"launcher/vscode:/vscode.git/clone" did not exist on "e114d8748673a067324e0809479273d522a614e1"
merge_shared_memory_allocations.cc 37.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

/*!
 * \file merge_shared_memory_allocations.cc
 * \brief Each GPU kernel is allowed to have only one dynamic or static shared
 * memory allocation. This pass merges multiple TIR-level dynamic or static
 * shared memory allocations into one allocation.
 */
26
27
#include <tvm/ffi/function.h>
#include <tvm/ffi/reflection/registry.h>
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
#include <tvm/runtime/logging.h>
#include <tvm/tir/expr.h>
#include <tvm/tir/op.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>

#include <unordered_map>
#include <unordered_set>

#include "../op/builtin.h"
#include "runtime/thread_storage_scope.h"
#include "support/arena.h"
#include "tir/transforms/ir_utils.h"

namespace tvm {
namespace tl {

using namespace tir;

using runtime::StorageRank;
using runtime::StorageScope;

static bool IsDynamicSharedMemory(Var buffer_var) {
  StorageScope storage_scope =
      runtime::StorageScope::Create(GetPtrStorageScope(buffer_var));
  return storage_scope.rank == runtime::StorageRank::kShared &&
         storage_scope.tag == ".dyn";
}

static bool IsStaticSharedMemory(Var buffer_var) {
  StorageScope storage_scope =
      runtime::StorageScope::Create(GetPtrStorageScope(buffer_var));
  return storage_scope.rank == runtime::StorageRank::kShared &&
         storage_scope.tag == "";
}

/*!
 * \brief collect the mapping from the buffer var to its allocate
 */
class AllocateCollector : public StmtExprVisitor {
public:
  void VisitStmt_(const AllocateNode *op) final {
    if (IsDynamicSharedMemory(op->buffer_var)) {
      dyn_shmem_allocs_[op->buffer_var.get()] = op;
    } else if (IsStaticSharedMemory(op->buffer_var)) {
      static_shmem_allocs_[op->buffer_var.get()] = op;
    }
    StmtExprVisitor::VisitStmt_(op);
  }
  // The dynamic mapping from the original buffer var to its allocate
  std::unordered_map<const VarNode *, const AllocateNode *> dyn_shmem_allocs_;
  // The static mapping from the original buffer var to its allocate
  std::unordered_map<const VarNode *, const AllocateNode *>
      static_shmem_allocs_;
};

// Find a linear pattern of storage access
// Used for liveness analysis.
// "linear" means fitting a complex access pattern into an array of StmtEntry
//
// Define "scope" as the body of For/thread_launch/IfThenElse
// Composite scopes(loop/thread_launch/IfThen) is represented by three
// StmtEntry: before_scope -> scope_body -> after_scope
//
// This pass tries to detect last point that we need to keep memory
// alive under the same scope as Allocate.
// The storage need to be kept alive between Allocate and last access.
// The free point is only inserted at the same scope of Allocate.
//
class SharedMemLinearAccessPatternFinder final : public StmtExprVisitor {
public:
99
100
101
102
103
  explicit SharedMemLinearAccessPatternFinder(
      bool is_dynamic = true, bool enable_aggressive_merge = false,
      bool verbose = false)
      : is_dynamic_(is_dynamic),
        enable_aggressive_merge_(enable_aggressive_merge), verbose_(verbose) {}
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
  /*! \brief record the touch list of statement. */
  struct StmtEntry {
    // The statement
    const Object *stmt;
    // The index in the linear_seq_ to point to end of the nested scope.
    // This is only set to non-zero if stmt is a nested scope.
    // if offset > 0, means this is the begin, the end entry is current_index +
    // offset if offset < 0, means this is the end, the begin entry is
    // current_index + offset
    int64_t scope_pair_offset{0};
    // The buffer variables this statement touched.
    std::vector<const VarNode *> touched;
  };
  // The scope of each allocation
  struct AllocEntry {
    // the level in the scope stack
    size_t level{0};
    // allocation stmt
    const AllocateNode *alloc{nullptr};
  };

125
126
127
128
129
130
131
132
133
134
135
136
137
  struct StmtAttr {
    // the level in the scope stack
    size_t level{0};
  };

  void UpdateStmtAttr(const Object *stmt, size_t level) {
    if (stmt_attrs_.find(stmt) == stmt_attrs_.end()) {
      stmt_attrs_[stmt] = StmtAttr{level};
    } else {
      stmt_attrs_[stmt].level = level;
    }
  }

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
  void VisitStmt_(const AllocateNode *op) final {
    size_t level = scope_.size();
    const VarNode *buf = op->buffer_var.get();
    alloc_info_[buf].alloc = op;
    alloc_info_[buf].level = level;
    StmtExprVisitor::VisitStmt_(op);
  }

  void VisitStmt_(const BufferStoreNode *op) final {
    scope_.push_back(StmtEntry());
    // visit subexpr
    StmtExprVisitor::VisitStmt_(op);
    // Add write access.
    const VarNode *buf = op->buffer->data.get();
    auto it = alloc_info_.find(buf);
    if (it != alloc_info_.end() && it->second.alloc) {
      ICHECK_LT(it->second.level, scope_.size());
      if (IsAppropriateSharedMemory(GetRef<Var>(buf))) {
156
        // set into scope_.size() - 1 for aggressive memory reuse
157
158
159
160
161
162
        auto enable_aggressive_merge = enable_aggressive_merge_;
        if (enable_aggressive_merge) {
          scope_[scope_.size() - 1].touched.push_back(buf);
        } else {
          scope_[it->second.level].touched.push_back(buf);
        }
163
164
      }
    }
165

