Unverified Commit d66b83c9 authored by Yu Cheng's avatar Yu Cheng Committed by GitHub
Browse files

[Example] Update GQA varlen fwd and MHA varlen fwd (#1071)

parent e57ef582
# ruff: noqa
import argparse
import torch
import tilelang
import tilelang.language as T
import tilelang.testing
from einops import rearrange, repeat
from tilelang.profiler import do_bench
from varlen_utils import generate_random_padding_mask, generate_qkv
tilelang.disable_cache()
def attention_ref(
q,
k,
v,
query_padding_mask=None,
key_padding_mask=None,
causal=False,
window_size=(-1, -1),
upcast=True,
):
if causal:
window_size = (window_size[0], 0)
dtype_og = q.dtype
if upcast:
q, k, v = q.float(), k.float(), v.float()
dim = q.shape[-1]
scale = (1.0 / dim)**0.5
k = repeat(k, "b s h d -> b s (h g) d", g=q.shape[2] // k.shape[2])
v = repeat(v, "b s h d -> b s (h g) d", g=q.shape[2] // v.shape[2])
scores = torch.einsum("bthd,bshd->bhts", q, k)
if key_padding_mask is not None:
scores.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf"))
scores = scores * scale
attention = torch.softmax(scores, dim=-1).to(v.dtype)
if query_padding_mask is not None:
attention = attention.masked_fill(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
output = torch.einsum("bhts,bshd->bthd", attention, v)
if query_padding_mask is not None:
output.masked_fill_(rearrange(~query_padding_mask, "b s -> b s 1 1"), 0.0)
return output.to(dtype=dtype_og), attention.to(dtype=dtype_og)
@tilelang.jit(
out_idx=[6], pass_configs={
tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
})
def flashattn(batch_size,
groups,
UQ,
UKV,
heads,
dim,
is_causal,
block_M=64,
block_N=64,
num_stages=1,
threads=128):
scale = (1.0 / dim)**0.5 * 1.44269504 # log2(e)
head_kv = heads // groups
q_shape = [UQ, heads, dim]
kv_shape = [UKV, head_kv, dim]
o_shape = [UQ, heads, dim]
dtype = "float16"
accum_dtype = "float"
@T.prim_func
def main(
Q_unpad: T.Tensor(q_shape, dtype),
K_unpad: T.Tensor(kv_shape, dtype),
V_unpad: T.Tensor(kv_shape, dtype),
cu_seqlens_q: T.Tensor([batch_size + 1], "int32"),
cu_seqlens_k: T.Tensor([batch_size + 1], "int32"),
max_seqlen_q: T.int32,
Output_unpad: T.Tensor(o_shape, dtype),
):
with T.Kernel(
T.ceildiv(max_seqlen_q, block_M), heads, batch_size,
threads=threads) as (bx, by, bz):
Q_shared = T.alloc_shared([block_M, dim], dtype)
K_shared = T.alloc_shared([block_N, dim], dtype)
V_shared = T.alloc_shared([block_N, dim], dtype)
O_shared = T.alloc_shared([block_M, dim], dtype)
acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
scores_max = T.alloc_fragment([block_M], accum_dtype)
scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
scores_scale = T.alloc_fragment([block_M], accum_dtype)
scores_sum = T.alloc_fragment([block_M], accum_dtype)
logsum = T.alloc_fragment([block_M], accum_dtype)
batch_idx = bz
head_idx = by
kv_head_idx = head_idx // groups
q_start_idx = cu_seqlens_q[batch_idx]
k_start_idx = cu_seqlens_k[batch_idx]
v_start_idx = cu_seqlens_k[batch_idx]
q_end_idx = cu_seqlens_q[batch_idx + 1]
k_end_idx = cu_seqlens_k[batch_idx + 1]
v_end_idx = cu_seqlens_k[batch_idx + 1]
q_current_seqlen = q_end_idx - q_start_idx
k_current_seqlen = k_end_idx - k_start_idx
v_current_seqlen = v_end_idx - v_start_idx
T.copy(
Q_unpad[q_start_idx + bx * block_M:q_start_idx + (bx + 1) * block_M, head_idx, :],
Q_shared)
for i, d in T.Parallel(block_M, dim):
if bx * block_M + i >= q_current_seqlen:
Q_shared[i, d] = 0
T.fill(acc_o, 0)
T.fill(logsum, 0)
T.fill(scores_max, -T.infinity(accum_dtype))
loop_range = T.ceildiv(k_current_seqlen, block_N)
