example_gemm.py 7.06 KB
Newer Older
1
2
3
4
import argparse
import torch
import itertools
import tilelang as tl
5
import tilelang.language as T
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from tilelang.autotuner import autotune, jit
from tilelang.carver.template import MatmulTemplate
from tilelang.carver.arch import CUDA
from tilelang.carver.roller.rasterization import NoRasterization


def ref_program(A, B, C):
    C += A @ B.T


def get_configs(M, N, K, with_roller=False):
    if with_roller:
        arch = CUDA("cuda")
        topk = 10
        carve_template = MatmulTemplate(
            M=M,
            N=N,
            K=K,
            in_dtype="float16",
            out_dtype="float16",
            accum_dtype="float",
        ).with_arch(arch)

        func = carve_template.equivalent_function()
        assert func is not None, "Function is None"
        roller_hints = carve_template.recommend_hints(topk=topk)
        if roller_hints is None:
            raise ValueError("No Roller Hints Found for TensorCore Scheduling")
        configs = []
        for hint in roller_hints:
            config = {}
            block_m, block_n = hint.block
            warp_m, warp_n = hint.warp
            # block_rows, block_cols represents warp partitioning
            block_rows, block_cols = block_m // warp_m, block_n // warp_n
            config["block_M"] = block_m
            config["block_N"] = block_n
            config["block_K"] = hint.rstep[0]
            config["num_stages"] = hint.pipeline_stage
            config["thread_num"] = block_rows * block_cols * 32
            config["enable_rasteration"] = hint.rasterization_plan is not NoRasterization
            configs.append(config)
        for config in configs:
            print(config)
    else:
        block_M = [64, 128, 256]
        block_N = [64, 128, 256]
        block_K = [32, 64]
        num_stages = [0, 1, 2, 3]
        thread_num = [128, 256]
        enable_rasterization = [True, False]
        _configs = list(
            itertools.product(
                block_M,
                block_N,
                block_K,
                num_stages,
                thread_num,
                enable_rasterization,
            ))

        configs = [
            {
                "block_M": c[0],
                "block_N": c[1],
                "block_K": c[2],
                "num_stages": c[3],
                "thread_num": c[4],
                "enable_rasteration": c[5],  # keep param name for backward-compat
            } for c in _configs
        ]
    return configs


def get_best_config(M, N, K, with_roller=False):

    @autotune(
        configs=get_configs(M, N, K, with_roller),
        keys=[
            "block_M",
            "block_N",
            "block_K",
            "num_stages",
            "thread_num",
            "enable_rasteration",
        ],
        warmup=3,
        rep=20,
    )
    @jit(
        out_idx=[-1],
        supply_type=tl.TensorSupplyType.Integer,
        ref_prog=ref_program,
        skip_check=False,
        target="auto",
    )
    def kernel(
        block_M=None,
        block_N=None,
        block_K=None,
        num_stages=None,
        thread_num=None,
        enable_rasteration=None,
    ):
        dtype = "float16"
        accum_dtype = "float"

        @T.prim_func
        def main(
                A: T.Buffer((M, K), dtype),
                B: T.Buffer((N, K), dtype),
                C: T.Buffer((M, N), dtype),
        ):
            with T.Kernel(
                    T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=thread_num) as (bx, by):
                A_shared = T.alloc_shared((block_M, block_K), dtype)
                B_shared = T.alloc_shared((block_N, block_K), dtype)
                C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
                C_shared = T.alloc_shared((block_M, block_N), dtype)
                T.use_swizzle(panel_size=10, enable=enable_rasteration)
                T.clear(C_local)
                for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
                    T.copy(A[by * block_M, k * block_K], A_shared)
                    T.copy(B[bx * block_N, k * block_K], B_shared)
                    T.gemm(
                        A_shared,
                        B_shared,
                        C_local,
                        transpose_B=True,
                    )
                T.copy(C_local, C_shared)
                T.copy(C_shared, C[by * block_M, bx * block_N])

        return main

    return kernel()


def matmul(M,
           N,
           K,
           block_M,
           block_N,
           block_K,
           num_stages,
           thread_num,
           enable_rasteration,
           dtype="float16",
           accum_dtype="float"):
155

156
157
    @T.prim_func
    def main(
158
            A: T.Buffer((M, K), dtype),
159
            B: T.Buffer((N, K), dtype),
160
            C: T.Buffer((M, N), dtype),
161
    ):
162
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=thread_num) as (bx, by):
163
            A_shared = T.alloc_shared((block_M, block_K), dtype)
164
            B_shared = T.alloc_shared((block_N, block_K), dtype)
165
            C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
166
167
            C_shared = T.alloc_shared((block_M, block_N), dtype)
            T.use_swizzle(panel_size=10, enable=enable_rasteration)
168
            T.clear(C_local)
169
            for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
170
                T.copy(A[by * block_M, k * block_K], A_shared)
171
172
173
174
175
176
177
178
179
                T.copy(B[bx * block_N, k * block_K], B_shared)
                T.gemm(
                    A_shared,
                    B_shared,
                    C_local,
                    transpose_B=True,
                )
            T.copy(C_local, C_shared)
            T.copy(C_shared, C[by * block_M, bx * block_N])
180
181
182

    return main

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Autotuned MatMul Benchmark")
    parser.add_argument("--m", type=int, default=1024, help="Matrix dimension M")
    parser.add_argument("--n", type=int, default=1024, help="Matrix dimension N")
    parser.add_argument("--k", type=int, default=1024, help="Matrix dimension K")
    parser.add_argument(
        "--use_autotune",
        action="store_true",
        default=True,
        help="Whether to use autotune for matmul configs")
    parser.add_argument(
        "--with_roller",
        action="store_true",
        default=True,
        help="Whether to enable BitBLAS roller for search space")
    args = parser.parse_args()
    M, N, K = args.m, args.n, args.k
    a = torch.randn(M, K).cuda().half()
    b = torch.randn(N, K).cuda().half()
    c = torch.zeros(M, N).cuda().half()
    configs = []
    use_autotune = args.use_autotune
    with_roller = args.with_roller
    if use_autotune:
        best_latency, best_config, ref_latency = get_best_config(M, N, K, with_roller)
        func = matmul(M, N, K, *best_config)
    else:
        func = matmul(M, N, K, 128, 128, 32, 3, 128, True)

    # print(func)
    kernel = tl.compile(func, out_idx=-1)
    out_c = kernel(a, b)
    ref_c = a @ b.T + c
    torch.testing.assert_close(out_c, ref_c, rtol=1e-2, atol=1e-2)
    # print(kernel.get_kernel_source())