- 22 Mar, 2025 1 commit
-
-
Chaofan Lin authored
* fix tune args * lint * Refactor gemm example and autotuner logging - Updated `ref_program` in `example_gemm.py` to return the result of matrix multiplication instead of modifying an input parameter. - Changed logging filename in `__init__.py` from 'out.log' to 'autotuner.log' for better clarity. - Modified JIT kernel compilation process to include `out_idx` directly in the adapter creation, enhancing flexibility. - Improved validation of `result_idx` in `BaseKernelAdapter` to ensure it falls within valid bounds. * Refactor `ref_program` in `benchmark_matmul_intrinsic.py` to use the `@` operator for matrix multiplication instead of `torch.matmul`, simplifying the implementation by removing the unused parameter `C`. --------- Co-authored-by:LeiWang1999 <leiwang1999@outlook.com>
-
- 04 Mar, 2025 1 commit
-
-
Yu Cheng authored
- Add non-split flash attention macro for more flexible kernel generation - Implement `main_no_split` function to handle single-split scenarios - Modify kernel selection logic to dynamically choose between split and non-split implementations
-
- 27 Feb, 2025 1 commit
-
-
Lei Wang authored
* refactor code * enhance tutorial * Enhance error handling and code generation in CUDA and TileLang components This commit introduces several improvements across multiple files: - Added more informative error messages in GEMM layout checks - Updated CUDA codegen to support more flexible function signature generation - Improved TMA descriptor initialization and kernel dispatch logic - Refined library generation and source code parsing utilities - Enhanced error handling in various adapter and wrapper classes * Add thread tag validation for warp specialization Introduce a ThreadTagChecker to validate that a PrimFunc only uses threadIdx.x before applying warp specialization. This prevents unintended transformations on kernels with complex thread binding and provides a clear warning to users about potential issues with warp specialization. * Update TileLang Profiling and Compilation in Flash Decoding Examples Refactor the profiling and compilation workflow in two flash decoding example scripts: - Replace `tilelang.lower()` and `tilelang.Profiler()` with `tilelang.compile()` - Simplify profiler initialization using `get_profiler()` - Update method calls to use the new profiler and compiled kernel objects - Maintain existing performance benchmarking and validation logic * Refactor and clean up code formatting in TileLang testing and adapter modules This commit includes several code style and formatting improvements: - Adjust whitespace and line breaks in test files - Improve code formatting in CUDA source wrapper and adapter utilities - Enhance readability of function calls and argument handling - Remove unnecessary whitespace and standardize indentation - Simplify function signatures and argument parsing * Refactor CUDA codegen and improve code formatting This commit includes several improvements to CUDA code generation and formatting: - Enhance function signature generation in CodeGenTileLangCUDA - Improve code formatting and readability in CUDA-related files - Simplify parameter handling and type annotations - Clean up whitespace and line breaks in codegen and layout files --------- Co-authored-by:Ubuntu <dlisuser@h100testl730RPS.xu5snccwrbtejcqqalluoku5hb.xx.internal.cloudapp.net>
-
- 26 Feb, 2025 1 commit
-
-
Lei Wang authored
* Add DeepSeek MLA decode example with Flash Attention implementation * Add GEMM SplitK and StreamK example implementations This commit introduces two new example scripts demonstrating advanced GEMM (matrix multiplication) techniques: - `example_tilelang_gemm_splitk.py`: Implements a Split-K GEMM kernel using TileLang - `example_tilelang_gemm_streamk.py`: Implements a Stream-K GEMM kernel using TileLang Both examples showcase different parallel computation strategies for matrix multiplication, with comprehensive testing using PyTorch reference implementations. * Refactor GEMM SplitK and StreamK example implementations Clean up and improve code formatting for the SplitK and StreamK GEMM example scripts: - Remove unused import (Profiler) in splitk example - Simplify line breaks and improve code readability - Standardize indentation and remove unnecessary whitespace - Optimize atomic add and copy operations for better clarity * Add block sparse attention benchmarks for multiple libraries This commit introduces comprehensive block sparse attention benchmarks for different libraries: - TileLang block sparse FMHA implementation - Triton block sparse FMHA implementation - PyTorch reference block sparse FMHA implementation - FlashAttention dense FMHA reference implementation The benchmarks include: - Configurable benchmark