for k in T.Pipelined(loop_range, num_stages=num_stages):
T.copy(
K_unpad[k_start_idx + k * block_N:k_start_idx + (k + 1) * block_N,
kv_head_idx, :], K_shared)
for i, d in T.Parallel(block_N, dim):
if k * block_N + i >= k_current_seqlen:
K_shared[i, d] = 0
if is_causal:
for i, j in T.Parallel(block_M, block_N):
acc_s[i, j] = T.if_then_else((bx * block_M + i >= k * block_N + j) and
(bx * block_M + i >= q_current_seqlen or
k * block_N + j >= k_current_seqlen),
-T.infinity(acc_s.dtype), 0)
else:
for i, j in T.Parallel(block_M, block_N):
acc_s[i, j] = T.if_then_else((bx * block_M + i >= q_current_seqlen or
k * block_N + j >= k_current_seqlen),
-T.infinity(acc_s.dtype), 0)
T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
T.copy(scores_max, scores_max_prev)
T.fill(scores_max, -T.infinity(accum_dtype))
T.reduce_max(acc_s, scores_max, dim=1, clear=False)
for i in T.Parallel(block_M):
scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
for i, j in T.Parallel(block_M, block_N):
acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
T.reduce_sum(acc_s, scores_sum, dim=1)
for i in T.Parallel(block_M):
logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
T.copy(acc_s, acc_s_cast)
for i, j in T.Parallel(block_M, dim):
acc_o[i, j] *= scores_scale[i]
T.copy(
V_unpad[v_start_idx + k * block_N:v_start_idx + (k + 1) * block_N,
kv_head_idx, :], V_shared)
for i, d in T.Parallel(block_N, dim):
if k * block_N + i >= v_current_seqlen:
V_shared[i, d] = 0
T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)
for i, j in T.Parallel(block_M, dim):
acc_o[i, j] /= logsum[i]
T.copy(acc_o, O_shared)
for i, d in T.Parallel(block_M, dim):
if bx * block_M + i < q_current_seqlen:
Output_unpad[q_start_idx + bx * block_M + i, head_idx, d] = O_shared[i, d]
return main
def main(batch: int = 1,
heads: int = 64,
q_seqlen: int = 2048,
k_seqlen: int = 2048,
dim: int = 128,
groups: int = 16,
is_causal: bool = False):
assert heads % groups == 0, "heads must be divisible by groups"
flops_per_matmul = 2.0 * batch * heads * q_seqlen * k_seqlen * dim
total_flops = 2 * flops_per_matmul
tilelang.testing.set_random_seed(0)
causal = False
if causal:
total_flops *= 0.5
tilelang.testing.set_random_seed(0)
dtype = torch.float16
device = torch.device("cuda")
head_kv = heads // groups
q = torch.randn(batch, q_seqlen, heads, dim, dtype=dtype, device=device, requires_grad=True)
k = torch.randn(batch, k_seqlen, head_kv, dim, dtype=dtype, device=device, requires_grad=True)
v = torch.randn(batch, k_seqlen, head_kv, dim, dtype=dtype, device=device, requires_grad=True)
query_padding_mask = generate_random_padding_mask(q_seqlen, batch, device, mode="random")
key_padding_mask = generate_random_padding_mask(k_seqlen, batch, device, mode="random")
(
q_unpad,
k_unpad,
v_unpad,
cu_seqlens_q,
cu_seqlens_k,
max_seqlen_q,
max_seqlen_k,
q,
k,
v,
output_pad_fn,
_,
_,
) = generate_qkv(
q, k, v, query_padding_mask, key_padding_mask, kvpacked=False)
UQ = q_unpad.shape[0]
UKV = k_unpad.shape[0]
kernel = flashattn(
batch,
groups,
UQ,
UKV,
heads,
dim,
is_causal,
block_M=64,
block_N=64,
num_stages=1,
threads=128)
out_unpad = kernel(q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q)
out = output_pad_fn(out_unpad)
out_ref, _ = attention_ref(
q,
k,
v,
query_padding_mask=query_padding_mask,
key_padding_mask=key_padding_mask,
causal=is_causal,
)
torch.testing.assert_close(out, out_ref, rtol=1e-2, atol=1e-2)
print("All checks passed.✅")
latency = do_bench(
lambda: kernel(q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q))
print("Tile-lang: {:.2f} ms".format(latency))
