codegen_hip.cc 41.5 KB
Newer Older
1
2
3
4
5
6
7
/*!
 * \file target/codegen.cc
 */

#include "codegen_hip.h"
#include <tvm/arith/analyzer.h>
#include <tvm/runtime/registry.h>
8
#include <tvm/tir/index_map.h>
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#include <tvm/tir/op.h>

#include <cmath>
#include <string>
#include <utility>
#include <vector>

#include "../op/builtin.h"
#include "../op/bulk_copy.h"
#include "target/source/ptx.h"

namespace tvm {
namespace codegen {

/*!
 * \brief Replace patterns with replacement strings.
 * \note should use std::format instead when codebase is ported to C++20.
 */
class Replacer {
28
29
30
public:
  void register_rule(const std::string &pattern,
                     const std::string &replacement) {
31
32
33
    _rules.emplace_back(pattern, replacement);
  }
  std::string rewrite(std::string str) {
34
    for (auto &&rule : _rules) {
35
36
37
38
39
40
41
42
43
44
45
46
47
      auto [pattern, replacement] = rule;
      size_t len = pattern.size();
      size_t new_len = replacement.size();
      size_t pos = str.find(pattern);
      while (pos != std::string::npos) {
        str = str.replace(pos, len, replacement);
        pos = str.find(pattern, pos + new_len);
      }
    }
    return str;
  }
  void empty_rules() { _rules.clear(); }

48
private:
49
50
51
52
53
  std::vector<std::pair<std::string, std::string>> _rules;
};

CodeGenTileLangHIP::CodeGenTileLangHIP() { restrict_keyword_ = "__restrict__"; }

54
55
56
void CodeGenTileLangHIP::PrintFuncPrefix(std::ostream &os) {
  os << "extern \"C\" __global__ ";
}
57
58

class LaunchConfigExtractor : public tir::StmtVisitor {
59
60
private:
  void VisitStmt_(const AttrStmtNode *op) final {
61
62
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
63
64
      if (iv->var->name_hint == "threadIdx.x" ||
          iv->thread_tag == "threadIdx.x") {
65
        threadIdx_x_ext = op->value;
66
67
      } else if (iv->var->name_hint == "threadIdx.y" ||
                 iv->thread_tag == "threadIdx.y") {
68
        threadIdx_y_ext = op->value;
69
70
      } else if (iv->var->name_hint == "threadIdx.z" ||
                 iv->thread_tag == "threadIdx.z") {
71
72
73
74
75
76
        threadIdx_z_ext = op->value;
      }
    }
    StmtVisitor::VisitStmt_(op);
  }

77
public:
78
79
80
81
82
  PrimExpr threadIdx_x_ext = Integer(1);
  PrimExpr threadIdx_y_ext = Integer(1);
  PrimExpr threadIdx_z_ext = Integer(1);
};

83
void CodeGenTileLangHIP::PrintExtraAttrs(const PrimFunc &f, std::ostream &os) {
84
85
86
  LaunchConfigExtractor extractor;
  extractor(f->body);
  arith::Analyzer analyzer;
87
88
89
90
91
  PrimExpr threadIdx_ext =
      analyzer.Simplify(extractor.threadIdx_x_ext * extractor.threadIdx_y_ext *
                        extractor.threadIdx_z_ext);
  if (const IntImmNode *const threadIdx_ext_int =
          threadIdx_ext.as<IntImmNode>()) {
92
    if (threadIdx_ext_int->value == 1) {
93
94
      // unable to extract the number of threads per block, hence directly
      // return
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
      return;
    }
    stream << " __launch_bounds__(" << threadIdx_ext_int->value << ")";
  }
}

std::string CodeGenTileLangHIP::Finish() {
  // hip must need a header file.
  decl_stream << "#include <hip/hip_runtime.h>\n";
  if (need_mma_h_) {
    decl_stream << "#include <mma.h>\n";
  }
  decl_stream << "#include <tl_templates/hip/gemm.h>\n";
  decl_stream << "#include <tl_templates/hip/copy.h>\n";
  decl_stream << "#include <tl_templates/hip/reduce.h>\n";
  decl_stream << "#include <tl_templates/hip/ldsm.h>\n";
  decl_stream << "#include <tl_templates/hip/threadblock_swizzle.h>\n";
  decl_stream << "\n";
  return CodeGenC::Finish();
}

116
void CodeGenTileLangHIP::VisitStmt_(const tir::ForNode *op) {
117
118
119
120
  if (op->kind == tir::ForKind::kUnrolled) {
    PrintIndent();
    stream << "#pragma unroll\n";
  }
121
122
  std::string extent =
      PrintExpr(arith::Analyzer().Simplify(op->extent + op->min));
123
124
125
126
127
  PrintIndent();
  std::string vid = AllocVarID(op->loop_var.get());
  std::string start = PrintExpr(op->min);
  stream << "for (";
  PrintType(op->loop_var.dtype(), stream);
128
129
  stream << ' ' << vid << " = " << start << "; " << vid << " < " << extent
         << "; ++" << vid << ") {\n";
130
131
132
133
134
135
136
  int for_scope = BeginScope();
  PrintStmt(op->body);
  this->EndScope(for_scope);
  PrintIndent();
  stream << "}\n";
}

137
void CodeGenTileLangHIP::BindThreadIndex(const IterVar &iv) {
138
  ICHECK(!var_idmap_.count(iv->var.get()));
139
140
  var_idmap_[iv->var.get()] =
      CastFromTo(iv->thread_tag, DataType::UInt(32), iv->var.dtype());
141
142
}

