thread_partial_sync.cc 11.7 KB
Newer Older
1
2
3
/*!
 * \file thread_storage_sync.cc
 */
4
5
#include <tvm/ffi/function.h>
#include <tvm/ffi/reflection/registry.h>
6
7
8
9
10
11
12
13
14
15
#include <tvm/tir/analysis.h>
#include <tvm/tir/builtin.h>
#include <tvm/tir/expr.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>

#include <unordered_map>
#include <unordered_set>

#include "../op/builtin.h"
16
#include "./storage_access.h"
17
18
19
20
21
22
23
24
#include "runtime/thread_storage_scope.h"
#include "tir/transforms/ir_utils.h"

namespace tvm {
namespace tl {

using namespace tir;

25
class TileLangThreadPartialSyncPlanner : public TileLangStorageAccessVisitor {
26
public:
27
  explicit TileLangThreadPartialSyncPlanner(StorageScope sync_scope)
28
      : sync_scope_(sync_scope) {}
29
30

  // The syncs inserted before each statement
31
32
  std::unordered_set<const Object *> syncs_inserted_;
  std::unordered_map<const Object *, int> partial_syncs_inserted_;
33

34
35
protected:
  bool Enabled(const VarNode *buf, const StorageScope &scope) const final {
36
37
38
    return in_device_env() && scope == sync_scope_;
  }
  // Plan the sync
39
40
  std::vector<AccessEntry> Summarize(std::vector<StmtEntry> seq,
                                     const ForNode *loop) final {
41
42
43
    // Redirect all "shared.dyn" buffer access to the same buffer var
    // so that the accesses can be planned together.
    Var shared_dyn_buf;
44
45
46
47
    for (StmtEntry &entry : seq) {
      for (AccessEntry &access : entry.access) {
        if (access.scope.rank == StorageRank::kShared &&
            access.scope.tag == ".dyn" && access.buffer.defined()) {
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
          if (!shared_dyn_buf.defined()) {
            shared_dyn_buf = access.buffer;
          } else {
            access.buffer = shared_dyn_buf;
          }
        }
      }
    }

    // Unsynced reads and writes
    std::vector<AccessEntry> reads;
    std::vector<AccessEntry> writes;
    // if it is a loop, rotate two times to consider effect of loop.
    // simulation based approach to find dependencies
    for (size_t i = 0; i < seq.size(); ++i) {
63
      const StmtEntry &s = seq[i];
64
65
66
67
68
69
70
      // check if sync before statement is needed.
      bool sync_before_stmt = (syncs_inserted_.count(s.stmt) != 0);
      // Apply the syncs added already.
      if (sync_before_stmt) {
        reads.clear();
        writes.clear();
      }
71
      for (const AccessEntry &acc : s.access) {
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
        if (acc.type == kRead) {
          if (FindConflict(writes, acc, false)) {
            sync_before_stmt = true;
            break;
          }
        } else if (acc.type == kWrite) {
          if (FindConflict(reads, acc, false)) {
            sync_before_stmt = true;
            break;
          }
        } else if (acc.type == kSync) {
          reads.clear();
          writes.clear();
        }
      }
      // If sync is inserted. remove the irrelevant things.
      if (sync_before_stmt) {
        reads.clear();
        writes.clear();
      }
      // Add the read/write of current statement
93
      for (const AccessEntry &acc : s.access) {
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
        if (acc.type == kRead) {
          reads.push_back(acc);
        } else if (acc.type == kWrite) {
          writes.push_back(acc);
        } else if (acc.type == kSync) {
          reads.clear();
          writes.clear();
        }
      }
      if (sync_before_stmt) {
        insert_syncs(s.stmt);
      }
    }
    if (loop != nullptr) {
      for (size_t i = 0; i < seq.size(); ++i) {
109
110
111
112
113
        const StmtEntry &s = seq[i];
        if (syncs_inserted_.count(s.stmt) != 0)
          break;
        if (reads.empty() && writes.empty())
          break;
114
        bool sync_before_stmt = false;
115
        for (const AccessEntry &acc : s.access) {
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
          if (acc.type == kRead) {
            if (FindConflict(writes, acc, true)) {
              sync_before_stmt = true;
              break;
            }
          } else if (acc.type == kWrite) {
            if (FindConflict(reads, acc, true)) {
              sync_before_stmt = true;
              break;
            }
          } else if (acc.type == kSync) {
            reads.clear();
            writes.clear();
          }
        }
        if (sync_before_stmt) {
          insert_syncs(s.stmt);
          break;
        }
      }
    }
    // return the exposed entries, remove unnecessary ones.
    int sync_count = 0;
    // head are before first sync, tail are after last sync
    std::vector<AccessEntry> head, tail;
    AccessEntry esync;
    esync.threads = this->env_threads();
    esync.type = kSync;
    esync.scope = sync_scope_;