print("Tile-lang: {:.2f} TFlops".format(total_flops / latency * 1e-9))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--batch', type=int, default=8, help='batch size')
parser.add_argument('--heads', type=int, default=64, help='query heads')
parser.add_argument('--groups', type=int, default=16, help='groups')
parser.add_argument('--q_seqlen', type=int, default=2048, help='query sequence length')
parser.add_argument('--k_seqlen', type=int, default=2048, help='key/value sequence length')
parser.add_argument('--dim', type=int, default=128, help='head dim')
parser.add_argument('--is_causal', action='store_true', help='causal attention')
args = parser.parse_args()
main(args.batch, args.heads, args.q_seqlen, args.k_seqlen, args.dim, args.groups,
args.is_causal)
......@@ -7,158 +7,7 @@ import argparse
import torch
from einops import rearrange, repeat
from bert_padding import pad_input, unpad_input
def generate_random_padding_mask(max_seqlen, batch_size, device, mode="random"):
assert mode in ["full", "random", "third"]
if mode == "full":
lengths = torch.full((batch_size, 1), max_seqlen, device=device, dtype=torch.int32)
elif mode == "random":
lengths = torch.randint(
max(1, max_seqlen - 20), max_seqlen + 1, (batch_size, 1), device=device)
elif mode == "third":
lengths = torch.randint(max_seqlen // 3, max_seqlen + 1, (batch_size, 1), device=device)
padding_mask = (
repeat(torch.arange(max_seqlen, device=device), "s -> b s", b=batch_size) < lengths)
return padding_mask
def generate_qkv(q,
k,
v,
query_padding_mask=None,
key_padding_mask=None,
kvpacked=False,
qkvpacked=False):
"""
Arguments:
q: (batch_size, seqlen_q, nheads, d)
k: (batch_size, seqlen_k, nheads_k, d)
v: (batch_size, seqlen_k, nheads_k, d)
query_padding_mask: (batch_size, seqlen), bool
key_padding_mask: (batch_size, seqlen), bool
"""
assert not (kvpacked and qkvpacked)
batch_size, seqlen_q, nheads, d = q.shape
_, seqlen_k, nheads_k, _ = k.shape
assert k.shape == (batch_size, seqlen_k, nheads_k, d)
assert v.shape == (batch_size, seqlen_k, nheads_k, d)
if query_padding_mask is not None:
q_unpad, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, query_padding_mask)
output_pad_fn = lambda output_unpad: pad_input(output_unpad, indices_q, batch_size, seqlen_q
)
else:
q_unpad = rearrange(q, "b s h d -> (b s) h d")
cu_seqlens_q = torch.arange(
0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, device=q_unpad.device)
max_seqlen_q = seqlen_q
output_pad_fn = lambda output_unpad: rearrange(
output_unpad, "(b s) h d -> b s h d", b=batch_size)
if key_padding_mask is not None:
k_unpad, indices_k, cu_seqlens_k, max_seqlen_k = unpad_input(k, key_padding_mask)
v_unpad, _, _, _ = unpad_input(v, key_padding_mask)
else:
k_unpad = rearrange(k, "b s h d -> (b s) h d")
v_unpad = rearrange(v, "b s h d -> (b s) h d")
cu_seqlens_k = torch.arange(
0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, device=k_unpad.device)
max_seqlen_k = seqlen_k
if qkvpacked:
assert (query_padding_mask == key_padding_mask).all()
assert nheads == nheads_k
qkv_unpad = torch.stack([q_unpad, k_unpad, v_unpad], dim=1)
qkv = torch.stack([q, k, v], dim=2)
if query_padding_mask is not None:
dqkv_pad_fn = lambda dqkv_unpad: pad_input(dqkv_unpad, indices_q, batch_size, seqlen_q)
else:
dqkv_pad_fn = lambda dqkv_unpad: rearrange(
dqkv_unpad, "(b s) t h d -> b s t h d", b=batch_size)
return (
qkv_unpad.detach().requires_grad_(),
cu_seqlens_q,
max_seqlen_q,
qkv.detach().requires_grad_(),
output_pad_fn,
dqkv_pad_fn,
)
elif kvpacked:
kv_unpad = torch.stack([k_unpad, v_unpad], dim=1)
kv = torch.stack([k, v], dim=2)
dq_pad_fn = output_pad_fn