143
void CodeGenTileLangHIP::PrintType(DataType t, std::ostream &os) { // NOLINT(*)
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
  int lanes = t.lanes();
  if (t.is_handle()) {
    ICHECK(t.is_scalar()) << "do not yet support vector types";
    os << "void*";
    return;
  }

  if (t.is_void()) {
    os << "void";
    return;
  }

  if (t == tl::cuTensorMapType()) {
    os << "CUtensorMap";
    return;
  }

  bool fail = false;
  if (t.is_float()) {
    switch (t.bits()) {
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
    case 16:
      if (t.is_scalar()) {
        os << "half_t";
      } else if (lanes <= 8) {
        // Emit CUDA code to access fp16 vector elements.
        //
        // half4 is stored as uint2
        //
        // h4.x is emitted as *(half2*)(&(u2.x)).x
        // h4.y is emitted as *(half2*)(&(u2.x)).y
        // h4.z is emitted as *(half2*)(&(u2.y)).x
        // h4.w is emitted as *(half2*)(&(u2.y)).y
        //
        ICHECK_EQ(lanes % 2, 0) << "only support even lane for half type";
        os << "uint" << lanes / 2;
      } else {
180
        fail = true;
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
      }
      break;
    case 32:
      if (lanes <= 4) {
        os << "float";
      } else if (lanes <= 8) {
        // Emit CUDA code to access fp32 vector elements for 4 < lanes <= 8.
        //
        // float8 is stored as ulonglong4
        //
        // f8.v1 is emitted as *(float2*)(&(ul4.x)).x
        // f8.v2 is emitted as *(float2*)(&(ul4.x)).y
        //
        ICHECK_EQ(lanes % 2, 0)
            << "only support even lane for float type with lanes > 4";
        os << "ulonglong" << lanes / 2;
      } else {
        fail = true;
      }
      break;
    case 64:
      os << "double";
      break;
    default:
      fail = true;
      break;
207
    }
208
209
210
211
    if (!fail && (t.is_scalar() || t.bits() == 16))
      return;
    if (!fail && (lanes > 4 && lanes <= 8 && t.bits() == 32))
      return;
212
213
214
215
216
217
218
219
220
221
222
223
224
    if (!fail && (lanes >= 2 && lanes <= 4)) {
      os << lanes;
      return;
    }
  } else if (t.is_bfloat16()) {
    if (t.is_scalar()) {
      os << "bfloat16_t";
    } else if (lanes <= 8) {
      ICHECK_EQ(lanes % 2, 0) << "only support even lane for half type";
      os << "uint" << lanes / 2;
    } else {
      fail = true;
    }
225
226
    if (!fail)
      return;
227
228
  } else if (t.is_float8()) {
    if (t.is_scalar()) {
229
      os << "unsigned char"; // __nv_fp8_storage_t is an alias of unsigned char
230
    } else if (lanes == 2) {
231
232
      os << "unsigned short int"; // __nv_fp8x2_storage_t is an alias of
                                  // unsigned short
233
    } else if (lanes == 4) {
234
      os << "unsigned int"; // __nv_fp8x4_storage_t is an alias of unsigned int
235
236
237
    } else {
      fail = true;
    }
238
239
    if (!fail)
      return;
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
  } else if (t == DataType::Bool()) {
    os << "bool";
    return;
  } else if (t.is_vector_bool()) {
    // CUDA does not support bool vectors.
    // Use ushort vectors to represent instead.
    int n = t.lanes();
    if (n <= 4) {
      os << "ushort" << n;
      return;
    }
  } else if (t.is_uint() || t.is_int()) {
    if (t.is_uint()) {
      os << "u";
    }
    switch (t.bits()) {
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
    case 1: {
      if (t.is_scalar()) {
        os << "int";
        return;
      } else if (t.lanes() == 8) {
        os << "int8_t";
        return;
      } else if (t.lanes() == 16) {
        os << "int16_t";
        return;
      } else if (t.lanes() == 32) {
        os << "int";
        return;
      } else {
        LOG(FATAL) << "Cannot convert type " << t << " to CUDA type!";
271
      }
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    }
    case 4: {
      if (t.is_scalar()) {
        os << "int";
        return;
      } else if (t.lanes() == 4) {
        os << "int16_t";
        return;
      } else if (t.lanes() == 8) {
        // directly 8 4-bit int in integer.
        os << "int";
        return;
      } else if (t.lanes() == 16) {
        os << "int2";
        return;
      } else if (t.lanes() == 32) {
        os << "int4";
        return;
      } else if (t.lanes() == 64) {
        os << "int8";
        return;
      } else {
        LOG(FATAL) << "Cannot convert type " << t << " to CUDA type!";
295
      }
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
    }
    case 8: {
      if (t.lanes() == 4) {
        // directly 4 8 bit int in integer.

        // We use int for int8x4 instead of char4 because using char4 is
        // likely to produce extra instructions to pack four int8 elements
        // into 32-bit data.
        os << "int";
        return;
      } else if (t.lanes() == 8) {
        os << "int2";
        return;
      } else if (t.lanes() == 16) {
        os << "int4";
        return;
      } else if (!t.is_uint() && t.is_scalar()) {
        os << "signed char";
314
        break;
315
316
      } else {
        os << "char";
317
318
        break;
      }
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
    }
    case 16: {
      if (t.is_scalar()) {
        os << "short";
      } else if (t.lanes() <= 4) {
        os << "short" << lanes;
      } else if (t.lanes() <= 8) {
        // Emit CUDA code to access int16 vector elements.
        //
        // short4 is stored as int2
        //
        // s4.x is emitted as *(short2*)(&(i2.x)).x
        // s4.y is emitted as *(short2*)(&(i2.x)).y
        // s4.z is emitted as *(short2*)(&(i2.y)).x
        // s4.w is emitted as *(short2*)(&(i2.y)).y
        //
        ICHECK_EQ(t.lanes() % 2, 0)
            << "only support even lane for shorT type with lanes > 4";
        os << "int" << t.lanes() / 2;
      } else {
        fail = true;
      }
      if (!fail) {
342
343
        return;
      }
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
      break;
    }
    case 32: {
      if (t.is_scalar()) {
        os << "int";
      } else if (t.lanes() <= 4) {
        os << "int" << t.lanes();
      } else if (t.lanes() <= 8) {
        // Emit CUDA code to access int32 vector elements for 4 < lanes <= 8.
        //
        // int8 is stored as longlong4
        //
        // i8.v1 is emitted as *(int2*)(&(l4.x)).x
        // i8.v2 is emitted as *(int2*)(&(l4.x)).y
        //
        ICHECK_EQ(lanes % 2, 0)
            << "only support even lane for int32 type with lanes > 4";
        os << "longlong" << lanes / 2;
      } else {
363
        fail = true;
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
      }
      if (!fail) {
        return;
      }
      break;
    }
    case 64: {
      if (t.is_scalar()) {
        os << "int64_t";
      } else if (t.lanes() == 2) {
        os << "longlong2";
      } else if (t.lanes() == 3) {
        os << "longlong3";
      } else if (t.lanes() == 4) {
        os << "longlong4";
      }
      return;
    }
    default:
      fail = true;
      break;
385
386
387
388
389
390
391
392
393
394
395
396
    }
    if (!fail && lanes == 1) {
      return;
    }
    if (!fail && (lanes >= 2 && lanes <= 4)) {
      os << lanes;
      return;
    }
  }
  LOG(FATAL) << "Cannot convert type " << t << " to CUDA type";
}

