refactor Flash Attention Variable-Length MHA Example with Cython Backend Support
      
      - Update `example_mha_fwd_varlen.py` to use Cython backend for kernel compilation
      - Remove unused imports and simplify function signature
      - Modify `flashattn` function to handle max sequence length as a separate argument
      - Update kernel call to include max sequence length parameter
      - Improve code readability and remove commented-out code
      - Add print statement to confirm successful assertion
      
      * Refactor code formatting in TileLang lowering and example files
      
      - Improve line breaks and code formatting in `lower.py`, `wrapper.py`, and `tensor.py`
      - Simplify line breaks and reduce unnecessary whitespace
      - Enhance code readability by adjusting indentation and line breaks
      - Update example MHA forward pass script with cleaner tensor initialization
      
      * Update TileLang kernel test with import path changes for MMA layout and macro generator
      
      - Modify import statements in test_tilelang_kernel_dequantize_gemm.py
      - Replace bitblas imports with tilelang.intrinsics imports for MMA-related utilities
      - Update main function to use tilelang.testing.main()
      
      * Add Block Sparse Attention Examples for TileLang and Triton
      
      - Implement block sparse attention kernels for both TileLang and Triton
      - Add utility functions for generating sparse attention masks using top-k and threshold methods
      - Support causal and variable-length attention scenarios
      - Include test cases for different sequence length configurations
      - Demonstrate block-level sparse attention with configurable parameters
      
      * Refactor Block Sparse Attention Examples with Code Style Improvements
      
      - Improve code formatting in block_sparse_attn_tilelang.py and block_sparse_attn_triton.py
      - Enhance readability by adjusting line breaks and indentation
      - Simplify kernel and function calls with better formatting
      - Add whitespace and line break improvements for better code clarity
      
      * Enhance Layout Plotting with Multi-Replication and Dynamic Visualization
      
      - Update plot_layout function to support multiple replications in thread and value mapping
      - Improve thread and value mapping to handle replicated layouts
      - Dynamically adjust figure size and legend positioning
      - Add print statements for saved plot file paths
      - Modify example fragment_mma_load_a.py to uncomment and enable warp and block layout plotting
      
      * Refactor AtomicAdd functions in CUDA common header
      
      - Implement a generic template for AtomicAdd function
      - Specialize templates for half_t, bfloat16_t, and pointer types
      - Reorganize and clean up existing AtomicAdd implementations
      - Improve type handling and conversion in atomic operations
      
      * Remove unused import in MHA backward test file
      
      - Remove unnecessary argparse import from test_tilelang_kenrel_mha_bwd.py
      - Add blank line for improved code formatting
      - Minor code cleanup in test file
      3960d3d0
  13. 24 Feb, 2025 1 commit
    • Lei Wang's avatar
      [Dev] Support vectorized value pack and atomicAdd for BFloat16 DType (#116) · 62843b88
      Lei Wang authored
      * Add DeepSeek MLA decode example with Flash Attention implementation
      
      * Add GEMM SplitK and StreamK example implementations
      
      This commit introduces two new example scripts demonstrating advanced GEMM (matrix multiplication) techniques:
      - `example_tilelang_gemm_splitk.py`: Implements a Split-K GEMM kernel using TileLang
      - `example_tilelang_gemm_streamk.py`: Implements a Stream-K GEMM kernel using TileLang
      
      Both examples showcase different parallel computation strategies for matrix multiplication, with comprehensive testing using PyTorch reference implementations.
      
      * Refactor GEMM SplitK and StreamK example implementations
      
      Clean up and improve code formatting for the SplitK and StreamK GEMM example scripts:
      - Remove unused import (Profiler) in splitk example
      - Simplify line breaks and improve code readability
      - Standardize indentation and remove unnecessary whitespace
      - Optimize atomic add and copy operations for better clarity
      
      * Add block sparse attention benchmarks for multiple libraries
      
      This commit introduces comprehensive block sparse attention benchmarks for different libraries:
      - TileLang block sparse FMHA implementation
      - Triton block sparse FMHA implementation
      - PyTorch reference block sparse FMHA implementation
      - FlashAttention dense FMHA reference implementation
      
      The benchmarks include:
      - Configurable benchmark parameters (batch size, heads, sequence length, etc.)
      - Sparse mask generation using top-k and threshold methods
      - Performance measurement for different sparse attention configurations
      - Utility functions for mask generation and benchmarking
      
      * Refactor block sparse attention benchmarks with code style improvements
      
      - Add Ruff linter ignore comments to benchmark files
      - Improve code formatting and line breaks
      - Remove unused imports
      - Standardize print statement formatting
      - Enhance code readability across multiple library benchmarks
      
      * lint fix
      
      * Add CUDA atomic operations for BFLOAT16 and update function naming
      
      - Implement AtomicAdd functions for BFLOAT16 and BFLOAT16x2 in CUDA common header
      - Rename existing atomic add functions to use PascalCase (atomicAdd -> AtomicAdd)
      - Add a new __pack_nv_bfloat162 function for packing BFLOAT16 values
      - Update kernel and language customization to use new function names
      - Add return type annotations in profiler module
      