if key_padding_mask is not None:
dkv_pad_fn = lambda dkv_unpad: pad_input(dkv_unpad, indices_k, batch_size, seqlen_k)
else:
dkv_pad_fn = lambda dkv_unpad: rearrange(
dkv_unpad, "(b s) t h d -> b s t h d", b=batch_size)
return (
q_unpad.detach().requires_grad_(),
kv_unpad.detach().requires_grad_(),
cu_seqlens_q,
cu_seqlens_k,
max_seqlen_q,
max_seqlen_k,
q.detach().requires_grad_(),
kv.detach().requires_grad_(),
output_pad_fn,
dq_pad_fn,
dkv_pad_fn,
)
else:
dq_pad_fn = output_pad_fn
if key_padding_mask is not None:
dk_pad_fn = lambda dk_unpad: pad_input(dk_unpad, indices_k, batch_size, seqlen_k)
else:
dk_pad_fn = lambda dk_unpad: rearrange(dk_unpad, "(b s) h d -> b s h d", b=batch_size)
return (
q_unpad.detach().requires_grad_(),
k_unpad.detach().requires_grad_(),
v_unpad.detach().requires_grad_(),
cu_seqlens_q,
cu_seqlens_k,
max_seqlen_q,
max_seqlen_k,
q.detach().requires_grad_(),
k.detach().requires_grad_(),
v.detach().requires_grad_(),
output_pad_fn,
dq_pad_fn,
dk_pad_fn,
)
def construct_local_mask(
seqlen_q,
seqlen_k,
window_size=(-1, -1), # -1 means infinite window size
query_padding_mask=None,
key_padding_mask=None,
device=None,
key_leftpad=None,
):
row_idx = rearrange(torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1")
col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long)
if key_leftpad is not None:
key_leftpad = rearrange(key_leftpad, "b -> b 1 1 1")
col_idx = repeat(col_idx, "s -> b 1 1 s", b=key_leftpad.shape[0])
col_idx = torch.where(col_idx >= key_leftpad, col_idx - key_leftpad, 2**32)
sk = (
seqlen_k if key_padding_mask is None else rearrange(
key_padding_mask.sum(-1), "b -> b 1 1 1"))
sq = (
seqlen_q if query_padding_mask is None else rearrange(
query_padding_mask.sum(-1), "b -> b 1 1 1"))
if window_size[0] < 0:
return col_idx > row_idx + sk - sq + window_size[1]
else:
sk = torch.full_like(col_idx, seqlen_k) if key_padding_mask is None else sk
return torch.logical_or(
col_idx > torch.minimum(row_idx + sk - sq + window_size[1], sk),
col_idx < row_idx + sk - sq - window_size[0],
)
from varlen_utils import generate_random_padding_mask, generate_qkv
def attention_ref(
......@@ -359,7 +208,7 @@ def flashattn(batch_size,
return main
def main(batch: int = 2, heads: int = 16, seq_len: int = 256, dim: int = 32):
def main(batch: int = 8, heads: int = 64, seq_len: int = 2048, dim: int = 128):
flops_per_matmul = 2.0 * batch * heads * seq_len * seq_len * dim
total_flops = 2 * flops_per_matmul
......@@ -431,15 +280,15 @@ def main(batch: int = 2, heads: int = 16, seq_len: int = 256, dim: int = 32):
fla_out = output_pad_fn(fla_out_unpad)
torch.testing.assert_close(out, fla_out, rtol=1e-2, atol=1e-2)
print("Assert Equal Passed")
print("All checks passed.✅")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--batch', type=int, default=2, help='batch size')
parser.add_argument('--heads', type=int, default=16, help='heads')
parser.add_argument('--seq_len', type=int, default=256, help='sequence length')
parser.add_argument('--dim', type=int, default=32, help='dim')
parser.add_argument('--batch', type=int, default=8, help='batch size')
parser.add_argument('--heads', type=int, default=64, help='heads')
parser.add_argument('--seq_len', type=int, default=2048, help='sequence length')
parser.add_argument('--dim', type=int, default=128, help='dim')
args = parser.parse_args()
main(args.batch, args.heads, args.seq_len, args.dim)
# ruff: noqa
import torch
from einops import rearrange, repeat
from bert_padding import pad_input, unpad_input
def generate_random_padding_mask(max_seqlen, batch_size, device, mode="random"):