397
398
399
void CodeGenTileLangHIP::PrintVecBinaryOp(const std::string &op, DataType t,
                                          PrimExpr lhs, PrimExpr rhs,
                                          std::ostream &os) { // NOLINT(*)
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
  // Declare the result.
  std::string sret = name_supply_->FreshName("_");
  this->PrintIndent();
  this->PrintType(t, stream);
  stream << ' ' << sret << ";\n";
  int ssa_scope = BeginScope();
  {
    // Unpack into individual ops.
    std::string vlhs = SSAGetID(PrintExpr(lhs), lhs.dtype());
    std::string vrhs = SSAGetID(PrintExpr(rhs), rhs.dtype());

    for (int i = 0, lanes = t.lanes(); i < lanes; ++i) {
      std::ostringstream value_temp;
      if (isalpha(op[0])) {
        value_temp << op << "(";
        PrintVecElemLoad(vlhs, lhs.dtype(), i, value_temp);
        value_temp << ", ";
        PrintVecElemLoad(vrhs, rhs.dtype(), i, value_temp);
        value_temp << ")";
      } else {
        value_temp << "(";
        PrintVecElemLoad(vlhs, lhs.dtype(), i, value_temp);
        value_temp << op;
        PrintVecElemLoad(vrhs, rhs.dtype(), i, value_temp);
        value_temp << ")";
      }
      PrintVecElemStore(sret, t, i, value_temp.str());
    }
  }
  EndScope(ssa_scope);
  os << sret;
}

433
434
435
void CodeGenTileLangHIP::PrintVecElemLoad(const std::string &vec, DataType t,
                                          int i,
                                          std::ostream &os) { // NOLINT(*)
436
437
438
439
440
441
  if (t.is_scalar()) {
    os << vec;
    return;
  }

  static const char access[] = {'x', 'y', 'z', 'w'};
442
443
444
  ICHECK(i >= 0 && i < (t.bits() == 8                        ? 16
                        : (t.bits() == 16 || t.bits() == 32) ? 8
                                                             : 4));
445
446
447
448
449
450
451
452
453
  if (t.bits() == 8 && (t.is_int() || t.is_uint())) {
    std::string type_name = t.is_int() ? "char" : "unsigned char";
    if (t.lanes() == 2 || t.lanes() == 3) {
      os << vec << "." << access[i % t.lanes()];
    } else {
      std::string ac = t.lanes() == 4 ? vec : (vec + "." + access[i / 4]);
      os << "((" << type_name << ")(" << ac << " >> " << i % 4 * 8 << "))";
    }
  } else if (t.is_float16()) {
454
455
    os << "((half2*)(&(" << vec << "." << access[i / 2] << ")))->"
       << access[i % 2];
456
  } else if (t.is_bfloat16()) {
457
458
    os << "((nv_bfloat162*)(&(" << vec << "." << access[i / 2] << ")))->"
       << access[i % 2];
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
  } else if (t.lanes() > 4 && t.lanes() <= 8) {
    std::string type_name;
    if (t.bits() == 16) {
      if (t.is_int()) {
        type_name = "short";
      } else if (t.is_uint()) {
        type_name = "ushort";
      }
    } else if (t.bits() == 32) {
      if (t.is_int()) {
        type_name = "int";
      } else if (t.is_uint()) {
        type_name = "uint";
      } else if (t.is_float()) {
        type_name = "float";
      }
    }
    ICHECK(!type_name.empty());
477
478
    os << "((" << type_name << "2*)(&(" << vec << "." << access[i / 2]
       << ")))->" << access[i % 2];
479
480
481
482
483
  } else {
    os << vec << "." << access[i];
  }
}

484
485
void CodeGenTileLangHIP::PrintVecElemStore(const std::string &vec, DataType t,
                                           int i, const std::string &value) {
486
487
  this->PrintIndent();
  static const char access[] = {'x', 'y', 'z', 'w'};
488
489
490
  ICHECK(i >= 0 && i < (t.bits() == 8                        ? 16
                        : (t.bits() == 16 || t.bits() == 32) ? 8
                                                             : 4));
491
492
  if (t.bits() == 8 && (t.is_int() || t.is_uint())) {
    if (t.lanes() == 2 || t.lanes() == 3) {
493
494
      stream << vec << '.' << access[i % t.lanes()] << "="
             << "(" << value << ");\n";
495
496
497
498
499
500
501
502
503
504
    } else {
      std::string ac = t.lanes() == 4 ? vec : (vec + "." + access[i / 4]);
      stream << ac << "=";
      // Do not read the first undef lane.
      if (i != 0) {
        stream << ac << " & ~(0x000000ff << " << i % 4 * 8 << ") |";
      }
      stream << "(" << value << " << " << i % 4 * 8 << ");\n";
    }
  } else if (t.is_float16()) {
505
506
    stream << "((half2*)(&(" << vec << "." << access[i / 2] << ")))->"
           << access[i % 2] << " = " << value << ";\n";
507
  } else if (t.is_bfloat16()) {
508
509
    stream << "((nv_bfloat162*)(&(" << vec << "." << access[i / 2] << ")))->"
           << access[i % 2] << " = " << value << ";\n";
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
  } else if (t.lanes() > 4 && t.lanes() <= 8) {
    std::string type_name;
    if (t.bits() == 16) {
      if (t.is_int()) {
        type_name = "short";
      } else if (t.is_uint()) {
        type_name = "ushort";
      }
    } else if (t.bits() == 32) {
      if (t.is_int()) {
        type_name = "int";
      } else if (t.is_uint()) {
        type_name = "uint";
      } else if (t.is_float()) {
        type_name = "float";
      }
    }
    ICHECK(!type_name.empty());
528
529
    stream << "((" << type_name << "2*)(&(" << vec << "." << access[i / 2]
           << ")))->" << access[i % 2] << " = " << value << ";\n";
530
531
532
533
534
  } else {
    stream << vec << "." << access[i] << " = " << value << ";\n";
  }
}

535
536
void CodeGenTileLangHIP::PrintStorageSync(const CallNode *op) {
  const std::string &sync = op->args[0].as<StringImmNode>()->value;
537
538
539
540
541
542
543
544
  if (sync == "warp") {
    // DO nothing.
  } else if (sync == "shared" || sync == "shared.dyn") {
    this->PrintIndent();
    this->stream << "__syncthreads();\n";
  }
}