166
167
168
169
    StmtEntry e = scope_.back();
    scope_.pop_back();
    if (e.touched.size() != 0) {
      e.stmt = op;
170
      UpdateStmtAttr(op, scope_level_);
171
172
173
174
175
176
177
178
179
180
181
182
      linear_seq_.push_back(e);
    }
  }

  void VisitStmt_(const EvaluateNode *op) final {
    scope_.push_back(StmtEntry());
    // visit subexpr
    StmtExprVisitor::VisitStmt_(op);
    StmtEntry e = scope_.back();
    scope_.pop_back();
    if (e.touched.size() != 0) {
      e.stmt = op;
183
      UpdateStmtAttr(op, scope_level_);
184
185
186
187
188
189
190
191
192
193
194
195
196
      linear_seq_.push_back(e);
    }
  }

  void VisitExpr_(const BufferLoadNode *op) final {
    // Add write access.
    StmtExprVisitor::VisitExpr_(op);
    const VarNode *buf = op->buffer->data.get();
    auto it = alloc_info_.find(buf);
    if (it != alloc_info_.end() && it->second.alloc) {
      ICHECK_LT(it->second.level, scope_.size())
          << "Load memory in places other than store.";
      if (IsAppropriateSharedMemory(GetRef<Var>(buf))) {
197
198
199
200
201
202
        auto enable_aggressive_merge = enable_aggressive_merge_;
        if (enable_aggressive_merge) {
          scope_[scope_.size() - 1].touched.push_back(buf);
        } else {
          scope_[it->second.level].touched.push_back(buf);
        }
203
204
205
206
207
208
209
210
211
212
      }
    }
  }

  void VisitExpr_(const VarNode *buf) final {
    // Directly reference to the variable count as a read.
    auto it = alloc_info_.find(buf);
    if (it != alloc_info_.end() && it->second.alloc) {
      ICHECK_LT(it->second.level, scope_.size());
      if (IsAppropriateSharedMemory(GetRef<Var>(buf))) {
213
214
215
216
217
218
        auto enable_aggressive_merge = enable_aggressive_merge_;
        if (enable_aggressive_merge) {
          scope_[scope_.size() - 1].touched.push_back(buf);
        } else {
          scope_[it->second.level].touched.push_back(buf);
        }
219
220
221
222
223
224
225
226
      }
    }
  }

  template <typename T> void VisitNewScope(const T *op) {
    scope_.push_back(StmtEntry());
    StmtEntry e;
    e.stmt = op;
227
    UpdateStmtAttr(op, scope_level_);
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
    int64_t begin_index = static_cast<int64_t>(linear_seq_.size());
    // before scope.
    linear_seq_.push_back(e);
    StmtExprVisitor::VisitStmt_(op);
    // after scope.
    e.touched = std::move(scope_.back().touched);
    scope_.pop_back();
    int64_t end_index = static_cast<int64_t>(linear_seq_.size());
    ICHECK_GT(end_index, begin_index);
    e.scope_pair_offset = begin_index - end_index;
    linear_seq_.push_back(e);
    // record the pointer to end index.
    ICHECK_NE(end_index, 0U);
    linear_seq_[begin_index].scope_pair_offset = end_index - begin_index;
  }

  void VisitStmt_(const AttrStmtNode *op) final {
    // Only record the outer most thread extent.
    if (op->attr_key == tir::attr::thread_extent && !in_thread_env_) {
      in_thread_env_ = true;
      VisitNewScope(op);
      in_thread_env_ = false;
    } else if (op->attr_key == tir::attr::extern_scope) {
      VisitNewScope(op);
    } else if (op->attr_key == tir::attr::virtual_thread) {
      VisitNewScope(op);
    } else if (op->attr_key == "kWarpSpecializationScope") {
      IfThenElse body = Downcast<IfThenElse>(op->body);
      this->VisitStmt(body->then_case);
      this->VisitStmt(body->else_case.value());
    } else {
      StmtExprVisitor::VisitStmt_(op);
    }
  }

  void VisitStmt_(const IfThenElseNode *op) final { VisitNewScope(op); }

265
266
267
268
269
270
271
272
273
274
275
276
  bool ContainsSeqStmt(const Stmt &stmt) {
    if (stmt->IsInstance<SeqStmtNode>()) {
      return true;
    }
    if (const auto *if_node = stmt.as<IfThenElseNode>()) {
      return ContainsSeqStmt(if_node->then_case) ||
             (if_node->else_case.defined() &&
              ContainsSeqStmt(if_node->else_case.value()));
    }
    return false;
  }