146
    for (const StmtEntry &s : seq) {
147
148
149
150
151
152
153
154
      if (syncs_inserted_.count(s.stmt)) {
        if (sync_count != 0) {
          tail.clear();
        } else {
          head.push_back(esync);
        }
        ++sync_count;
      }
155
      for (const AccessEntry &acc : s.access) {
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
        if (acc.type == kSync) {
          if (sync_count != 0) {
            tail.clear();
          } else {
            head.push_back(esync);
          }
          ++sync_count;
        } else {
          if (sync_count != 0) {
            tail.push_back(acc);
          } else {
            head.push_back(acc);
          }
        }
      }
    }
    head.insert(head.end(), tail.begin(), tail.end());
    if (loop != nullptr) {
      // clear double buffer flag after a loop is finished.
175
      for (AccessEntry &e : head) {
176
177
178
179
180
181
        e.double_buffer_write = false;
      }
    }
    return head;
  }

182
private:
183
  // find conflicting entry in vec.
184
185
186
  bool FindConflict(const std::vector<AccessEntry> &prev,
                    const AccessEntry &curr, bool loop_carry) {
    for (const AccessEntry &x : prev) {
187
188
189
190
191
192
193
      if (FindConflict(x, curr, loop_carry)) {
        return true;
      }
    }
    return false;
  }

194
195
  bool FindConflict(const AccessEntry &prev, const AccessEntry &curr,
                    bool loop_carry) {
196
197
198
199
200
201
202
203
204
205
206
207
    // Access to different buffers does not conflict.
    if (!prev.buffer.same_as(curr.buffer)) {
      return false;
    }

    // Assumes no race between threads
    // Same index value means no conflicts
    // TODO(tqchen) more standard set based testing.
    bool has_same_index = true;
    // Even if access has the same index, those indices need to
    // depend on the innermost thread id to avoid race condition
    bool depends_on_thread_index = true;
208
    const VarNode *thread_index_var = nullptr;
209
210
211
212
213
    if (!curr.threads.empty()) {
      thread_index_var = curr.threads.back()->var.get();
    }

    for (size_t i = 0; i < prev.touched.size(); i++) {
214
215
      const auto &prev_intset = prev.touched[i];
      const auto &curr_intset = curr.touched[i];
216
217
218
219
220
221

      if (prev_intset.IsSinglePoint() && curr_intset.IsSinglePoint()) {
        PrimExpr prev_index = prev_intset.PointValue();
        PrimExpr curr_index = curr_intset.PointValue();
        has_same_index = ExprDeepEqual()(prev_index, curr_index);
        if (thread_index_var != nullptr) {
222
          auto f_uses_thread_index = [=](const tvm::tir::VarNode *parameter) {
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
            return parameter == thread_index_var;
          };
          depends_on_thread_index = depends_on_thread_index &&
                                    UsesVar(curr_index, f_uses_thread_index) &&
                                    UsesVar(prev_index, f_uses_thread_index);
        }
      } else {
        has_same_index = false;
      }

      if (!(has_same_index && depends_on_thread_index)) {
        break;
      }
    }
    if (has_same_index && depends_on_thread_index) {
      return false;
    }

    // If this is a read into a double buffer that was previously
    // swapped out, then it doesn't conflict.
    if (prev.double_buffer_write && curr.type == kRead && !loop_carry) {
      return false;
    }

    // If nothing else allows sharing the same buffer, then they are
    // in conflict.
    return true;
  }

252
  void VisitStmt_(const AttrStmtNode *op) final {
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
    if (op->attr_key == "kWarpSpecializationScope") {
      IfThenElse body = Downcast<IfThenElse>(op->body);
      auto partitions = Downcast<Array<IntImm>>(op->node);
      ICHECK(partitions.size() == 2);

      scope_.push_back(std::vector<StmtEntry>());
      num_partial_threads_ = partitions[0];
      this->VisitStmt(body->then_case);
      StmtEntry s;
      s.stmt = op;
      s.access = Summarize(std::move(scope_.back()), nullptr);
      scope_.pop_back();

      num_partial_threads_ = partitions[1];
      scope_.push_back(std::vector<StmtEntry>());
      VisitStmt(body->else_case.value());
      auto v = Summarize(std::move(scope_.back()), nullptr);
      scope_.pop_back();
      s.access.insert(s.access.end(), v.begin(), v.end());