545
546
547
548
549
void CodeGenTileLangHIP::PrintStorageScope(const std::string &scope,
                                           std::ostream &os) { // NOLINT(*)
  ICHECK_NE(scope, "global")
      << "Cannot allocate global memory when targeting CUDA. You must pass "
         "all global arrays as input instead";
550
551
552
553
554
555
556
  if (scope == "shared") {
    os << "__shared__ ";
  } else if (scope == "shared.dyn") {
    os << "extern __shared__ __align__(1024) ";
  }
}

557
558
559
560
std::string CodeGenTileLangHIP::CastFromTo(std::string value, DataType from,
                                           DataType target) {
  if (from == target)
    return value;
561
562
563
564
  std::ostringstream os;
  os << "((";
  this->PrintType(target, os);
  os << ")";
565
566
  if (from.is_float16() && (target.is_int() || target.is_uint()) &&
      target.bits() == 8) {
567
568
569
570
571
572
573
574
575
576
    os << "(";
    if (target.is_uint()) {
      os << "u";
    }
    os << "int)";
  }
  os << value << ")";
  return os.str();
}

577
void CodeGenTileLangHIP::VisitExpr_(const CastNode *op, std::ostream &os) {
578
579
580
581
582
  DataType from_ty = op->value.dtype();
  DataType target_ty = op->dtype;
  ICHECK_EQ(target_ty.lanes(), from_ty.lanes());

  // Emit simple C-style type conversion.
583
584
  if (from_ty.is_scalar())
    return CodeGenC::VisitExpr_(op, os);
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606

  // We could emit make_float4 like calls, but the emitted code looks
  // too compact to read. Emit this as vectorized unary ops.
  std::string sret = name_supply_->FreshName("_");
  this->PrintIndent();
  this->PrintType(target_ty, stream);
  stream << ' ' << sret << ";\n";
  {
    std::string src = SSAGetID(PrintExpr(op->value), from_ty);
    for (int i = 0, lanes = from_ty.lanes(); i < lanes; ++i) {
      std::ostringstream val;
      val << "(";
      PrintType(target_ty.element_of(), val);
      val << ")(";
      PrintVecElemLoad(src, from_ty, i, val);
      val << ")";
      PrintVecElemStore(sret, target_ty, i, val.str());
    }
  }
  os << sret;
}

607
608
609
610
void CodeGenTileLangHIP::PrintCallExtern(Type ret_type, String global_symbol,
                                         const Array<PrimExpr> &args,
                                         bool skip_first_arg,
                                         std::ostream &os) { // NOLINT(*)
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
  DataType ret_dtype = GetRuntimeDataType(ret_type);
  if (ret_dtype.is_vector()) {
    //
    // Emit an unsupported vector call
    //
    // v = intrin_f((float4*)A[0], (float4*)B[0])
    //
    // as
    //
    // float4 __ret;
    // {
    //   float4 __arg0 = ((float4*)A)[0];
    //   float4 __arg1 = ((float4*)B)[0];
    //   __ret.x = intrin_f(__arg0.x, __arg1.x);
    //   __ret.y = intrin_f(__arg0.y, __arg1.y);
    //   __ret.z = intrin_f(__arg0.z, __arg1.z);
    //   __ret.w = intrin_f(__arg0.w, __arg1.w);
    // }
    // v = __ret;
    //
    // Declare the result vector.
    std::string sret = name_supply_->FreshName("_");
    this->PrintIndent();
    this->PrintType(ret_dtype, stream);
    stream << ' ' << sret << ";\n";
    {
      // Load arguments.
      std::vector<std::string> sargs;
      size_t arg_begin = static_cast<size_t>(skip_first_arg);
      for (size_t i = arg_begin; i < args.size(); ++i) {
        std::string val = SSAGetID(PrintExpr(args[i]), args[i].dtype());
        sargs.push_back(std::move(val));
      }

      // Emit a scalar call for each lane.
      for (int i = 0; i < ret_dtype.lanes(); ++i) {
        std::ostringstream scall;
        scall << global_symbol << "(";
        for (size_t j = 0; j < sargs.size(); ++j) {
650
651
          if (j > 0)
            scall << ", ";
652
653
654
655
656
657
658
659
          PrintVecElemLoad(sargs[j], args[arg_begin + j].dtype(), i, scall);
        }
        scall << ")";
        PrintVecElemStore(sret, ret_dtype, i, scall.str());
      }
    }
    os << sret;
  } else {
660
661
    CodeGenC::PrintCallExtern(ret_type, global_symbol, args, skip_first_arg,
                              os);
662
663
664
665
  }
}

// Print a reference expression to a buffer.
666
667
668
669
std::string CodeGenTileLangHIP::GetBufferRef(DataType t,
                                             const BufferNode *buffer,
                                             PrimExpr index) {
  const VarNode *buffer_var = buffer->data.get();
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
  std::ostringstream os;
  std::string vid = GetVarID(buffer_var);
  std::string scope;
  if (alloc_storage_scope_.count(buffer_var)) {
    scope = alloc_storage_scope_.at(buffer_var);
  }
  // bool is_vol = IsVolatile(buffer_var);
  // always false for tl cutlass backend.
  bool is_vol = false;

  auto ptr_cast = [this, is_vol, scope](DataType pointed_to) {
    std::ostringstream ptr_os;
    ptr_os << "(";
    if (is_vol) {
      ptr_os << "volatile ";
    }
    if (!scope.empty() && IsScopePartOfType()) {
      PrintStorageScope(scope, ptr_os);
    }
    PrintType(pointed_to, ptr_os);
    ptr_os << "*)";
    return ptr_os.str();
  };