277
  void VisitStmt_(const ForNode *op) final {
278
    if (ContainsSeqStmt(op->body)) {
279
280
281
282
283
284
285
      scope_level_++;
      VisitNewScope(op);
      scope_level_--;
    } else {
      VisitNewScope(op);
    }
  }
286
287
288
289
290
291
292
293
294

  void VisitStmt_(const WhileNode *op) final { VisitNewScope(op); }

  void VisitStmt_(const AssertStmtNode *op) final { VisitNewScope(op); }

  // linearized access sequence.
  std::vector<StmtEntry> linear_seq_;
  // The storage scope of each buffer
  std::unordered_map<const VarNode *, AllocEntry> alloc_info_;
295
296
  // The attribute of each statement
  std::unordered_map<const Object *, StmtAttr> stmt_attrs_;
297
298
299
300
301
302
303
304
305

private:
  // Wrapper function to determine if the shared memory allocation for a
  // variable is appropriate.
  bool IsAppropriateSharedMemory(const Var &var) {
    return is_dynamic_ ? IsDynamicSharedMemory(var) : IsStaticSharedMemory(var);
  }
  // Whether do dyanmic analysis.
  bool is_dynamic_{true};
306
307
  // Whether do aggressive merge.
  bool enable_aggressive_merge_{false};
308
309
310
311
312
313
  // Whether do verbose logging.
  bool verbose_{false};
  // Whether already in thread env.
  bool in_thread_env_{false};
  // The scope stack.
  std::vector<StmtEntry> scope_;
314
315
  // The size of the scope.
  size_t scope_level_{0};
316
317
318
319
320
321
322
323
324
325
326
};

/*!
 * \brief merge the buffers whose live range has no intersection and rewrite the
 * body
 */
class SharedMemoryRewriter : public StmtExprMutator {
public:
  explicit SharedMemoryRewriter(
      const std::unordered_map<const VarNode *, const AllocateNode *>
          &shmem_allocs,
327
328
329
      bool is_dynamic = true, bool verbose = false, int align_bytes = 0)
      : is_dynamic_{is_dynamic}, shmem_allocs_{shmem_allocs}, verbose_{verbose},
        align_bytes_{align_bytes} {
330
331
332
333
334
335
336
337
338
339
340
    if (!is_dynamic) {
      merged_buf_var_ =
          Var("buf_shmem", PointerType(PrimType(DataType::UInt(8)), "shared"));
    }
  }

  /*!
   * \brief plan the memory reuse for all the buffer allocated in the statement
   * \param stmt the statement
   */
  void PlanReuse(const Stmt &stmt, bool is_dynamic = true,
341
342
343
                 bool enable_aggressive_merge = false, bool verbose = false) {
    SharedMemLinearAccessPatternFinder finder(is_dynamic,
                                              enable_aggressive_merge, verbose);
344
    finder(stmt);
345
346
    this->LivenessAnalysis(finder.linear_seq_, finder.stmt_attrs_);
    this->PlanMemory(finder.linear_seq_, finder.stmt_attrs_);
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
  }

private:
  Stmt VisitStmt_(const AttrStmtNode *op) final {
    if (op->attr_key == tir::attr::thread_extent && !allocated_) {
      // Allocate one dynamic shared memory allocation at the beginning of
      // thread scope
      int max_layer_num = 0;
      std::vector<const StorageEntry *> all_entry;
      for (const auto &e : const_free_map_) {
        all_entry.push_back(e.second);
      }
      for (const StorageEntry *e : sym_free_list_) {
        all_entry.push_back(e);
      }
      for (const StorageEntry *e : all_entry) {
        max_layer_num =
            std::max(max_layer_num, static_cast<int>(e->allocs.size()));
      }
      // calculate align for each layer of each storage entry.
      std::vector<int> align(max_layer_num, 0);
      for (const StorageEntry *e : all_entry) {
        for (int i = 0; i < static_cast<int>(e->allocs.size()); i++) {
          for (const VarNode *buffer : e->allocs[i]) {
            const AllocateNode *alloc = shmem_allocs_[buffer];
            align[i] =
                std::max(align[i], alloc->dtype.bytes() * alloc->dtype.lanes());
374
            align[i] = std::max(align[i], align_bytes_);
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
          }
        }
      }
      // calculate offset for each buffer based on the align of each layer
      for (const StorageEntry *e : all_entry) {
        PrimExpr max_inner_offset = 0;
        for (int i = 0; i < static_cast<int>(e->allocs.size()); i++) {
          PrimExpr inner_offset = 0;
          for (const VarNode *buffer : e->allocs[i]) {
            const AllocateNode *alloc = shmem_allocs_[buffer];
            buffer_byte_offsets_[buffer] = merged_alloc_size_ + inner_offset;
            inner_offset +=
                alloc->extents[0] * alloc->dtype.bytes() * alloc->dtype.lanes();
            inner_offset +=
                indexmod(align[i] - indexmod(inner_offset, align[i]), align[i]);
          }
          max_inner_offset = max(max_inner_offset, inner_offset);
        }
        merged_alloc_size_ += max_inner_offset;
      }