273
      num_partial_threads_ = std::nullopt;
274
    } else {
275
      TileLangStorageAccessVisitor::VisitStmt_(op);
276
277
278
    }
  }

279
280
281
282
283
  void insert_syncs(const Object *obj) {
    // ICHECK_EQ(condition_counter(), 0) << "Cannot insert syncs inside
    // condition";
    if (syncs_inserted_.count(obj))
      return;
284
285
    if (num_partial_threads_.defined()) {
      syncs_inserted_.insert(obj);
286
287
      partial_syncs_inserted_[obj] =
          static_cast<int>(num_partial_threads_.value()->value);
288
289
290
291
292
    } else {
      syncs_inserted_.insert(obj);
    }
  }

293
private:
294
295
296
297
298
  Optional<IntImm> num_partial_threads_;
  // synchronization scope
  StorageScope sync_scope_;
};

299
300
301
302
303
// There are cases where necessary syncthreads is not inserted by
// ThreadPartialSyncInserter. For example, syncthreads is needed after
// async_wait_queue in the second loop below, but since
// ThreadPartialSyncInserter is not aware of the asynchronous semantics, it
// cannot tell that the syncthreads is needed there.
304
305
306
307
308
309
310
311
312
313
314
315
316
317
//
// // Pipeline prologue
// for i in range(125):
//    async_commit_queue(0):
//       async_scope:
//          shared[(i + 3) % 4] = ...
// ...
//
// // Pipeline Epilogue
// for i in range(3):
//    async_wait_queue(0, 2 - i):
//       local[...] = shared[(i + 125) % 4]

class ThreadPartialSyncInserter : public StmtExprMutator {
318
319
320
321
public:
  ThreadPartialSyncInserter(
      StorageScope sync_scope, const std::unordered_set<const Object *> &syncs,
      std::unordered_map<const Object *, int> partial_syncs)
322
323
      : sync_scope_(sync_scope), syncs_(syncs), partial_syncs_(partial_syncs) {}

324
325
326
  Stmt VisitStmt(const Stmt &stmt) final {
    if (syncs_.size() == 0)
      return stmt;
327
328
329
330
331
    if (syncs_.count(stmt.get())) {
      Stmt barrier;
      if (partial_syncs_.count(stmt.get())) {
        auto iter = partial_syncs_.find(stmt.get());
        ICHECK(sync_scope_.rank == StorageRank::kShared);
332
333
        barrier = Evaluate(
            Call(DataType::Int(32), tl::sync_thread_partial(), {iter->second}));
334
335
336
337
338
339
340
341
342
343
344
345
      } else {
        return StmtExprMutator::VisitStmt(stmt);
      }
      // Mutate after query, to avoid stmt change.
      auto ret = StmtExprMutator::VisitStmt(stmt);
      ret = SeqStmt({barrier, ret});
      return ret;
    } else {
      return StmtExprMutator::VisitStmt(stmt);
    }
  }

346
private:
347
348
  // data structure.
  StorageScope sync_scope_;
349
350
  const std::unordered_set<const Object *> &syncs_;
  const std::unordered_map<const Object *, int> &partial_syncs_;
351
352
};

353
Stmt TileLangThreadPartialSync(Stmt stmt, std::string storage_scope) {
354
  StorageScope sync_scope = StorageScope::Create(storage_scope);
355
  TileLangThreadPartialSyncPlanner planner(sync_scope);
356
357
  planner(stmt);
  return ThreadPartialSyncInserter(sync_scope, planner.syncs_inserted_,
358
359
                                   planner.partial_syncs_inserted_)(
      std::move(stmt));
360
361
362
363
364
365
}

using namespace tir::transform;

namespace transform {

366
Pass TileLangThreadPartialSync(String storage_scope) {
367
  auto pass_func = [storage_scope](PrimFunc f, IRModule m, PassContext ctx) {
368
    auto *n = f.CopyOnWrite();
369
    n->body = tl::TileLangThreadPartialSync(std::move(n->body), storage_scope);
370
371
372
373
374
    return f;
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.ThreadPartialSync", {});
}

375
376
377
378
379
TVM_FFI_STATIC_INIT_BLOCK({
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.transform.ThreadPartialSync",
                        TileLangThreadPartialSync);
});
380

381
382
383
} // namespace transform
} // namespace tl
} // namespace tvm