  DataType buffer_element_dtype = buffer->dtype;

  std::string buffer_str = vid;
  if (!HandleTypeMatch(buffer_var, buffer_element_dtype) || is_vol) {
    std::stringstream temp;
    temp << "(" << ptr_cast(buffer_element_dtype) << vid << ")";
    buffer_str = temp.str();
  }

  std::string index_str = PrintExpr(index);
  if (t.bits() == 4 || (t.bits() == 1 && t.is_int())) {
    // This is a special case, because CodegenCUDA::PrintType()
    // returns "int" for bool and for 4-bit integers. In most cases,
    // we divide by the number of lanes to determine the index.
    // However, the backing type for scalar int4 and scalar bool is
    // int32.  Therefore, we need to divide by the ratio of their
    // sizes in that case.
    int div_factor = (t.lanes() == 1) ? (32 / t.bits()) : t.lanes();

    os << "*("
       << "(" << ptr_cast(t) << vid << ")"
       << " + " << index_str << " / " << div_factor << ")";
  } else if (t == buffer_element_dtype) {
    os << buffer_str << "[" << index_str << "]";
  } else {
    os << "*" << ptr_cast(t) << "(" << buffer_str << " + " << index_str << ")";
  }

  return os.str();
}

725
void CodeGenTileLangHIP::VisitExpr_(const CallNode *op, std::ostream &os) {
726
727
728
729
  auto print_extern_call_stmt = [&](std::string name, size_t offset = 0) {
    this->PrintIndent();
    this->stream << name << "(";
    for (size_t i = offset; i < op->args.size(); i++) {
730
731
      if (i > offset)
        this->stream << ", ";
732
733
734
735
736
737
738
739
740
741
      this->stream << this->PrintExpr(op->args[i]);
    }
    this->stream << ");\n";
  };
  if (op->op.same_as(builtin::ptx_cp_async())) {
    std::string dst = this->PrintExpr(op->args[0]);
    std::string dst_offset = this->PrintExpr(op->args[1]);
    std::string src = this->PrintExpr(op->args[2]);
    std::string src_offset = this->PrintExpr(op->args[3]);
    std::string size = this->PrintExpr(op->args[4]);
742
743
    // use size of argument list to indicate whether or not to use predicated
    // cp.async
744
745
    if (op->args.size() == 5) {
      this->PrintIndent();
746
747
      this->stream << "tl::cp_async_gs<" << size << ">(" << dst << "+"
                   << dst_offset << ", " << src << "+" << src_offset << ");\n";
748
749
750
    } else {
      std::string condition = this->PrintExpr(op->args[5]);
      this->PrintIndent();
751
752
753
      this->stream << "tl::cp_async_gs_conditional<" << size << ">(" << dst
                   << "+" << dst_offset << ", " << src << "+" << src_offset
                   << ", " << condition << ");\n";
754
755
756
757
758
759
760
761
762
763
764
    }
  } else if (op->op.same_as(builtin::ptx_commit_group())) {
    print_extern_call_stmt("tl::cp_async_commit");
  } else if (op->op.same_as(builtin::ptx_wait_group())) {
    int n = Downcast<IntImm>(op->args[0])->value;
    std::string func_name = "tl::cp_async_wait<" + std::to_string(n) + ">";
    print_extern_call_stmt(func_name, 1);
  } else if (op->op.same_as(builtin::create_barriers())) {
    this->PrintIndent();
    int barrier_count = Downcast<IntImm>(op->args[0])->value;
    std::string barrier_name = "_mbarrier";
765
766
    this->stream << "__shared__ uint64_t " << barrier_name << "["
                 << barrier_count << "];\n";
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
  } else if (op->op.same_as(tl::GetMBarrierOp())) {
    std::string barrier_name = "_mbarrier";
    std::string barrier_id = this->PrintExpr(op->args[0]);
    os << barrier_name + "[" + barrier_id + "]";
  } else if (op->op.same_as(builtin::ptx_arrive_barrier())) {
    print_extern_call_stmt("tl::mbarrier_arrive");
  } else if (op->op.same_as(builtin::ptx_init_barrier_thread_count())) {
    print_extern_call_stmt("tl::mbarrier_init");
  } else if (op->op.same_as(builtin::ptx_arrive_barrier_expect_tx())) {
    print_extern_call_stmt("tl::mbarrier_arrive_expect_tx");
  } else if (op->op.same_as(builtin::ptx_cp_async_barrier())) {
    print_extern_call_stmt("tl::mbarrier_cp_async_arrive");
  } else if (op->op.same_as(tl::MBarrierExpectTX())) {
    print_extern_call_stmt("tl::mbarrier_expect_tx");
  } else if (op->op.same_as(tl::MBarrierWaitParity())) {
    print_extern_call_stmt("tl::mbarrier_wait");
  } else if (op->op.same_as(tl::SyncThreadsPartialOp())) {
    print_extern_call_stmt("tl::syncthreads_partial");
  } else if (op->op.same_as(tl::TMALoadOp())) {
    print_extern_call_stmt("tl::tma_load");
  } else if (op->op.same_as(tl::TMALoadIm2ColOp())) {
    print_extern_call_stmt("tl::tma_load_im2col");
  } else if (op->op.same_as(tl::TMAStoreOp())) {
    print_extern_call_stmt("tl::tma_store");
  } else if (op->op.same_as(tl::LDMatrixOp())) {
    int trans = Downcast<IntImm>(op->args[0])->value;
    int num = Downcast<IntImm>(op->args[1])->value;
    std::string func_name = "tl::ptx_ldmatrix_x" + std::to_string(num);
795
796
    if (trans == 1)
      func_name += "_trans";
797
798
799
800
801
    print_extern_call_stmt(func_name, 2);
  } else if (op->op.same_as(tl::STMatrixOp())) {
    int trans = Downcast<IntImm>(op->args[0])->value;
    int num = Downcast<IntImm>(op->args[1])->value;
    std::string func_name = "tl::ptx_stmatrix_x" + std::to_string(num);
802
803
    if (trans == 1)
      func_name += "_trans";
804
805
806
807
808
809
810
    print_extern_call_stmt(func_name, 2);
  } else if (op->op.same_as(tl::FenceProxyAsyncOp())) {
    print_extern_call_stmt("tl::fence_proxy_async");
  } else if (op->op.same_as(tl::SetMaxNReg())) {
    this->PrintIndent();
    int nreg = Downcast<IntImm>(op->args[0])->value;
    int is_inc = Downcast<IntImm>(op->args[1])->value;
811
812
    std::string func_name =
        is_inc ? "tl::warpgroup_reg_alloc" : "tl::warpgroup_reg_dealloc";
813
814
815
816
817
818
    this->stream << func_name << "<" << std::to_string(nreg) << ">();\n";
  } else if (op->op.same_as(tl::WaitWgmma())) {
    this->PrintIndent();
    int num_mma = Downcast<IntImm>(op->args[0])->value;
    this->stream << "tl::wait_wgmma<" << std::to_string(num_mma) << ">();\n";
  } else if (op->op.same_as(tl::PackB16Op())) {
819
820
    os << "__pack_half2(" << this->PrintExpr(op->args[0]) << ", "
       << this->PrintExpr(op->args[1]) << ")";
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
  } else if (op->op.same_as(builtin::tvm_fill_fragment())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 6U);
    os << "nvcuda::wmma::fill_fragment(";
    this->PrintExpr(op->args[0], os);
    os << "[";
    this->PrintExpr(op->args[4], os);
    os << "], ";
    this->PrintExpr(op->args[5], os);
    os << ")";
  } else if (op->op.same_as(builtin::tvm_load_matrix_sync())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 8U);
    os << "nvcuda::wmma::load_matrix_sync(";
    this->PrintExpr(op->args[0], os);
    os << "[";
    this->PrintExpr(op->args[4], os);
    os << "], ";
    this->PrintExpr(op->args[5], os);
    os << ", ";
    this->PrintExpr(op->args[6], os);
    os << ")";
  } else if (op->op.same_as(builtin::tvm_store_matrix_sync())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 8U);
    os << "nvcuda::wmma::store_matrix_sync(";
    this->PrintExpr(op->args[5], os);
    os << ", ";
    this->PrintExpr(op->args[0], os);
    os << "[";
    this->PrintExpr(op->args[4], os);
    os << "], ";
    this->PrintExpr(op->args[6], os);
854
    if (const StringImmNode *str = op->args[7].as<StringImmNode>()) {
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
      os << ", nvcuda::wmma::mem_" << str->value;
    } else {
      LOG(FATAL) << "Invalid parameters";
    }
    os << ")";
  } else if (op->op.same_as(builtin::tvm_mma_sync())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 8U);
    os << "nvcuda::wmma::mma_sync(";
    for (int i = 0; i < 4; ++i) {
      this->PrintExpr(op->args[i * 2], os);
      os << "[";
      this->PrintExpr(op->args[i * 2 + 1], os);
      os << "]" << ((i < 3) ? ", " : ")");
    }
  } else if (op->op.same_as(builtin::tvm_bmma_sync())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 8U);
    os << "nvcuda::wmma::bmma_sync(";
    for (int i = 0; i < 4; ++i) {
      this->PrintExpr(op->args[i * 2], os);
      os << "[";
      this->PrintExpr(op->args[i * 2 + 1], os);
      os << "]" << ((i < 3) ? ", " : ")");
    }
880
  } else if (op->op.same_as(builtin::tvm_mfma())) {
881
882
883
884
885
886
887
888
889
890
891
892
893
    // arg 0: prefix: {otype}_16x16x16{itype}
    // arg 1: A layout: row/col
    // arg 2: B layout: row/col
    // arg 3: A precision: float16, float32, ...
    // arg 4: B precision: float16, float32, ...
    // arg 5: C precision: float32, float64, ...
    // arg 6: A multiplicand
    // arg 7: A multiplicand index
    // arg 8: B multiplicand
    // arg 9: B multiplicand index
    // arg 10: C accumulator
    // arg 11: C accumulator index