      if (verbose_) {

        LOG(DEBUG) << "Memory Allocation Plan for "
                   << (is_dynamic_ ? "Dynamic" : "Static") << " Shared Memory:";
        LOG(DEBUG) << "  Merged Buffer Name: " << merged_buf_var_->name_hint;
        LOG(DEBUG) << "  Total Merged Size: " << merged_alloc_size_ << " bytes";
        LOG(DEBUG) << "  Individual Buffer Allocations:";
        for (const auto &pair : buffer_byte_offsets_) {
          const VarNode *buffer_var_node = pair.first;
          PrimExpr byte_offset = pair.second;
          auto alloc_it = shmem_allocs_.find(buffer_var_node);
          if (alloc_it != shmem_allocs_.end()) {
            const AllocateNode *alloc = alloc_it->second;
            PrimExpr buffer_size_bytes =
                alloc->extents[0] * alloc->dtype.bytes() * alloc->dtype.lanes();
            LOG(DEBUG) << "    Buffer: " << buffer_var_node->name_hint
                       << " (Type: " << alloc->dtype << ")"
                       << ", Start Offset: " << byte_offset
                       << ", Size: " << buffer_size_bytes << " bytes"
                       << ", End Offset: "
                       << (byte_offset + buffer_size_bytes - 1);
          } else {
            LOG(DEBUG) << "    Buffer: " << buffer_var_node->name_hint
                       << ", Start Offset: " << byte_offset
                       << " (Original allocation info not found)";
          }
        }
        LOG(DEBUG) << "End of Memory Allocation Plan.";
      }

      allocated_ = true;
      Allocate new_body(merged_buf_var_, DataType::UInt(8),
                        {merged_alloc_size_}, const_true(),
                        StmtExprMutator::VisitStmt(op->body));
      return AttrStmt(op->node, op->attr_key, op->value, new_body, op->span);
    }
    return StmtMutator::VisitStmt_(op);
  }

  Stmt VisitStmt_(const AllocateNode *op) final {
    if (IsAppropriateSharedMemory(op->buffer_var)) {
      return StmtExprMutator::VisitStmt(op->body);
    }
    return StmtExprMutator::VisitStmt_(op);
  }

  Stmt VisitStmt_(const DeclBufferNode *op) final {
    auto node = Downcast<DeclBuffer>(StmtExprMutator::VisitStmt_(op));
    auto new_buf = GetUpdatedBuffer(node->buffer);
    if (!new_buf.same_as(node->buffer)) {
      node.CopyOnWrite()->buffer = new_buf;
    }
    return std::move(node);
  }

  PrimExpr VisitExpr_(const BufferLoadNode *op) final {
    auto node = Downcast<BufferLoad>(StmtExprMutator::VisitExpr_(op));
    return VisitBufferAccess(std::move(node));
  }

  Stmt VisitStmt_(const BufferStoreNode *op) final {
    auto node = Downcast<BufferStore>(StmtExprMutator::VisitStmt_(op));
    return VisitBufferAccess(std::move(node));
  }

  template <typename Node> Node VisitBufferAccess(Node node) {
    if (IsAppropriateSharedMemory(node->buffer->data)) {
      ICHECK_EQ(node->indices.size(), 1)
          << "MergeSharedMemoryAllocations expects flat memory buffers, "
          << "and is to be run after "
          << "StorageFlatten (TE schedules) or FlattenBuffer (TIR schedules)";
      Array<PrimExpr> indices = {
          node->indices[0] +
          this->GetBufferOffset(node->buffer->data, node->buffer->dtype)};

      auto writer = node.CopyOnWrite();
      writer->buffer = GetUpdatedBuffer(node->buffer);
      writer->indices = indices;
    }

    return node;
  }

  Buffer GetUpdatedBuffer(Buffer buffer) {
    auto key = buffer.get();
    auto it = buffer_remap_.find(key);
    if (it != buffer_remap_.end()) {
      return it->second;
    }

    if (IsAppropriateSharedMemory(buffer->data)) {
      ICHECK_EQ(buffer->shape.size(), 1)
          << "Buffer " << buffer << " has shape " << buffer->shape << ".  "
          << "MergeSharedMemoryAllocations expects flat memory buffers, "
          << "and is to be run after "
          << "StorageFlatten (TE schedules) or FlattenBuffer (TIR schedules)";
      auto writer = buffer.CopyOnWrite();
      writer->data = merged_buf_var_;
    }

    buffer_remap_[key] = buffer;
    return buffer;
  }

  PrimExpr VisitExpr_(const CallNode *op) final {
    if (op->op.same_as(builtin::tvm_access_ptr())) {
      ICHECK_EQ(op->args.size(), 5U);
      DataType dtype = op->args[0].dtype();
      Var buffer = Downcast<Var>(op->args[1]);
      if (!IsAppropriateSharedMemory(buffer)) {
        return StmtExprMutator::VisitExpr_(op);
      }
      PrimExpr extra_offset = GetBufferOffset(buffer, dtype);