parameters (batch size, heads, sequence length, etc.) - Sparse mask generation using top-k and threshold methods - Performance measurement for different sparse attention configurations - Utility functions for mask generation and benchmarking * Refactor block sparse attention benchmarks with code style improvements - Add Ruff linter ignore comments to benchmark files - Improve code formatting and line breaks - Remove unused imports - Standardize print statement formatting - Enhance code readability across multiple library benchmarks * lint fix * Add CUDA atomic operations for BFLOAT16 and update function naming - Implement AtomicAdd functions for BFLOAT16 and BFLOAT16x2 in CUDA common header - Rename existing atomic add functions to use PascalCase (atomicAdd -> AtomicAdd) - Add a new __pack_nv_bfloat162 function for packing BFLOAT16 values - Update kernel and language customization to use new function names - Add return type annotations in profiler module * lint fix * Add example for Group Query Attention (GQA) forward pass using Flash Attention in TileLang This commit introduces a new example script `example_gqa_fwd_bshd.py` that demonstrates: - Group Query Attention (GQA) implementation - Flash Attention forward pass - Performance benchmarking - Configurable parameters for batch, heads, sequence length, and dimension - Autotuning support - Reference implementation comparison * Refactor IR lowering pipeline into modular phases This commit introduces a new module `phase.py` to modularize the IR lowering process by splitting the complex lowering pipeline into two distinct phases: - `LowerAndLegalize`: Handles initial IR legalization and transformation - `OptimizeForTarget`: Applies target-specific optimizations The changes simplify the lowering logic in multiple files by extracting the transformation steps into reusable functions, improving code readability and maintainability. * lintfix * nas kernel * Enhance Native Sparse Attention Examples with Code Improvements and Parameter Updates - Updated example_tilelang_nsa.py and example_triton_nsa.py with code formatting and style improvements - Increased default number of heads and selected blocks in TileLang NSA example - Added Ruff linter ignore comments to reference.py - Standardized function signatures and improved code readability across NSA implementations * Add utility math functions for integer operations - Implement `next_power_of_2()` to calculate the next power of 2 for an integer - Add `cdiv()` function for ceiling division of integers * Add utility math functions for integer operations - Implement `next_power_of_2()` to calculate the next power of 2 for an integer - Add `cdiv()` function for ceiling division of integers * Refactor DeepSeek MLA Decode Example with Enhanced Flash Attention Implementation - Update flash attention kernel to support positional embeddings (PE) - Modify reference implementation to handle PE and group query attention - Increase default batch size and adjust benchmarking parameters - Improve kernel performance and readability - Add einops and torch operations for more flexible tensor manipulation * Update README.md with corrected Flash MLA Decoding example path - Modify the example link for Flash MLA Decoding to point to the correct directory - Ensure accurate navigation to the DeepSeek MLA decoding example
-
- 25 Feb, 2025 1 commit
-
-
Yu Cheng authored
-
- 23 Feb, 2025 1 commit
-
-
Yu Cheng authored
* [CI][Test] Add test cases for tilelang transform MultiVersionBuffer and WarpSpecialized * Relax the mismatch ratio restrictions in the flash_linear_attention and mha tests * [Dev] Add mha backward example * [Dev] Add mla decode example * bug fix * Add triton impl * Add gqa decode example * [Dev] Add GQA decode example * lint * delete unused triton example * set default profiler to 'auto'
-
- 25 Jan, 2025 2 commits
-
-
Yu Cheng authored
* [Dev] Add FlashDecoding example * [CI][Test] Add test cases for tilelang kernel convolution * [CI][Test] Add test cases for tilelang kernel FlashAttention * Reduce the number of stages to ensure the shared memory allocation is valid * Temporarily remove the dim128 case * lint * update einops in requirements-dev.txt * update einops in requirements-test.txt * remove einops in requirements-dev.txt
-
Lei Wang authored
* [Doc] Update documentation structure and content: add overview section, revise project name, and change theme to Furo * [Feature] Add device-side debug printing functions and integrate into kernel interface * lint fix * remove debug print * implement test for debug * lint fix * add some comments * Enhance fragment design and assert fragment print * enhance debug print * add test for msg * lint fix * format * add flash decoding exmaples * remove comment * test simplified
-