894
895
    ICHECK(op->args.size() == 12U)
        << "Invalid number of arguments for tvm_mfma";
896
897
898
899
900
901
902
903
904
905
906
907
    std::string prefix = Downcast<StringImm>(op->args[0])->value;
    std::string A_layout = Downcast<StringImm>(op->args[1])->value;
    std::string B_layout = Downcast<StringImm>(op->args[2])->value;
    std::string A_dtype = Downcast<StringImm>(op->args[3])->value;
    std::string B_dtype = Downcast<StringImm>(op->args[4])->value;
    std::string C_dtype = Downcast<StringImm>(op->args[5])->value;
    std::string a_ref = this->PrintExpr(op->args[6]);
    std::string a_bias = this->PrintExpr(op->args[7]);
    std::string b_ref = this->PrintExpr(op->args[8]);
    std::string b_bias = this->PrintExpr(op->args[9]);
    std::string c_ref = this->PrintExpr(op->args[10]);
    std::string c_bias = this->PrintExpr(op->args[11]);
908
909
    ICHECK(A_layout == "row" || B_layout == "row")
        << "Matrix core only support row major";
910
911
912
913
914
915
916
917
918
919
920
921
    // map for dtype -> float32x4 -> float4
    std::unordered_map<std::string, std::string> dtype_map = {
        {"int8", "char"},
        {"int32", "int"},
        {"int8x4", "int32_t"},
        {"int32x4", "int32x4"},
        {"float16", "half"},
        {"float32", "float"},
        {"float64", "double"},
        {"float16x4", "float16x4"},
        {"bfloat16x4", "bfloat16x4"},
        {"float32x4", "float32x4"},
922
        {"float32x16", "float32x16"}};
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
    std::string call_mfma_code = R"({
    *((({C_dytpe}*){c_ref}) + {c_bias}) = {mfma_buildin}(*((({A_dytpe}*){a_ref}) + {a_bias}),
                  *((({B_dytpe}*){b_ref}) + {b_bias}),
                  *((({C_dytpe}*){c_ref}) + {c_bias}), 0, 0, 0);
  })";
    std::string mfma_buildin = "__builtin_amdgcn_mfma_" + prefix;
    Replacer replacer;
    replacer.register_rule("{mfma_buildin}", mfma_buildin);
    replacer.register_rule("{A_dytpe}", dtype_map[A_dtype]);
    replacer.register_rule("{B_dytpe}", dtype_map[B_dtype]);
    replacer.register_rule("{C_dytpe}", dtype_map[C_dtype]);
    replacer.register_rule("{a_ref}", a_ref);
    replacer.register_rule("{a_bias}", a_bias);
    replacer.register_rule("{b_ref}", b_ref);
    replacer.register_rule("{b_bias}", b_bias);
    replacer.register_rule("{c_ref}", c_ref);
    replacer.register_rule("{c_bias}", c_bias);
    os << replacer.rewrite(call_mfma_code);
941
  } else {
942
943
944
945
    CodeGenC::VisitExpr_(op, os);
  }
}