      * lint fix
      62843b88
  14. 09 Feb, 2025 1 commit
    • Lei Wang's avatar
      [Tools] Introduce `plot_layout` to visualize the fragment layout (#68) · f9b6a92e
      Lei Wang authored
      * [Enhancement] Add VectorizeLoop function and update imports for compatibility
      
      * [CI][Test] Improve test cases for vectorization and fix typos in parser comments
      
      * lint fix
      
      * Fix incorrect module reference for VectorizeLoop transformation
      
      * Refactor vectorize_loop transformation by removing unused extent mutation logic
      
      * [Enhancement] Add support for FP8 data types and global barriers in CUDA codegen
      
      * Fix formatting in CUDA FP8 header file for consistency
      
      * Refactor CI workflow to use 'tilelang_ci' virtual environment and update CUDA type printing for better clarity
      
      * Update submodule 'tvm' to latest commit for improved functionality
      
      * Refactor execution backend references from 'dl_pack' to 'dlpack' for consistency and clarity; add apply_simplify function to simplify PrimFunc or IRModule.
      
      * Refactor CUDA code for improved readability; clean up formatting and remove unnecessary whitespace in multiple files.
      
      * Refactor import statement in test_tilelang_kernel_dequantize_gemm.py to use 'tilelang.language' for consistency
      
      * Add CUDA requirements to FP8 test cases and update references for clarity
      
      * Add a blank line for improved readability in test_tilelang_kernel_fp8_gemm_mma.py
      
      * Fix data type in reference result calculation for consistency in test_tilelang_kernel_gemm_mma_intrinsic.py
      
      * Add CUDA requirements and FP8 test cases for matmul and gemv simulations
      
      * Remove debug print statements and use tilelang's testing assertion for result validation in test_tilelang_kernel_gemm_mma_intrinsic.py
      
      * Remove outdated comment regarding FP8 tests in test_tilelang_kernel_gemv_simt.py
      
      * Add BF16 support to matrix multiplication and introduce corresponding test cases
      
      * Add a blank line for improved readability in BF16 GEMM test
      
      * Update acknowledgements in README to include supervision by Zhi Yang at Peking University
      
      * enhance acknowledgement
      
      * Replace tutorial on memory layout optimization with new tutorial on writing high-performance kernels with thread primitives
      
      * Update subproject commit for TVM dependency
      
      * Update subproject commit for TVM dependency
      
      * Add int4_t type and functions for packing char values in CUDA common header
      
      * Add plot_layout example and implement GetForwardVars method in layout classes
      
      * Refactor code for improved readability by adjusting line breaks and formatting in layout and test files
      
      * Fix formatting by removing unnecessary line break in layout.h
      
      * Refactor make_int4 function for improved readability by adjusting parameter formatting
      f9b6a92e
  15. 06 Feb, 2025 1 commit
    • Lei Wang's avatar
      [Dev] Support FP8 Codegen for cuda backend (#64) · 61de5288
      Lei Wang authored
      * [Enhancement] Add VectorizeLoop function and update imports for compatibility
      
      * [CI][Test] Improve test cases for vectorization and fix typos in parser comments
      
      * lint fix
      
      * Fix incorrect module reference for VectorizeLoop transformation
      
      * Refactor vectorize_loop transformation by removing unused extent mutation logic
      
      * [Enhancement] Add support for FP8 data types and global barriers in CUDA codegen
      
      * Fix formatting in CUDA FP8 header file for consistency
      
      * Refactor CI workflow to use 'tilelang_ci' virtual environment and update CUDA type printing for better clarity
      
      * Update submodule 'tvm' to latest commit for improved functionality
      
      * Refactor execution backend references from 'dl_pack' to 'dlpack' for consistency and clarity; add apply_simplify function to simplify PrimFunc or IRModule.
      
      * Refactor CUDA code for improved readability; clean up formatting and remove unnecessary whitespace in multiple files.
      
      * Refactor import statement in test_tilelang_kernel_dequantize_gemm.py to use 'tilelang.language' for consistency
      
      * Add CUDA requirements to FP8 test cases and update references for clarity
      
      * Add a blank line for improved readability in test_tilelang_kernel_fp8_gemm_mma.py
      
      * Fix data type in reference result calculation for consistency in test_tilelang_kernel_gemm_mma_intrinsic.py
      
      * Add CUDA requirements and FP8 test cases for matmul and gemv simulations
      
      * Remove debug print statements and use tilelang's testing assertion for result validation in test_tilelang_kernel_gemm_mma_intrinsic.py
      
      * Remove outdated comment regarding FP8 tests in test_tilelang_kernel_gemv_simt.py
      61de5288
  16. 11 Jan, 2025 2 commits
    • Lei Wang's avatar
      [Lint] Overall Typo and Linting Fixes (#13) · fa511857
      Lei Wang authored
      * README.md fixed
      