      PrimExpr offset = this->VisitExpr(op->args[2]);
      PrimExpr extent = this->VisitExpr(op->args[3]);
      return Call(op->dtype, op->op,
                  {op->args[0], merged_buf_var_, extra_offset + offset, extent,
                   op->args[4]});
    } else if (op->op.same_as(builtin::ptx_cp_async())) {
      ICHECK((op->args.size() == 5U) || (op->args.size() == 6U));
      DataType dtype = op->dtype;
      Var buffer = Downcast<Var>(op->args[0]);
      if (!IsAppropriateSharedMemory(buffer)) {
        return StmtExprMutator::VisitExpr_(op);
      }
      PrimExpr extra_offset = GetBufferOffset(buffer, dtype);
      PrimExpr offset = this->VisitExpr(op->args[1]);
      // the dst shared memory is a byte buffer generated by merging shared
      // memory. we need to multiply the offset index by the byte size of the
      // original value dtype, to get the correct offset of merged shared
      // buffer.
      int index_factor = dtype.bytes();
      if (op->args.size() == 5)
        return Call(dtype, op->op,
                    {merged_buf_var_,
                     mul(extra_offset + offset, PrimExpr(index_factor)),
                     op->args[2], op->args[3], op->args[4]});
      else
        return Call(dtype, op->op,
                    {merged_buf_var_,
                     mul(extra_offset + offset, PrimExpr(index_factor)),
                     op->args[2], op->args[3], op->args[4], op->args[5]});
    } else {
      return StmtExprMutator::VisitExpr_(op);
    }
  }

  PrimExpr GetBufferOffset(Var buffer_var, DataType dtype) {
    auto it = buffer_byte_offsets_.find(buffer_var.get());
    ICHECK(it != buffer_byte_offsets_.end())
        << "buffer_var = " << buffer_var->name_hint << ", dtype = " << dtype;
    return indexdiv(it->second, dtype.bytes() * dtype.lanes());
  }

  // Wrapper function to determine if the shared memory allocation for a
  // variable is appropriate.
  bool IsAppropriateSharedMemory(const Var &var) {
    return is_dynamic_ ? IsDynamicSharedMemory(var) : IsStaticSharedMemory(var);
  }

  using StmtEntry = SharedMemLinearAccessPatternFinder::StmtEntry;
558
  using StmtAttr = SharedMemLinearAccessPatternFinder::StmtAttr;
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
  struct StorageEntry {
    // The constant size of the buffer in bits, only used if it is constant
    uint64_t const_nbits{0};
    // Allocs that shares this entry.
    // The inner vector means a "layer"
    // For example, it we need to allocate C in the memory of A and B:
    // |  A: 4096 bytes |  B: 4096 bytes |
    // |            C: 8192 bytes        |
    // Then the allocs = {{A, B}, {C}}
    std::vector<std::vector<const VarNode *>> allocs;
  };

  // Event entry in liveness analysis
  struct EventEntry {
    // variables we generate
    std::vector<const VarNode *> gen;
    // variables we kill
    std::vector<const VarNode *> kill;
  };

  /*!
   * \brief Liveness analysis to find gen and kill point of each variable.
   * \param seq the linear pattern of storage access
   */
583
584
585
  void LivenessAnalysis(
      const std::vector<StmtEntry> &seq,
      const std::unordered_map<const Object *, StmtAttr> &stmt_attrs) {
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
    // find kill point, do a reverse linear scan.
    std::unordered_set<const VarNode *> touched;
    for (size_t i = seq.size(); i != 0; --i) {
      const StmtEntry &s = seq[i - 1];
      for (const VarNode *buffer : s.touched) {
        if (!touched.count(buffer)) {
          touched.insert(buffer);
          event_map_[s.stmt].kill.push_back(buffer);
        }
      }
    }
    // find gen point, do forward scan
    touched.clear();
    for (size_t i = 0; i < seq.size(); ++i) {
      int64_t offset = seq[i].scope_pair_offset;
      if (offset < 0)
        continue;
      const StmtEntry &s = seq[i + offset];
      for (const VarNode *buffer : s.touched) {
        if (!touched.count(buffer)) {
          touched.insert(buffer);
          event_map_[s.stmt].gen.push_back(buffer);
        }
      }
    }

    if (verbose_) {
613
614
615
616
617
618
619
620
621
      std::vector<const Object *> stmt_keys;
      for (const auto &stmt_entry : seq) {
        auto stmt = stmt_entry.stmt;
        if (std::find(stmt_keys.begin(), stmt_keys.end(), stmt) ==
            stmt_keys.end()) {
          stmt_keys.push_back(stmt);
        }
      }
      LOG(DEBUG) << "Before reorder kill points, Liveness Analysis Results for "
622
                 << (is_dynamic_ ? "Dynamic" : "Static") << " Shared Memory:";
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
      for (const auto &stmt_key : stmt_keys) {
        auto it = event_map_.find(stmt_key);
        if (it == event_map_.end())
          continue;

        const EventEntry &entry = it->second;
        if (entry.gen.empty() && entry.kill.empty())
          continue;
        ICHECK(stmt_attrs.count(stmt_key))
            << "stmt_key = " << stmt_key->GetTypeKey();
        auto level = stmt_attrs.at(stmt_key).level;
        LOG(DEBUG) << "  Statement: " << stmt_key->GetTypeKey()
                   << " (scope_level: " << level << ")";

        std::stringstream gen_vars_ss;
        bool x_generated = false;
        for (const VarNode *var : entry.gen) {
          gen_vars_ss << var->name_hint << " ";
          if (var->name_hint == "x") {
            x_generated = true;
          }
        }
        if (!entry.gen.empty()) {
          std::string gen_log_msg = "    GEN: " + gen_vars_ss.str();
          if (x_generated) {
            gen_log_msg += " <-- Buffer 'x' generated";
          }
          LOG(DEBUG) << gen_log_msg;
        }

        std::stringstream kill_vars_ss;
        bool x_killed = false;
        for (const VarNode *var : entry.kill) {
          kill_vars_ss << var->name_hint << " ";
          if (var->name_hint == "x") {
            x_killed = true;
          }
        }
        if (!entry.kill.empty()) {
          std::string kill_log_msg = "    KILL: " + kill_vars_ss.str();
          if (x_killed) {
            kill_log_msg += " <-- Buffer 'x' killed";
          }
          LOG(DEBUG) << kill_log_msg;
        }
      }
      LOG(DEBUG) << "End of Liveness Analysis Results.";
    }