946
void CodeGenTileLangHIP::VisitStmt_(const AttrStmtNode *op) {
947
  if (op->attr_key == tir::attr::async_commit_queue_scope) {
948
949
950
    const IntImmNode *queue_id = op->value.as<IntImmNode>();
    ICHECK(queue_id && queue_id->value == 0)
        << "For CUDA, the index of an async queue must be 0.";
951
952
953
954
955
956
957
    this->VisitStmt(op->body);
    auto commit_group = Call(DataType::Void(), builtin::ptx_commit_group(), {});
    this->VisitExpr(commit_group, this->stream);
    return;
  } else if (op->attr_key == tir::attr::async_wait_queue_scope) {
    auto wait_attrs = GetAsyncWaitAttributes(op);
    auto queue_id = wait_attrs.first.as<IntImmNode>();
958
959
    ICHECK(queue_id && queue_id->value == 0)
        << "For CUDA, the index of an async queue must be 0.";
960
    auto wait_cnt = wait_attrs.second;
961
962
    auto wait_group =
        Call(DataType::Void(), builtin::ptx_wait_group(), {wait_cnt});
963
964
965
966
967
968
969
    this->VisitExpr(wait_group, this->stream);
    auto inner = op->body.as<AttrStmtNode>();
    ICHECK(inner);
    this->VisitStmt(inner->body);
    return;
  } else if (op->attr_key == "threadblock_swizzle_pattern") {
    this->PrintIndent();
970
    const StringImmNode *pattern = op->value.as<StringImmNode>();
971
972
973
974
975
976
977
978
    ICHECK(pattern);
    this->stream << "const dim3 blockIdx = " << pattern->value << "();\n";
    this->VisitStmt(op->body);
    return;
  }
  CodeGenC::VisitStmt_(op);
}

979
void CodeGenTileLangHIP::VisitStmt_(const AllocateNode *op) {
980
981
982
983
984
985
986
987
988
989
990
991
  ICHECK(!is_zero(op->condition));
  std::string vid = AllocVarID(op->buffer_var.get());

  this->PrintIndent();
  std::string scope = GetPtrStorageScope(op->buffer_var);
  PrintStorageScope(scope, stream);
  PrintType(op->dtype, stream);

  if (scope == "shared.dyn") {
    stream << ' ' << vid << "[];\n";
  } else {
    size_t constant_size = op->ConstantAllocationSize();
992
993
    ICHECK_GT(constant_size, 0)
        << "Can only handle constant size stack allocation for now";
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006

    if ((op->dtype == DataType::Int(4) || op->dtype == DataType::UInt(4) ||
         op->dtype == DataType::Int(1)) &&
        scope == "shared") {
      constant_size = constant_size / (32 / op->dtype.bits());
    }
    stream << ' ' << vid << '[' << constant_size << "];\n";
  }

  RegisterHandleType(op->buffer_var.get(), op->dtype);
  this->PrintStmt(op->body);
}

1007
void CodeGenTileLangHIP::VisitExpr_(const RampNode *op, std::ostream &os) {
1008
1009
1010
1011
1012
1013
1014
1015
  int lanes = static_cast<int>(Downcast<IntImm>(op->lanes)->value);
  CHECK_LE(lanes, 4) << "ValueError: Ramp of more than 4 lanes is not allowed.";
  os << "(make_";
  PrintType(op->dtype, os);
  os << "(";
  for (int i = 0; i < lanes; i++) {
    os << "(" << PrintExpr(op->base) << ")"
       << "+(" << PrintExpr(op->stride) << "*" << i << ")";
1016
1017
    if (i != lanes - 1)
      os << ", ";
1018
1019
1020
1021
  }
  os << "))";
}

1022
1023
void CodeGenTileLangHIP::VisitExpr_(const BroadcastNode *op,
                                    std::ostream &os) { // NOLINT(*)
1024
  int lanes = static_cast<int>(Downcast<IntImm>(op->lanes)->value);
1025
1026
  if ((op->dtype.is_int() || op->dtype.is_uint()) && op->dtype.bits() == 8 &&
      lanes == 4) {
1027
    // make_int8x4
1028
    const int64_t *p = as_const_int(op->value);
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
    ICHECK(p);
    int64_t v = *p & 0xFF;
    v = (v << 24) | (v << 16) | (v << 8) | v;
    if (op->dtype.is_uint()) {
      os << "(uint)" << v;
    } else {
      os << "(int)" << v;
    }
    return;
  }

  if (op->dtype.is_float16()) {
    std::string v = PrintExpr(op->value);
    os << "make_";
    PrintType(op->dtype, os);
    os << '(';
    for (int i = 0; i < lanes / 2; ++i) {
1046
1047
      if (i != 0)
        os << ", ";
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
      os << "__pack_half2(" << v << ", " << v << ")";
    }
    os << ')';
    return;
  }

  if (op->dtype.is_bfloat16()) {
    std::string v = PrintExpr(op->value);
    os << "make_";
    PrintType(op->dtype, os);
    os << '(';
    for (int i = 0; i < lanes / 2; ++i) {
1060
1061
      if (i != 0)
        os << ", ";
1062
1063
1064
1065
1066
1067
      os << "__pack_nv_bfloat162(" << v << ", " << v << ")";
    }
    os << ')';
    return;
  }

1068
1069
  if (op->dtype.is_float() && op->dtype.bits() == 32 &&
      op->dtype.lanes() == 8) {
1070
1071
1072
    std::string v = PrintExpr(op->value);
    os << "make_ulonglong4(";
    for (int i = 0; i < 4; ++i) {
1073
1074
      if (i != 0)
        os << ", ";
1075
1076
1077
1078
1079
1080
1081
1082
      os << "*(unsigned long long*)&make_float2(" << v << ", " << v << ")";
    }
    os << ')';
    return;
  }

  if ((op->dtype.is_int() || op->dtype.is_uint()) && op->dtype.bits() == 4) {
    bool fail = false;
1083
    const int64_t *p = as_const_int(op->value);
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
    ICHECK(p);
    int64_t v = *p & 0xF;

    if (lanes == 4) {
      v = (v << 12) | (v << 8) | (v << 4) | v;
      if (op->dtype.is_uint()) {
        os << "(uint16_t)" << v;
      } else {
        os << "(int16_t)" << v;
      }
    } else {
1095
1096
      v = (v << 28) | (v << 24) | (v << 20) | (v << 16) | (v << 12) | (v << 8) |
          (v << 4) | v;
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
      if (lanes == 8) {
        if (op->dtype.is_uint()) {
          os << "(uint)" << v;
        } else {
          os << "(int)" << v;
        }
      } else if (lanes == 16 || lanes == 32) {
        os << "make_";
        PrintType(op->dtype, os);
        os << '(';
        for (int i = 0; i < lanes / 8; ++i) {
1108
1109
          if (i != 0)
            os << ", ";
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
          if (op->dtype.is_uint()) {
            os << "(uint)" << v;
          } else {
            os << "(int)" << v;
          }
        }
        os << ')';
      } else {
        fail = true;
      }
    }

    if (!fail) {
      return;
    }
  }

  std::string v = PrintExpr(op->value);
  os << "make_";
  PrintType(op->dtype, os);
  os << '(';
  for (int i = 0; i < lanes; ++i) {
1132
1133
    if (i != 0)
      os << ", ";
1134
1135
1136
1137
1138
    os << v;
  }
  os << ')';
}

1139
1140
inline void PrintConst(const FloatImmNode *op, std::ostream &os,
                       CodeGenTileLangHIP *p) { // NOLINT(*)
1141
1142
1143
1144
1145
1146
1147
1148
  // Type code is kBFloat
  if (op->dtype.is_bfloat16()) {
    os << "bfloat16_t";
    os << '(' << std::scientific << op->value << 'f' << ')';
    return;
  }
  // Type code is kFloat
  switch (op->dtype.bits()) {
1149
1150
1151
1152
1153
1154
  case 64:
  case 32: {
    std::ostringstream temp;
    if (std::isinf(op->value)) {
      if (op->value < 0) {
        temp << "-";
1155
      }
1156
1157
1158
1159
1160
1161
1162
      temp << ((op->dtype.bits() == 32) ? "HIPRT_INF_F" : "HIPRT_INF");
    } else if (std::isnan(op->value)) {
      temp << ((op->dtype.bits() == 32) ? "HIPRT_NAN_F" : "HIPRT_NAN");
    } else {
      temp << std::scientific << op->value;
      if (op->dtype.bits() == 32)
        temp << 'f';
1163
    }
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
    p->MarkConst(temp.str());
    os << temp.str();
    break;
  }
  case 16: {
    os << "half_t" << '(';
    FloatImm const_f32 = FloatImm(DataType::Float(32), op->value);
    PrintConst(const_f32.get(), os, p);
    os << ')';
    break;
  }
  default:
    LOG(FATAL) << "Bad bit-width for float: " << op->dtype << "\n";
1177
1178
1179
  }
}

1180
1181
void CodeGenTileLangHIP::VisitExpr_(const FloatImmNode *op,
                                    std::ostream &os) { // NOLINT(*)
1182
1183
1184
  PrintConst(op, os, this);
}

1185
1186
1187
void CodeGenTileLangHIP::HandleVolatileLoads(const std::string &value,
                                             const BufferLoadNode *op,
                                             std::ostream &os) {
1188
1189
1190
  // Cast away volatile qualifier for fp16 types. That is, only loads and
  // stores are volatile. The loaded objects are not marked as volatile.
  //
1191
1192
  if ((op->dtype.is_float16() || op->dtype.is_bfloat16()) &&
      IsVolatile(op->buffer->data.get())) {
1193
1194
1195
1196
1197
1198
1199
1200
    os << "(";
    PrintType(op->dtype, os);
    os << ")(" << value << ")";
  } else {
    os << value;
  }
}

1201
1202
1203
void CodeGenTileLangHIP::PrintVecElemLoadExpr(DataType t, int i,
                                              const std::string &value,
                                              std::ostream &os) {
1204
1205
1206
1207
1208
1209
  ICHECK_GT(t.lanes(), 1);
  if (t.bits() == 8 && (t.is_int() || t.is_uint())) {
    if (!(t.lanes() == 2 || t.lanes() == 3)) {
      if (i != 0) {
        os << "|";
      }
1210
1211
      os << "((0x000000ff << " << i * 8 << ") & (" << value << " << " << i * 8
         << "))";
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
      return;
    }
  }

  if (t.is_float16()) {
    if (i == 0) {
      os << "make_";
      PrintType(t, os);
      os << '(';
    }
    if (i % 2 == 0) {
      os << "__pack_half2(" << value;
    } else {
      os << "," << value << ")";
      if (i != t.lanes() - 1) {
        os << ",";
      } else {
        os << ")";
      }
    }
    return;
  }

  if (t.is_bfloat16()) {
    if (i == 0) {
      os << "make_";
      PrintType(t, os);
      os << '(';
    }
    if (i % 2 == 0) {
      os << "__pack_bfloat162(" << value;
    } else {
      os << "," << value << ")";
      if (i != t.lanes() - 1) {
        os << ",";
      } else {
        os << ")";
      }
    }
    return;
  }

  if (i == 0) {
    os << "make_";
    PrintType(t, os);
    os << "(";
  }
  os << value;
  if (i != t.lanes() - 1) {
    os << ",";
  } else {
    os << ")";
  }
  return;
}

1268
void CodeGenTileLangHIP::AddFunction(const PrimFunc &f) {
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
  // clear previous generated state.
  this->InitFuncState(f);
  // reserve keywords
  ReserveKeywordsAsUnique();

  auto global_symbol = f->GetAttr<String>(tvm::attr::kGlobalSymbol);
  ICHECK(global_symbol.defined())
      << "CodeGenC: Expect PrimFunc to have the global_symbol attribute";
  bool no_alias = f->HasNonzeroAttr(tir::attr::kNoAlias);

  this->PrintFuncPrefix(stream);
  CodeGenC::PrintType(f->ret_type, stream);
  this->PrintExtraAttrs(f, stream);
  this->stream << " " << static_cast<std::string>(global_symbol.value()) << "(";

  for (size_t i = 0; i < f->params.size(); ++i) {
    tir::Var v = f->params[i];
    std::string vid = AllocVarID(v.get());
1287
1288
    if (i != 0)
      stream << ", ";
1289
1290
    if (v.dtype().is_handle()) {
      // work around for grid constant parameters.
1291
      if (auto *ptr = v->type_annotation.as<PointerTypeNode>()) {
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
        if (ptr->storage_scope == "grid_constant") {
          stream << "__grid_constant__ const ";
          CodeGenC::PrintType(ptr->element_type, stream);
          stream << ' ' << vid;
          continue;
        }
      }

      auto it = alloc_storage_scope_.find(v.get());
      if (it != alloc_storage_scope_.end()) {
        PrintStorageScope(it->second, stream);
      }

      CodeGenC::PrintType(GetType(v), stream);
1306
1307
      if (auto *ptr = v->type_annotation.as<PointerTypeNode>()) {
        if (auto *prim = ptr->element_type.as<PrimTypeNode>()) {
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
          RegisterHandleType(v.get(), prim->dtype);
        }
      }

      if (no_alias) {
        PrintRestrict(v, stream);
      }
    } else {
      CodeGenC::PrintType(GetType(v), stream);
    }
    stream << ' ' << vid;
  }
  stream << ") {\n";
  this->PreFunctionBody(f);
  int func_scope = this->BeginScope();
  this->PrintStmt(f->body);
  this->EndScope(func_scope);
  this->PrintIndent();
  this->stream << "}\n\n";
}

1329
1330
} // namespace codegen
} // namespace tvm