      * update test ci
      
      * Lint and Typo Fix
      
      * Clang Format Lint Fix
      fa511857
    • Lei Wang's avatar
      [Initialization] Migration of Codebase from Dev Branch into Main (#10) · 57ab687c
      Lei Wang authored
      
      
      * Add format.sh script for code formatting and linting
      
      * docs update
      
      * center align the title
      
      * lint fix
      
      * add ignore
      
      * Add .gitignore for 3rdparty directory
      
      * Add requirements-dev.txt, requirements-test.txt, and requirements.txt
      
      * 3rdparty
      
      * Add gemm.h, CMakeLists.txt, _ffi_api.py, __init__.py, runtime.h, reduce.h, loop_partition.h, utils.h, and loop_vectorize.h
      
      * Refactor CMakeLists.txt and include statements
      
      - Update CMakeLists.txt to use a newer version of CMake and add project name
      - Remove unnecessary include directories
      
      Fix include paths in layout.cc, codegen.cc, codegen.h, rt_mod.cc, frontend_legalize.cc, inject_pipeline.cc, layout_inference.cc, loop_vectorize.cc, and lower_tile_op.cc
      
      - Update include paths to use relative paths instead of absolute paths
      
      * Update submodule for 3rdparty/tvm
      
      * update
      
      * load dll first
      
      * Refactor CMakeLists.txt and include statements
      
      * Refactor CMakeLists.txt and include statements
      
      * git keep update
      
      * Refactor CMakeLists.txt and include statements
      
      * Refactor CMakeLists.txt and include statements
      
      * refactor code structure
      
      * Update Readme
      
      * CMakeLists Customized
      
      * update readme
      
      * update README
      
      * update readme
      
      * update usage
      
      * with TVM_IMPORT_PYTHON_PATH to handle own tvm build python import
      
      * annotate lower transform global func with `transform` prefix
      
      * Migrate Simplify Pass from tilelang tvm branch
      
      * enhance system environment handling with __init__ and CMake
      
      * Initial commit
      
      * CODE_OF_CONDUCT.md committed
      
      * LICENSE committed
      
      * README.md committed
      
      * SECURITY.md committed
      
      * SUPPORT.md committed
      
      * CODE_OF_CONDUCT Commit
      
      * LICENSE Commit
      
      * SECURITY Commit
      
      * SUPPORT Commit
      
      * Modify Support
      
      * Update README.md
      
      * security ci update
      
      * remove examples
      
      * Update and implement clang-format
      
      * add composable kernel components
      
      * Migrate from latest update
      
      * submodule update
      
      * Test update
      
      * Update License
      
      * Spell check
      
      * lint fix
      
      * add clang-tidy to apply static analysis for c source
      
      * update tilelang examples
      
      * Update Install Docs
      
      * Refactor filetree
      
      * Enhance Install
      
      * conflict resloved
      
      * annotate_version
      
      * Initial Update
      
      * test fix
      
      * install
      
      * Implement setup.py
      
      * lint fix
      
      * Separate Init
      
      * Separate test
      
      * docker file commit
      
      * add logo
      
      * Update Readme and Examples
      
      * update readme
      
      * update logo
      
      * Implement AMD Installation
      
      * Add License
      
      * Update AMD MI300x Benchmark
      
      * update README
      
      * update mi300 benchmark scripts
      
      * update ignore
      
      * enhance build scirpt
      
      * update image
      
      * enhance setup.py to remove duplicated libraries
      
      * remove debug files
      
      * update readme
      
      * update image
      
      * update gemm examples
      
      * update flashattention README
      
      * readme update
      
      * add cmake into requirements
      
      * libinfo fix
      
      * auto update submodule
      
      * lint fix
      
      * Fix AMD Build and Test
      
      * Update check for transpose attribute for CDNA Arch
      
      * typo fix for amd
      
      * Implement Matmul Benchmark
      
      * Refactor Code
      
      * [TypoFix] Fix GEMM Example
      
      * [Docs] Init Linear Attention README
      
      * [TYPO] Typo fix
      
      * [Lint] Lint Fix
      
      * enhance example with intrinsics
      
      * [Enhancement] Improve Buffer Collection during IR Parser
      
      * [Dev] Introduce Current classmethod to get current frame
      
      * submodule update
      
      * fake test pass update
      
      * support thread_extent_api
      
      * code optimize
      
      * Add GEMM function implementation for matrix multiplication
      
      * Update logging format to reflect TileLang in logger messages
      
      * Refactor CMakeLists.txt for improved readability and set default build type to Release
      
      * Support Gemm SS Primitives Implementation
      
      * [README] Upload Tile Language Logo (#5)
      
      * update logo
      
      * Update README.md to enhance formatting and center the title
      
      ---------
      Co-authored-by: default avatarmicrosoft-github-operations[bot] <55726097+microsoft-github-operations[bot]@users.noreply.github.com>
      Co-authored-by: default avatarMicrosoft Open Source <microsoftopensource@users.noreply.github.com>
      Co-authored-by: default avatarYu Cheng <yu.cheng@pku.edu.cn>
      57ab687c