    // Reorder kill points:
    // For each buffer, if its kill statement is at a deeper scope level than
    // its gen statement, we need to move the kill point to the end of the gen
    // statement's scope level. This ensures proper memory deallocation at the
    // right scope boundary.
    std::vector<StmtEntry> gen_kill_seq;
    for (const auto &stmt_entry : seq) {
      // if has gen and kill, add to gen_kill_seq
      if (event_map_[stmt_entry.stmt].gen.size() > 0 ||
          event_map_[stmt_entry.stmt].kill.size() > 0) {
        gen_kill_seq.push_back(stmt_entry);
      }
    }
685

686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
    for (auto &event_pair : event_map_) {
      const Object *stmt = event_pair.first;
      EventEntry &event = event_pair.second;

      // Skip if no kill points to process
      if (event.kill.empty())
        continue;

      // Get scope level of current statement
      ICHECK(stmt_attrs.count(stmt));
      int kill_level = stmt_attrs.at(stmt).level;

      std::unordered_set<const VarNode *> visited_buffers;

      // For each killed buffer, find its gen statement and check scope levels
      for (auto it = event.kill.begin(); it != event.kill.end();) {
        const VarNode *buffer = *it;
        bool found_gen = false;
        int gen_level = 0;

        // Find the gen statement for this buffer
        for (const auto &gen_pair : event_map_) {
          const auto &gen_event = gen_pair.second;
          if (std::find(gen_event.gen.begin(), gen_event.gen.end(), buffer) !=
              gen_event.gen.end()) {
            found_gen = true;
            gen_level = stmt_attrs.at(gen_pair.first).level;
            break;
          }
        }

        if (found_gen && kill_level > gen_level) {
          if (visited_buffers.count(buffer)) {
            ++it;
            continue;
          }
          // Need to move kill point - remove from current event
          it = event.kill.erase(it);

          // Find the last statement at gen_level and add kill point there
          // Find the last statement at gen_level in the sequence
          const Object *last_stmt_at_level = nullptr;
          auto stmt_it = gen_kill_seq.begin();
          for (; stmt_it != gen_kill_seq.end(); ++stmt_it) {
            if (stmt_it->stmt == stmt) {
              break;
            }
          }
          // start from current statement and find the last statement at
          // gen_level

          for (; stmt_it != gen_kill_seq.end(); ++stmt_it) {
            // Check if next statement has different level
            auto next_it = stmt_it + 1;
            if (next_it == gen_kill_seq.end() ||
                stmt_attrs.at(next_it->stmt).level == gen_level) {
              last_stmt_at_level = stmt_it->stmt;
              break;
            }
          }
          if (last_stmt_at_level) {
            event_map_[last_stmt_at_level].kill.push_back(buffer);
            visited_buffers.insert(buffer);
          }
        } else {
          ++it;
752
        }
753
754
      }
    }
755

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
    std::vector<const Object *> stmt_keys;
    for (const auto &stmt_entry : seq) {
      auto stmt = stmt_entry.stmt;
      if (std::find(stmt_keys.begin(), stmt_keys.end(), stmt) ==
          stmt_keys.end()) {
        stmt_keys.push_back(stmt);
      }
    }

    if (verbose_) {
      LOG(DEBUG) << "Liveness Analysis Results for "
                 << (is_dynamic_ ? "Dynamic" : "Static") << " Shared Memory:";
      for (const auto &stmt_key : stmt_keys) {
        auto it = event_map_.find(stmt_key);
        if (it == event_map_.end())
          continue;

        const EventEntry &entry = it->second;
        if (entry.gen.empty() && entry.kill.empty())
          continue;
        ICHECK(stmt_attrs.count(stmt_key))
            << "stmt_key = " << stmt_key->GetTypeKey();
        auto level = stmt_attrs.at(stmt_key).level;
        LOG(DEBUG) << "  Statement: " << stmt_key->GetTypeKey()
                   << " (scope_level: " << level << ")";
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822

        std::stringstream gen_vars_ss;
        bool x_generated = false;
        for (const VarNode *var : entry.gen) {
          gen_vars_ss << var->name_hint << " ";
          if (var->name_hint == "x") {
            x_generated = true;
          }
        }
        if (!entry.gen.empty()) {
          std::string gen_log_msg = "    GEN: " + gen_vars_ss.str();
          if (x_generated) {
            gen_log_msg += " <-- Buffer 'x' generated";
          }
          LOG(DEBUG) << gen_log_msg;
        }

        std::stringstream kill_vars_ss;
        bool x_killed = false;
        for (const VarNode *var : entry.kill) {
          kill_vars_ss << var->name_hint << " ";
          if (var->name_hint == "x") {
            x_killed = true;
          }
        }
        if (!entry.kill.empty()) {
          std::string kill_log_msg = "    KILL: " + kill_vars_ss.str();
          if (x_killed) {
            kill_log_msg += " <-- Buffer 'x' killed";
          }
          LOG(DEBUG) << kill_log_msg;
        }
      }
      LOG(DEBUG) << "End of Liveness Analysis Results.";
    }
  }

  /*!
   * \brief Memory plan algorithm
   * \param seq the linear pattern of storage access
   * \param alloc_info
   */
823
824
825
  void
  PlanMemory(const std::vector<StmtEntry> &seq,
             const std::unordered_map<const Object *, StmtAttr> &stmt_attrs) {
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
    std::unordered_set<const VarNode *> inplace_flag;

    for (size_t i = 0; i < seq.size(); ++i) {
      auto it = event_map_.find(seq[i].stmt);
      // scope_pair_offset <= 0 means it is either
      // - leaf stmt(offset = 0)
      // - end of scope(offset < 0)
      // In both cases, we need to handle the kill event correctly
      auto is_leaf_alloc = [&](const VarNode *var) {
        return seq[i].scope_pair_offset == 0 &&
               std::find(it->second.gen.begin(), it->second.gen.end(), var) !=
                   it->second.gen.end();
      };
      if (it != event_map_.end() && seq[i].scope_pair_offset <= 0) {
        for (const VarNode *var : it->second.kill) {
          if (!is_leaf_alloc(var))
            this->Free(var);
        }
      }
      // scope_pair_offset >= 0 means it is either
      // - leaf stmt(offset = 0)
      // - beginning of scope(offset < 0)
      // In both cases, we need to handle the gen event correctly
      if (it != event_map_.end() && seq[i].scope_pair_offset >= 0) {
        for (const VarNode *var : it->second.gen) {
          ICHECK(shmem_allocs_.count(var));
          const AllocateNode *alloc = shmem_allocs_[var];
          StorageEntry *dst_entry = FindAlloc(alloc);
          alloc_map_[var] = dst_entry;
        }
      }
      if (it != event_map_.end() && seq[i].scope_pair_offset <= 0) {
        for (const VarNode *var : it->second.kill) {
          if (is_leaf_alloc(var))
            this->Free(var);
        }
      }
    }
  }
  /*!
   * \brief Allocate new storage entry.
   * \param op the allocate node
   * \param the size of the allocation in bits
   * \return the new storage entry
   */
  StorageEntry *NewAlloc(const AllocateNode *op, size_t const_nbits) {
    ICHECK(op != nullptr);
    // Re-use not successful, allocate a new buffer.
    StorageEntry *entry = arena_.make<StorageEntry>();
    entry->allocs.push_back({op->buffer_var.get()});
    entry->const_nbits = const_nbits;
    return entry;
  }
  /*!
   * \brief find the storage entry in the free list for the allocate
   * \param op the allocate node
   * \return the storage entry
   */
  StorageEntry *FindAlloc(const AllocateNode *op) {
    ICHECK(op != nullptr);
    // skip plan for local variable,
    // compiler can do a better job with register allocation.
    const uint64_t match_range = 16;
    uint64_t op_elem_bits = op->dtype.bits() * op->dtype.lanes();
    uint64_t const_nbits =
        static_cast<uint64_t>(op->ConstantAllocationSize() * op_elem_bits);
    // disable reuse of small arrays, they will be lowered to registers in LLVM
    // This rules only apply if we are using non special memory
    if (const_nbits > 0 && const_nbits <= 32) {
      return NewAlloc(op, const_nbits);
    }

    if (const_nbits != 0) {
      // constant allocation.
      auto begin = const_free_map_.lower_bound(0);
      auto mid = const_free_map_.lower_bound(const_nbits);
      auto end = const_free_map_.upper_bound(const_nbits * match_range);
      // Start looking at the buffer that is bigger than the required size
      // first. If we find one, directly allocate the buffer in its location and
      // remove its entry in the free list
      for (auto it = mid; it != end; ++it) {
        StorageEntry *e = it->second;
        e->const_nbits = std::max(const_nbits, e->const_nbits);
        const_free_map_.erase(it);
        it->second->allocs.push_back({op->buffer_var.get()});
        return e;
      }
      // Then start looking at smaller buffers.
      // Keep collecting the buffer until the sum of their size exceeds the
      // buffer to allocate and finally free all these entry in the free list
      std::vector<std::multimap<uint64_t, StorageEntry *>::iterator> delete_it;
      // the alloc list for the new entry
      std::vector<std::vector<const VarNode *>> reuse_allocs;
      uint64_t mem_ct = 0;
      for (auto it = mid; it != begin;) {
        --it;
        delete_it.push_back(it);
        mem_ct += it->second->const_nbits;
        int n = it->second->allocs.size();
        if (n > static_cast<int>(reuse_allocs.size())) {
          reuse_allocs.resize(n, {});
        }
        for (int i = 0; i < n; i++) {
          for (const VarNode *alloc : it->second->allocs[i]) {
            reuse_allocs[i].push_back(alloc);
          }
        }
        if (mem_ct >= const_nbits) {
          break;
        }
      }
      reuse_allocs.push_back({op->buffer_var.get()});
      if (mem_ct != 0) {
        StorageEntry *e = arena_.make<StorageEntry>();
        e->const_nbits = std::max(const_nbits, mem_ct);
        e->allocs = reuse_allocs;
        for (auto it : delete_it) {
          const_free_map_.erase(it);
        }
        return e;
      }
    } else {
      // if its symbolic allocation, just arbitrarily choose one entry to fit in
      // because we don't know its actual size
      for (auto it = sym_free_list_.begin(); it != sym_free_list_.end(); ++it) {
        StorageEntry *e = *it;
        sym_free_list_.erase(it);
        return e;
      }
    }
    return NewAlloc(op, const_nbits);
  }

  /*!
   * \brief add the storage entry to the buffer var into the free list.
   * \param var the buffer var
   */
  void Free(const VarNode *var) {
    auto it = alloc_map_.find(var);
    ICHECK(it != alloc_map_.end());
    StorageEntry *e = it->second;
    ICHECK_NE(e->allocs.size(), 0U);

    // normal free.
    if (e->const_nbits != 0) {
      const_free_map_.insert({e->const_nbits, e});
    } else {
      sym_free_list_.push_back(e);
    }
  }
  // Wheather enable dyanmic analysis.
  bool is_dynamic_{true};
978

979
980
  // Whether enable verbose logging.
  bool verbose_{false};
981
982
  // The alignment bytes for the merged buffer
  int align_bytes_{16};
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
  // The var for the merged buffer
  Var merged_buf_var_{"buf_dyn_shmem",
                      PointerType(PrimType(DataType::UInt(8)), "shared.dyn")};
  // The mapping from the original buffer var to its allocate
  std::unordered_map<const VarNode *, const AllocateNode *> shmem_allocs_;
  // The size of the merged buffer
  PrimExpr merged_alloc_size_{0};
  // The mapping from the original buffer var to its offset in the merged buffer
  std::unordered_map<const VarNode *, PrimExpr> buffer_byte_offsets_;
  // The mapping from the original buffer objects to their location in the
  // merged buffer.
  std::unordered_map<const BufferNode *, Buffer> buffer_remap_;
  // The flag indicating whether the merged buffer has been allocated
  bool allocated_{false};
  // Locations of free ops.
  std::unordered_map<const Object *, EventEntry> event_map_;
  // constant size free map.
  std::multimap<uint64_t, StorageEntry *> const_free_map_;
  // symbolic free list, for non constant items.
  std::list<StorageEntry *> sym_free_list_;
  // The allocation assign map
  std::unordered_map<const VarNode *, StorageEntry *> alloc_map_;
  /*! \brief allocator of all the StorageEntry*/
  support::Arena arena_;
};

Stmt MergeSharedMemoryAllocations(Stmt stmt, bool merge_static_smem,
1010
                                  bool enable_aggressive_merge,
1011
                                  int align_bytes = 16, bool verbose = false) {
1012
1013
1014
  AllocateCollector collector;
  collector(stmt);
  if (collector.dyn_shmem_allocs_.size() > 1) {
1015
1016
    SharedMemoryRewriter rewriter(collector.dyn_shmem_allocs_, true, verbose,
                                  align_bytes);
1017
    rewriter.PlanReuse(stmt, true, enable_aggressive_merge);
1018
1019
1020
1021
    stmt = rewriter(std::move(stmt));
  }
  if (merge_static_smem && collector.static_shmem_allocs_.size() > 1) {
    SharedMemoryRewriter rewriter(collector.static_shmem_allocs_, false,
1022
                                  verbose, align_bytes);
1023
    rewriter.PlanReuse(stmt, false, enable_aggressive_merge);
1024
1025
1026
1027
1028
1029
1030
1031
1032
    stmt = rewriter(std::move(stmt));
  }
  return stmt;
}

using namespace tir::transform;

namespace transform {

1033
1034
1035
1036
Pass MergeSharedMemoryAllocations(bool enable_aggressive_merge = false,
                                  int align_bytes = 16) {
  auto pass_func = [enable_aggressive_merge,
                    align_bytes](PrimFunc f, IRModule m, PassContext ctx) {
1037
1038
1039
1040
1041
1042
    bool merge_static_smem =
        ctx->GetConfig<Bool>("tir.merge_static_smem", Bool(false)).value();
    bool debug_merge_shared_memory_allocations =
        ctx->GetConfig<Bool>(kDebugMergeSharedMemoryAllocations, Bool(false))
            .value();
    auto *n = f.CopyOnWrite();
1043
1044
    n->body = tl::MergeSharedMemoryAllocations(
        std::move(n->body), merge_static_smem, enable_aggressive_merge,
1045
        align_bytes, debug_merge_shared_memory_allocations);
1046
1047
1048
1049
1050
1051
    return f;
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.MergeSharedMemoryAllocations",
                            {});
}

1052
1053
1054
1055
1056
TVM_FFI_STATIC_INIT_BLOCK({
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.transform.MergeSharedMemoryAllocations",
                        MergeSharedMemoryAllocations);
});
1057
1058
1059
1060

} // namespace transform
} // namespace tl
} // namespace tvm