assert mode in ["full", "random", "third"]
if mode == "full":
lengths = torch.full((batch_size, 1), max_seqlen, device=device, dtype=torch.int32)
elif mode == "random":
lengths = torch.randint(
max(1, max_seqlen - 20), max_seqlen + 1, (batch_size, 1), device=device)
elif mode == "third":
lengths = torch.randint(max_seqlen // 3, max_seqlen + 1, (batch_size, 1), device=device)
padding_mask = (
repeat(torch.arange(max_seqlen, device=device), "s -> b s", b=batch_size) < lengths)
return padding_mask
def generate_qkv(q,
k,
v,
query_padding_mask=None,
key_padding_mask=None,
kvpacked=False,
qkvpacked=False):
"""
Arguments:
q: (batch_size, seqlen_q, nheads, d)
k: (batch_size, seqlen_k, nheads_k, d)
v: (batch_size, seqlen_k, nheads_k, d)
query_padding_mask: (batch_size, seqlen), bool
key_padding_mask: (batch_size, seqlen), bool
"""
assert not (kvpacked and qkvpacked)
batch_size, seqlen_q, nheads, d = q.shape
_, seqlen_k, nheads_k, _ = k.shape
if query_padding_mask is not None:
q_unpad, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, query_padding_mask)
output_pad_fn = lambda output_unpad: pad_input(output_unpad, indices_q, batch_size, seqlen_q
)
else:
q_unpad = rearrange(q, "b s h d -> (b s) h d")
cu_seqlens_q = torch.arange(
0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, device=q_unpad.device)
max_seqlen_q = seqlen_q
output_pad_fn = lambda output_unpad: rearrange(
output_unpad, "(b s) h d -> b s h d", b=batch_size)
if key_padding_mask is not None:
k_unpad, indices_k, cu_seqlens_k, max_seqlen_k = unpad_input(k, key_padding_mask)
v_unpad, _, _, _ = unpad_input(v, key_padding_mask)
else:
k_unpad = rearrange(k, "b s h d -> (b s) h d")
v_unpad = rearrange(v, "b s h d -> (b s) h d")
cu_seqlens_k = torch.arange(
0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, device=k_unpad.device)
max_seqlen_k = seqlen_k
if qkvpacked:
assert (query_padding_mask == key_padding_mask).all()
assert nheads == nheads_k
qkv_unpad = torch.stack([q_unpad, k_unpad, v_unpad], dim=1)
qkv = torch.stack([q, k, v], dim=2)
if query_padding_mask is not None:
dqkv_pad_fn = lambda dqkv_unpad: pad_input(dqkv_unpad, indices_q, batch_size, seqlen_q)
else:
dqkv_pad_fn = lambda dqkv_unpad: rearrange(
dqkv_unpad, "(b s) t h d -> b s t h d", b=batch_size)
return (
qkv_unpad.detach().requires_grad_(),
cu_seqlens_q,
max_seqlen_q,
qkv.detach().requires_grad_(),
output_pad_fn,
dqkv_pad_fn,
)
elif kvpacked:
kv_unpad = torch.stack([k_unpad, v_unpad], dim=1)
kv = torch.stack([k, v], dim=2)
dq_pad_fn = output_pad_fn
if key_padding_mask is not None:
dkv_pad_fn = lambda dkv_unpad: pad_input(dkv_unpad, indices_k, batch_size, seqlen_k)
else:
dkv_pad_fn = lambda dkv_unpad: rearrange(
dkv_unpad, "(b s) t h d -> b s t h d", b=batch_size)
return (
q_unpad.detach().requires_grad_(),
kv_unpad.detach().requires_grad_(),
cu_seqlens_q,
cu_seqlens_k,
max_seqlen_q,
max_seqlen_k,
q.detach().requires_grad_(),
kv.detach().requires_grad_(),
output_pad_fn,
dq_pad_fn,
dkv_pad_fn,
)
else:
dq_pad_fn = output_pad_fn
if key_padding_mask is not None:
dk_pad_fn = lambda dk_unpad: pad_input(dk_unpad, indices_k, batch_size, seqlen_k)
else:
dk_pad_fn = lambda dk_unpad: rearrange(dk_unpad, "(b s) h d -> b s h d", b=batch_size)
return (
q_unpad.detach().requires_grad_(),
k_unpad.detach().requires_grad_(),
v_unpad.detach().requires_grad_(),
cu_seqlens_q,
cu_seqlens_k,
max_seqlen_q,
max_seqlen_k,
q.detach().requires_grad_(),
k.detach().requires_grad_(),
v.detach().requires_grad_(),
output_pad_fn,
dq_pad_fn,
dk_pad_fn,
)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment