loop_vectorization_utils.h 28.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership. The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

/*!
 * \file common.h
 * \brief Common utilities for TL transforms
 */

#include <tvm/tir/builtin.h>
#include <tvm/tir/op.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>
#include <tvm/tir/utils.h>

#include <queue>

#include "../../op/parallel.h"
#include "../loop_partition.h"
#include "../loop_vectorize.h"
38
#include "arith/ir_mutator_with_analyzer.h"
39
40
41
42
43
44
45
46
47
48

namespace tvm {
namespace tl {

using namespace tir;

// Vectorize Part
// Use the same code as tir.transform.vectorize_loop
inline PrimExpr CreateNewLanes(bool is_scalable, int lanes_or_vscale_factor) {
  if (is_scalable) {
49
50
    return Mul(Call(DataType::Int(32), builtin::vscale(), {}),
               lanes_or_vscale_factor);
51
52
53
54
55
56
57
58
59
60
61
  } else {
    return lanes_or_vscale_factor;
  }
}

inline PrimExpr BroadcastTo(PrimExpr e, int lanes, bool is_scalable) {
  // Check if e is already in the expected form
  if (e.dtype().get_lanes_or_vscale_factor() == lanes &&
      e.dtype().is_scalable_vector() == is_scalable)
    return e;

62
  if (const BroadcastNode *op = e.as<BroadcastNode>()) {
63
64
65
66
67
68
69
70
71
    ICHECK(op->dtype.is_scalable_vector() == is_scalable)
        << "Can't broadcast between scalable and fixed length vectors.";
    int e_lanes = op->dtype.get_lanes_or_vscale_factor();

    if (lanes % e_lanes == 0) {
      return Broadcast(op->value, CreateNewLanes(is_scalable, lanes));
    }
  }

72
73
74
  ICHECK(e.dtype().is_scalar())
      << "Cannot broadcast lanes=" << e.dtype().get_lanes_or_vscale_factor()
      << " is_scalable=" << e.dtype().is_scalable_vector() << " to " << lanes;
75
76
77
78
79

  return Broadcast(e, CreateNewLanes(is_scalable, lanes));
}

// Rewrite vectorized allocation access
80
81
// This is necessary for making each vector component containing its own
// workspace. Originates from Halide's loop vectorizer
82
83
84
//
// s[i] = s[i * lanes + var]
//
85
86
// The same principle applies when using one thread to simulate multiple
// context.
87
88
//
class VecAllocAccess : public StmtExprMutator {
89
90
public:
  VecAllocAccess(const VarNode *buf, Var var, PrimExpr var_lanes)
91
92
      : buf_(buf), var_(var), var_lanes_(var_lanes) {}

93
  PrimExpr VisitExpr_(const BufferLoadNode *op) final {
94
95
96
97
    auto load = Downcast<BufferLoad>(StmtExprMutator::VisitExpr_(op));
    return UpdateBufferAccess(load);
  }

98
  Stmt VisitStmt_(const BufferStoreNode *op) final {
99
100
101
102
    auto store = Downcast<BufferStore>(StmtExprMutator::VisitStmt_(op));
    return UpdateBufferAccess(store);
  }

103
104
private:
  template <typename Node> Node UpdateBufferAccess(Node node) {
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    // Only update the buffer that's being replaced.
    if (node->buffer->data.get() != buf_) {
      return node;
    }

    // Find/make a Buffer object with the correct updated shape.
    Buffer buf;
    auto it = buffer_map_.find(node->buffer.get());
    if (it != buffer_map_.end()) {
      buf = it->second;
    } else {
      // Extend the least significant dimension by a factor of
      // var_lanes_.  Typically, this will be a 1-d index into a flat
      // memory space.
      Array<PrimExpr> shape = node->buffer->shape;
120
121
      shape.Set(shape.size() - 1,
                analyzer_.Simplify(shape[shape.size() - 1] * var_lanes_));
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

      // TODO(Lunderberg): Move this pass to be prior to
      // StorageFlatten/FlattenBuffer, implement by appending a
      // dimension to the buffer.  Since it is currently after the
      // flattening, the strides are not technically necessary, but
      // are updated for consistency.

      // Update strides if defined.
      Array<PrimExpr> strides;
      for (size_t i = 0; i < strides.size(); i++) {
        PrimExpr stride = strides[i];
        if (i != strides.size() - 1) {
          stride *= var_lanes_;
        }
        strides.push_back(analyzer_.Simplify(stride));
      }

      // Copy everything into the new buffer.
      buf = node->buffer;
      auto buf_writer = buf.CopyOnWrite();
      buf_writer->shape = shape;
      buf_writer->strides = strides;
      buffer_map_[buf.get()] = buf;
    }

    // Extend the last index by the number of lanes in the vectorized
    // variable.
    Array<PrimExpr> indices = node->indices;
150
151
152
    indices.Set(
        indices.size() - 1,
        analyzer_.Simplify(indices[indices.size() - 1] * var_lanes_ + var_));
153
154
155
156
157
158
159
160

    auto writer = node.CopyOnWrite();
    writer->buffer = buf;
    writer->indices = indices;
    return node;
  }

  // buffer var
161
  const VarNode *buf_;
162
  // Updated buffer objects.
163
  std::unordered_map<const BufferNode *, Buffer> buffer_map_;
164
165
166
167
168
169
170
171
172
173
174
  // variable to be replaced
  Var var_;
  // the lanes.
  PrimExpr var_lanes_;
  // Analyzer for simplifications
  arith::Analyzer analyzer_;
};

// We use ExprFunctor directly instead of StmtExprMutator
// This is because the transformation can change the dtype of the Expr
// The existing ExprMutator transformation rules may not be well defined.
175
176
177
class Vectorizer : public StmtMutator,
                   public ExprFunctor<PrimExpr(const PrimExpr &)> {
public:
178
179
180
181
182
183
184
  using ExprFunctor::VisitExpr;
  using StmtMutator::operator();

  Vectorizer(Var var, PrimExpr var_lanes) : var_(var), var_lanes_(var_lanes) {
    ramp_ = Ramp(IntImm(var->dtype, 0), IntImm(var->dtype, 1), var_lanes);
  }

185
  Stmt VisitStmt(const Stmt &stmt) final {
186
187
188
189
190
191
192
193
194
195
    ICHECK(!need_scalarize_);
    Stmt ret = StmtMutator::VisitStmt(stmt);
    if (need_scalarize_) {
      need_scalarize_ = false;
      return Scalarize(stmt);
    } else {
      return ret;
    }
  }

196
197
198
  PrimExpr VisitExpr(const PrimExpr &e) final {
    return ExprFunctor::VisitExpr(e);
  }
199

200
  PrimExpr VisitExpr_(const AddNode *op) final {
201
202
203
    return AddSubVec(op, [](PrimExpr a, PrimExpr b) { return a + b; });
  }

204
  PrimExpr VisitExpr_(const SubNode *op) final {
205
206
207
    return AddSubVec(op, [](PrimExpr a, PrimExpr b) { return a - b; });
  }

208
  PrimExpr VisitExpr_(const MulNode *op) final {
209
210
211
212
213
214
215
216
217
218
    PrimExpr a = this->VisitExpr(op->a);
    PrimExpr b = this->VisitExpr(op->b);
    if (a.same_as(op->a) && b.same_as(op->b)) {
      return GetRef<PrimExpr>(op);
    } else {
      bool is_vec_a = a.dtype().is_scalable_or_fixed_length_vector();
      bool is_vec_b = b.dtype().is_scalable_or_fixed_length_vector();
      if (is_vec_a && is_vec_b) {
        // Let's not multiply scalable and fixed length vectors
        ICHECK(a.dtype().is_scalable_vector() == b.dtype().is_scalable_vector())
219
220
            << "Fixed length and scalable vectors can't be mixed in "
               "multiplication.";
221
222
      }
      if (is_vec_a || is_vec_b) {
223
224
        const RampNode *b_ramp = b.as<RampNode>();
        const RampNode *a_ramp = a.as<RampNode>();
225
226
227
228
229
230
231
232
233
234
235
        if (a_ramp && b.dtype().is_scalar() && analyzer_.CanProve(b > 0)) {
          PrimExpr lanes = a_ramp->lanes;
          return Ramp(a_ramp->base * b, a_ramp->stride * b, lanes);
        }
        if (b_ramp && a.dtype().is_scalar() && analyzer_.CanProve(a > 0)) {
          PrimExpr lanes = b_ramp->lanes;
          return Ramp(b_ramp->base * a, b_ramp->stride * a, lanes);
        }
        int a_lanes = a.dtype().get_lanes_or_vscale_factor();
        int b_lanes = b.dtype().get_lanes_or_vscale_factor();
        int max_lanes = std::max(a_lanes, b_lanes);
236
237
238
239
        bool is_scalable =
            a.dtype().is_scalable_vector() || b.dtype().is_scalable_vector();
        return Mul(BroadcastTo(a, max_lanes, is_scalable),
                   BroadcastTo(b, max_lanes, is_scalable));
240
241
242
243
      }
    }
    return BinaryVec<Mul>(op);
  }
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
  PrimExpr VisitExpr_(const DivNode *op) final { return BinaryVec<Div>(op); }
  PrimExpr VisitExpr_(const ModNode *op) final { return BinaryVec<Mod>(op); }
  PrimExpr VisitExpr_(const FloorDivNode *op) final {
    return BinaryVec<FloorDiv>(op);
  }
  PrimExpr VisitExpr_(const FloorModNode *op) final {
    return BinaryVec<FloorMod>(op);
  }
  PrimExpr VisitExpr_(const MinNode *op) final { return BinaryVec<Min>(op); }
  PrimExpr VisitExpr_(const MaxNode *op) final { return BinaryVec<Max>(op); }
  PrimExpr VisitExpr_(const EQNode *op) final { return BinaryVec<EQ>(op); }
  PrimExpr VisitExpr_(const NENode *op) final { return BinaryVec<NE>(op); }
  PrimExpr VisitExpr_(const LTNode *op) final { return BinaryVec<LT>(op); }
  PrimExpr VisitExpr_(const LENode *op) final { return BinaryVec<LE>(op); }
  PrimExpr VisitExpr_(const GTNode *op) final { return BinaryVec<GT>(op); }
  PrimExpr VisitExpr_(const GENode *op) final { return BinaryVec<GE>(op); }
  PrimExpr VisitExpr_(const AndNode *op) final { return BinaryVec<And>(op); }
  PrimExpr VisitExpr_(const OrNode *op) final { return BinaryVec<Or>(op); }

  PrimExpr VisitExpr_(const NotNode *op) final {
264
265
266
267
268
269
270
271
    PrimExpr a = this->VisitExpr(op->a);
    if (a.same_as(op->a)) {
      return GetRef<PrimExpr>(op);
    } else {
      return !(a);
    }
  }

272
  PrimExpr VisitExpr_(const RampNode *op) final {
273
274
275
276
277
278
279
280
281
    PrimExpr base = this->VisitExpr(op->base);
    PrimExpr stride = this->VisitExpr(op->stride);
    ICHECK(!base.dtype().is_scalable_vector())
        << "Creating scalable vectors from existing vectors is not supported.";
    ICHECK(!stride.dtype().is_scalable_vector())
        << "Ramp stride with scalable dtype is not supported";
    if (base.dtype().is_fixed_length_vector() && stride.dtype().is_scalar()) {
      ICHECK(op->lanes->IsInstance<IntImmNode>())
          << "Vectorizing over existing scalable vectors is not supported.";
282
      const RampNode *base_ramp = base.as<RampNode>();
283
      int op_lanes = static_cast<int>(Downcast<IntImm>(op->lanes)->value);
284
285
      int base_ramp_lanes =
          static_cast<int>(Downcast<IntImm>(base_ramp->lanes)->value);
286
      if (analyzer_.CanProve(base_ramp->stride ==
287
288
                             stride *
                                 make_const(stride.dtype(), base_ramp_lanes))) {
289
290
291
292
293
294
295
296
        return Ramp(base_ramp->base, stride, op_lanes * base_ramp_lanes);
      }
    }
    int lanes = std::max(base.dtype().lanes(), stride.dtype().lanes());
    base = BroadcastTo(base, lanes, false);
    stride = BroadcastTo(stride, lanes, false);
    Array<PrimExpr> elems;
    for (int i = 0; i < lanes; ++i) {
297
298
      elems.push_back(Ramp(Shuffle::ExtractElement(base, i),
                           Shuffle::ExtractElement(stride, i), op->lanes));
299
300
301
302
    }
    return Shuffle::Concat(elems);
  }

303
  PrimExpr VisitExpr_(const BroadcastNode *op) final {
304
305
306
307
308
309
310
311
312
313
314
315
    PrimExpr value = this->VisitExpr(op->value);
    if (value.dtype().is_scalable_or_fixed_length_vector()) {
      need_scalarize_ = true;
      return GetRef<PrimExpr>(op);
    }
    if (value.same_as(op->value)) {
      return GetRef<PrimExpr>(op);
    } else {
      return Broadcast(op->value, op->lanes);
    }
  }

316
  PrimExpr VisitExpr_(const SelectNode *op) final {
317
318
319
    PrimExpr cond = this->VisitExpr(op->condition);
    PrimExpr t = this->VisitExpr(op->true_value);
    PrimExpr f = this->VisitExpr(op->false_value);
320
321
    if (cond.same_as(op->condition) && t.same_as(op->true_value) &&
        f.same_as(op->false_value)) {
322
323
324
325
326
327
      return GetRef<PrimExpr>(op);
    } else {
      int cond_lanes = cond.dtype().get_lanes_or_vscale_factor();
      int t_lanes = t.dtype().get_lanes_or_vscale_factor();
      int f_lanes = f.dtype().get_lanes_or_vscale_factor();
      int lanes = std::max(std::max(cond_lanes, t_lanes), f_lanes);
328
329
      bool is_scalable = cond.dtype().is_scalable_vector() ||
                         t.dtype().is_scalable_vector() ||
330
                         f.dtype().is_scalable_vector();
331
332
      return Select(BroadcastTo(cond, lanes, is_scalable),
                    BroadcastTo(t, lanes, is_scalable),
333
334
335
336
                    BroadcastTo(f, lanes, is_scalable));
    }
  }

337
  PrimExpr VisitExpr_(const CastNode *op) final {
338
339
340
341
342
    PrimExpr value = this->VisitExpr(op->value);
    if (value.same_as(op->value)) {
      return GetRef<PrimExpr>(op);
    } else {
      if (value.dtype().is_scalable_vector()) {
343
344
345
        return Cast(op->dtype.with_scalable_vscale_factor(
                        value.dtype().vscale_factor()),
                    value);
346
347
348
349
350
351
      } else {
        return Cast(op->dtype.with_lanes(value.dtype().lanes()), value);
      }
    }
  }

352
353
354
  PrimExpr VisitExpr_(const FloatImmNode *op) final {
    return GetRef<PrimExpr>(op);
  }
355

356
357
358
  PrimExpr VisitExpr_(const IntImmNode *op) final {
    return GetRef<PrimExpr>(op);
  }
359

360
361
362
  PrimExpr VisitExpr_(const StringImmNode *op) final {
    return GetRef<PrimExpr>(op);
  }
363
364

  // Variable
365
  PrimExpr VisitExpr_(const VarNode *op) final {
366
367
368
369
370
371
372
373
374
375
376
377
378
    Var var = GetRef<Var>(op);

    if (var.same_as(var_)) {
      return ramp_;
    }
    auto it = let_binding_.find(var);
    if (it != let_binding_.end()) {
      return it->second;
    } else {
      return std::move(var);
    }
  }
  // IfThenElse expr
379
  PrimExpr MutateIfThenElseExpr_(const CallNode *op) {
380
381
382
383
384
385
386
    PrimExpr cond = this->VisitExpr(op->args[0]);
    if (cond.dtype().is_scalable_or_fixed_length_vector()) {
      need_scalarize_ = true;
      return GetRef<PrimExpr>(op);
    }
    PrimExpr t = this->VisitExpr(op->args[1]);
    PrimExpr f = this->VisitExpr(op->args[2]);
387
388
    if (cond.same_as(op->args[0]) && t.same_as(op->args[1]) &&
        f.same_as(op->args[2])) {
389
390
391
392
393
      return GetRef<PrimExpr>(op);
    } else {
      int t_lanes = t.dtype().get_lanes_or_vscale_factor();
      int f_lanes = f.dtype().get_lanes_or_vscale_factor();
      int lanes = std::max(t_lanes, f_lanes);
394
395
      bool is_scalable =
          t.dtype().is_scalable_vector() || f.dtype().is_scalable_vector();
396
397
398
      t = BroadcastTo(t, lanes, is_scalable);
      f = BroadcastTo(f, lanes, is_scalable);
      if (is_scalable) {
399
400
        return Call(op->dtype.with_scalable_vscale_factor(lanes), op->op,
                    {cond, t, f});
401
402
403
404
405
406
      } else {
        return Call(op->dtype.with_lanes(lanes), op->op, {cond, t, f});
      }
    }
  }
  // Reinterpret expr
407
  PrimExpr MutateReinterpretExpr_(const CallNode *op) {
408
409
410
411
412
413
414
    ICHECK(op->op.same_as(builtin::reinterpret()));
    PrimExpr value = this->VisitExpr(op->args[0]);
    if (value.same_as(op->args[0])) {
      return GetRef<PrimExpr>(op);
    } else {
      int lanes = value.dtype().get_lanes_or_vscale_factor();
      if (value.dtype().is_scalable_vector()) {
415
416
        return Call(op->dtype.with_scalable_vscale_factor(lanes), op->op,
                    {value});
417
418
419
420
421
422
      } else {
        return Call(op->dtype.with_lanes(lanes), op->op, {value});
      }
    }
  }
  // Call
423
  PrimExpr VisitExpr_(const CallNode *op) final {
424
425
426
427
428
429
430
431
432
433
434
435
436
437
    if (op->op.same_as(builtin::if_then_else())) {
      return MutateIfThenElseExpr_(op);
    } else if (op->op.same_as(builtin::texture2d_load())) {
      int lane = 0;
      Array<PrimExpr> fcd = MutateArray({op->args.back()}, &lane);
      auto new_args = op->args;
      new_args.pop_back();
      new_args.push_back(fcd[0]);
      return Call(op->dtype.with_lanes(4), op->op, new_args);
    } else if (op->op.same_as(builtin::texture2d_store())) {
      int lane = 0;
      // Vectorize the value to store
      Array<PrimExpr> value{op->args.back()};
      Array<PrimExpr> mutated_value = MutateArray(value, &lane);
438
439
      Array<PrimExpr> new_args{op->args[0], op->args[1], op->args[2],
                               mutated_value[0]};
440
441
442
443
444
      return Call(op->dtype.with_lanes(lane), op->op, new_args);
    } else if (op->op.same_as(builtin::reinterpret())) {
      return MutateReinterpretExpr_(op);
    }
    auto optional_op = op->op.as<Op>();
445
446
    bool vectorizable = optional_op &&
                        op_vectorizable_.get(optional_op.value(), false) &&
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
                        !op->dtype.is_scalable_vector();

    if (!vectorizable) {
      // Cannot vectorize this op
      Array<PrimExpr> new_args;
      for (auto arg : op->args) {
        auto new_arg = this->VisitExpr(arg);
        if (new_arg.dtype().is_scalable_or_fixed_length_vector()) {
          need_scalarize_ = true;
          return GetRef<PrimExpr>(op);
        }
        new_args.push_back(new_arg);
      }
      if (op->args.same_as(new_args)) {
        return GetRef<PrimExpr>(op);
      } else {
        return Call(op->dtype, op->op, new_args);
      }
    } else {
      int lane = 0;
      Array<PrimExpr> new_args = MutateArray(op->args, &lane);
      // normal code path.
      if (op->args.same_as(new_args)) {
        return GetRef<PrimExpr>(op);
      } else {
        return Call(op->dtype.with_lanes(lane), op->op, new_args);
      }
    }
  }
  // BufferLoad
477
  PrimExpr VisitExpr_(const BufferLoadNode *op) final {
478
479
    auto load = GetRef<BufferLoad>(op);

480
481
482
    auto fmutate = [this](const PrimExpr &index) {
      return this->VisitExpr(index);
    };
483
484
485
486
487
488
489
490
491
492
    Array<PrimExpr> indices = op->indices.Map(fmutate);

    if (!indices.same_as(op->indices)) {
      auto writer = load.CopyOnWrite();
      writer->indices = indices;
    }

    return std::move(load);
  }
  // Let
493
  PrimExpr VisitExpr_(const LetNode *op) final {
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
    PrimExpr value = this->VisitExpr(op->value);
    // Weaker SSA condition
    // A single var can be binded in multiple lets
    // but they have to bind to the same value.
    // This is used to allow cases when we reuse a single let
    // expression to construct a nested expr.
    // (let x = 1 in x + 1) * (let x = 1 in x + 1)
    auto it = let_binding_.find(op->var);
    if (it != let_binding_.end()) {
      ICHECK(deep_equal_(it->second, value))
          << "Let cannot bind the same var to two different values";
    }
    if (value.dtype().get_lanes_or_vscale_factor() !=
        op->value.dtype().get_lanes_or_vscale_factor()) {
      Var new_var(op->var->name_hint, value.dtype());
      let_binding_[op->var] = new_var;
      return Let(new_var, value, this->VisitExpr(op->body));
    } else {
      let_binding_[op->var] = op->var;
      PrimExpr body = this->VisitExpr(op->body);
      if (value.same_as(op->value) && body.same_as(op->body)) {
        return GetRef<PrimExpr>(op);
      } else {
        return Let(op->var, value, body);
      }
    }
  }
  // BufferStore
522
  Stmt VisitStmt_(const BufferStoreNode *op) final {
523
524
    auto store = GetRef<BufferStore>(op);

525
526
527
    auto fmutate = [this](const PrimExpr &index) {
      return this->VisitExpr(index);
    };
528
529
530
531
532
533
    Array<PrimExpr> indices = op->indices.Map(fmutate);

    PrimExpr value = this->VisitExpr(op->value);

    if (!indices.same_as(op->indices) || !value.same_as(op->value)) {
      ICHECK(!op->buffer->dtype.is_scalable_vector())
534
535
          << "Vectorizing over scalable buffer elements is not supported in "
             "vectorizer.";
536
537
538
539
540
541
      // How many lanes of indexing are present in the index and
      // buffer element type, excluding the last index.
      int other_index_lanes = op->buffer->dtype.lanes();
      for (size_t i = 0; i < indices.size() - 1; i++) {
        other_index_lanes *= indices[i].dtype().lanes();
        // Only allow the last index to be scalable
542
543
        ICHECK(!indices[i].dtype().is_scalable_vector())
            << "Only the last index can be scalable.";
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
      }

      // The total number of lanes of indexing, including the last index.
      auto last_index_dtype = indices[indices.size() - 1].dtype();
      int lanes_in_last_index = last_index_dtype.get_lanes_or_vscale_factor();
      int index_lanes = other_index_lanes * lanes_in_last_index;

      // The total number of lanes in this store operation.  Either
      // the index or the value will be broadcast out to this number
      // of lanes, depending on which has more lanes.
      int value_dtype_lanes = value.dtype().get_lanes_or_vscale_factor();
      bool is_last_index_scalable = last_index_dtype.is_scalable_vector();
      int total_lanes = std::max(index_lanes, value_dtype_lanes);

      ICHECK_EQ(total_lanes % other_index_lanes, 0)
559
560
          << "When storing to buffer " << op->buffer->name
          << ", cannot produce " << total_lanes
561
562
563
564
565
          << " lanes of storage location by changing the last index.";
      int last_index_lanes = total_lanes / other_index_lanes;

      // Broadcast the last index such that the total number of index
      // lanes matches the desired number.
566
567
568
      indices.Set(indices.size() - 1,
                  BroadcastTo(indices[indices.size() - 1], last_index_lanes,
                              is_last_index_scalable));
569
570
571
572
573
574
575
576
577

      auto writer = store.CopyOnWrite();
      writer->indices = indices;
      writer->value = BroadcastTo(value, total_lanes, is_last_index_scalable);
    }

    return std::move(store);
  }
  // For
578
  Stmt VisitStmt_(const ForNode *op) final {
579
580
581
582
583
584
585
586
587
588
589
590
591
    if (op->kind == ForKind::kVectorized) {
      LOG(WARNING) << "Detect vectorize inside vectorized loop, ignoring...";
    }
    ICHECK(is_zero(op->min));
    ICHECK(!op->extent.dtype().is_scalable_or_fixed_length_vector());
    PrimExpr extent = this->VisitExpr(op->extent);
    if (extent.dtype().is_scalable_or_fixed_length_vector()) {
      return Scalarize(GetRef<Stmt>(op));
    }
    Stmt body = this->VisitStmt(op->body);
    if (extent.same_as(op->extent) && body.same_as(op->body)) {
      return GetRef<Stmt>(op);
    } else {
592
593
      return For(op->loop_var, op->min, extent, op->kind, body,
                 op->thread_binding, op->annotations);
594
595
596
    }
  }
  // IfThenElse
597
  Stmt VisitStmt_(const IfThenElseNode *op) final {
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
    ICHECK(!op->condition.dtype().is_scalable_or_fixed_length_vector());
    PrimExpr condition = this->VisitExpr(op->condition);
    if (condition.dtype().is_scalable_or_fixed_length_vector()) {
      return Scalarize(GetRef<Stmt>(op));
    }
    Stmt then_case = this->VisitStmt(op->then_case);
    Optional<Stmt> else_case = NullOpt;
    if (op->else_case) {
      else_case = this->VisitStmt(op->else_case.value());
    }
    if (condition.same_as(op->condition) && then_case.same_as(op->then_case) &&
        else_case.same_as(op->else_case)) {
      return GetRef<Stmt>(op);
    } else {
      return IfThenElse(condition, then_case, else_case);
    }
  }
  // While
616
  Stmt VisitStmt_(const WhileNode *op) final {
617
618
619
    LOG(FATAL) << "A while loop inside a vectorized loop not supported.";
  }
  // LetStmt
620
  Stmt VisitStmt_(const LetStmtNode *op) final {
621
    PrimExpr value = this->VisitExpr(op->value);
622
623
    ICHECK(!let_binding_.count(op->var))
        << "SSA violation, a single var is binded twice";
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
    let_binding_[op->var] = value;

    if (value.dtype().get_lanes_or_vscale_factor() !=
        op->value.dtype().get_lanes_or_vscale_factor()) {
      Var new_var(op->var->name_hint, value.dtype());
      let_binding_[op->var] = new_var;
      return LetStmt(new_var, value, this->VisitStmt(op->body));
    } else {
      let_binding_[op->var] = op->var;
      Stmt body = this->VisitStmt(op->body);
      if (value.same_as(op->value) && body.same_as(op->body)) {
        return GetRef<Stmt>(op);
      } else {
        return LetStmt(op->var, value, body);
      }
    }
  }
  // Allocate
642
  Stmt VisitStmt_(const AllocateNode *op) final {
643
644
645
    // Mutate the condition
    PrimExpr condition = this->VisitExpr(op->condition);
    if (condition.dtype().is_scalable_or_fixed_length_vector()) {
646
647
      LOG(WARNING) << "Cannot handle vector extent in alloc of "
                   << op->buffer_var->name_hint;
648
649
650
651
652
      return Scalarize(GetRef<Stmt>(op));
    }

    // Mutate the extents
    Array<PrimExpr> extents;
653
    for (const auto &extent : op->extents) {
654
655
      PrimExpr new_ext = this->VisitExpr(extent);
      if (new_ext.dtype().is_scalable_or_fixed_length_vector()) {
656
657
        LOG(WARNING) << "Cannot handle vector extent in alloc of "
                     << op->buffer_var->name_hint;
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
        return Scalarize(GetRef<Stmt>(op));
      }
      extents.push_back(new_ext);
    }

    // TODO(Lunderberg): Move this pass to be prior to
    // StorageFlatten/FlattenBuffer.  That will allow this pass to be
    // implemented as adding a new buffer dimension, which is later
    // flattened.

    // Extend the least significant dimension by a factor of
    // var_lanes_.  Typically, this will be a 1-d index into a flat
    // memory space.
    extents.Set(extents.size() - 1, extents[extents.size() - 1] * var_lanes_);

    // Rewrite access to the buffer in the body.
674
675
    Stmt body =
        VecAllocAccess(op->buffer_var.get(), var_, var_lanes_)(op->body);
676
677
678
679
680
681
682
683
684
685
686
    body = this->VisitStmt(body);
    return Allocate(op->buffer_var, op->dtype, extents, condition, body);
  }

  // scalarize the statement
  Stmt Scalarize(Stmt stmt) {
    Var idx(var_->name_hint + ".s", var_->dtype);
    stmt = Substitute(stmt, {{var_, idx}});
    return For(idx, IntImm(var_->dtype, 0), var_lanes_, ForKind::kSerial, stmt);
  }
  // ProducerStore
687
  Stmt VisitStmt_(const ProducerStoreNode *op) final {
688
689
690
    LOG(FATAL) << "ProducerProvide cannot appear in a TIR PrimFunc";
  }

691
private:
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
  // analyzer
  arith::Analyzer analyzer_;
  // deep equal
  ExprDeepEqual deep_equal_;
  // variable to be replaced
  Var var_;
  // the lanes.
  PrimExpr var_lanes_;
  // ramp representing the var.
  PrimExpr ramp_;
  // flag to mark requirement of scalarization.
  bool need_scalarize_{false};
  // Let binding
  std::unordered_map<Var, PrimExpr, ObjectPtrHash, ObjectPtrEqual> let_binding_;
  // vectorizable property
707
708
  OpAttrMap<TVectorizable> op_vectorizable_ =
      Op::GetAttrMap<TVectorizable>("TVectorizable");
709
710
711

  // mutate array, with given lane requirement
  // when finished, p_lane updates the lane requirement.
712
713
714
715
  Array<PrimExpr> MutateArray(Array<PrimExpr> arr, int *p_lanes) {
    if (arr.size() == 0)
      return arr;
    int &lanes = *p_lanes;
716
717
718
719
720
    bool changed = false;
    std::vector<PrimExpr> new_arr(arr.size());
    for (size_t i = 0; i < arr.size(); i++) {
      PrimExpr old_elem = arr[i];
      PrimExpr new_elem = this->VisitExpr(old_elem);
721
722
      if (!new_elem.same_as(old_elem))
        changed = true;
723
724
725
726
727
728
729
730
731
732
      new_arr[i] = new_elem;
      lanes = std::max(lanes, new_elem.dtype().lanes());
    }

    for (size_t i = 0; i < arr.size(); ++i) {
      if (new_arr[i].dtype().lanes() != lanes) {
        new_arr[i] = BroadcastTo(new_arr[i], lanes, false);
        changed = true;
      }
    }
733
734
    if (!changed)
      return arr;
735
736
    return Array<PrimExpr>(new_arr);
  }
737
738
739
  template <typename TOp, typename T> PrimExpr BinaryVec(const T *op) {
    static_assert(std::is_same<typename TOp::ContainerType, T>::value,
                  "constraint");
740
741
742
743
744
745
746
747
    PrimExpr a = this->VisitExpr(op->a);
    PrimExpr b = this->VisitExpr(op->b);
    if (a.same_as(op->a) && b.same_as(op->b)) {
      return GetRef<PrimExpr>(op);
    } else {
      int a_lanes = a.dtype().get_lanes_or_vscale_factor();
      int b_lanes = b.dtype().get_lanes_or_vscale_factor();
      int lanes = std::max(a_lanes, b_lanes);
748
749
750
751
      bool is_scalable =
          a.dtype().is_scalable_vector() || b.dtype().is_scalable_vector();
      return TOp(BroadcastTo(a, lanes, is_scalable),
                 BroadcastTo(b, lanes, is_scalable));
752
753
754
    }
  }
  template <typename T, typename FCompute>
755
  PrimExpr AddSubVec(const T *op, FCompute fcompute) {
756
757
758
759
760
761
762
763
764
    PrimExpr a = this->VisitExpr(op->a);
    PrimExpr b = this->VisitExpr(op->b);
    if (a.same_as(op->a) && b.same_as(op->b)) {
      return GetRef<PrimExpr>(op);
    } else {
      int a_lanes = a.dtype().get_lanes_or_vscale_factor();
      int b_lanes = b.dtype().get_lanes_or_vscale_factor();
      int lanes = std::max(a_lanes, b_lanes);
      if (lanes != 1) {
765
766
        const RampNode *b_ramp = b.as<RampNode>();
        const RampNode *a_ramp = a.as<RampNode>();
767
        if (a.dtype().is_scalar() && b_ramp) {
768
769
770
771
          return Ramp(
              fcompute(a, b_ramp->base),
              fcompute(make_zero(b_ramp->stride.dtype()), b_ramp->stride),
              b_ramp->lanes);
772
773
774
775
776
        }
        if (b.dtype().is_scalar() && a_ramp) {
          return Ramp(fcompute(a_ramp->base, b), a_ramp->stride, a_ramp->lanes);
        }
      }
777
778
779
780
      bool is_scalable =
          a.dtype().is_scalable_vector() || b.dtype().is_scalable_vector();
      return fcompute(BroadcastTo(a, lanes, is_scalable),
                      BroadcastTo(b, lanes, is_scalable));
781
782
783
784
    }
  }
};

785
786
} // namespace tl
} // namespace tvm