example_convolution.py 6.48 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import torch
import tilelang
from tilelang.autotuner import *
import tilelang.language as T
import itertools
import argparse
from functools import partial


def check_hopper():
    if not torch.cuda.is_available():
        return None
    props = torch.cuda.get_device_properties(0)
    compute_capability = props.major, props.minor
    return compute_capability == (9, 0)


def get_configs():
    block_M = [64, 128, 256]
    block_N = [64, 128, 256]
    block_K = [32, 64]
    num_stages = [1, 2, 3, 4]
    threads = [128, 256]
    _configs = list(itertools.product(block_M, block_N, block_K, num_stages, threads))

    configs = [{
        'block_M': c[0],
        'block_N': c[1],
        'block_K': c[2],
        'num_stages': c[3],
        'threads': c[4]
    } for c in _configs]
    return configs


def convolution(N, C, H, W, F, K, S, D, P, tune=False):
    KH, KW = K, K
    OH = (H + 2 * P - D * (K - 1) - 1) // S + 1
    OW = (W + 2 * P - D * (K - 1) - 1) // S + 1

    dtype = "float16"
    accum_dtype = "float"
    is_hopper = check_hopper()

    def kernel_func(block_M, block_N, block_K, num_stages, threads):

        @T.prim_func
        def main(
                data: T.Buffer((N, H, W, C), dtype),
                kernel: T.Buffer((KH, KW, C, F), dtype),
                out: T.Buffer((N, OH, OW, F), dtype),
        ):
            with T.Kernel(
                    T.ceildiv(F, block_N), T.ceildiv(N * OH * OW, block_M),
                    threads=threads) as (bx, by):
                data_shared = T.alloc_shared((block_M, block_K), dtype)
                kernel_shared = T.alloc_shared((block_K, block_N), dtype)
                out_local = T.alloc_fragment((block_M, block_N), accum_dtype)
                out_shared = T.alloc_shared((block_M, block_N), dtype)

                kernel_flat = T.Buffer((KH * KW * C, F), dtype, kernel.data)
                out_flat = T.Buffer((N * OH * OW, F), dtype, out.data)

                T.annotate_layout({
                    out_shared: tilelang.layout.make_swizzled_layout(out_shared),
                    data_shared: tilelang.layout.make_swizzled_layout(data_shared),
                    kernel_shared: tilelang.layout.make_swizzled_layout(kernel_shared),
                })

                T.clear(out_local)
                for k_iter in T.Pipelined(T.ceildiv(KH * KW * C, block_K), num_stages=num_stages):
                    if is_hopper:
                        T.c2d_im2col(data, data_shared, by, k_iter, KH, S, D, P)
                    else:
                        for i, j in T.Parallel(block_M, block_K):
                            k = k_iter * block_K + j
                            m = by * block_M + i
                            access_h = m % (OH * OW) // OW * S + k // (KW * C) * D - P
                            access_w = m % OW * S + k // C % KW * D - P
                            in_bound = ((access_h >= 0) and (access_w >= 0) and (access_h < H) and
                                        (access_w < W))
                            data_shared[i, j] = T.if_then_else(
                                in_bound, data[m // (OH * OW), access_h, access_w, k % C], 0)
                    T.copy(kernel_flat[k_iter * block_K, bx * block_N], kernel_shared)
                    T.gemm(data_shared, kernel_shared, out_local)

                T.copy(out_local, out_shared)
                T.copy(out_shared, out_flat[by * block_M, bx * block_N])

        return main

    if tune:

        @autotune(
            configs=get_configs(),
            keys=["block_M", "block_N", "block_K", "num_stages", "threads"],
            warmup=10,
            rep=10)
        @jit(
            out_idx=[2],
            supply_type=tilelang.TensorSupplyType.Integer,
            ref_prog=None,
            profiler="auto")
        def kernel(block_M=None, block_N=None, block_K=None, num_stages=None, threads=None):
            return kernel_func(block_M, block_N, block_K, num_stages, threads)

        return kernel()
    else:

        def kernel(block_M, block_N, block_K, num_stages, threads):
            return kernel_func(block_M, block_N, block_K, num_stages, threads)

        return kernel


def ref_program(A, B, stride, padding, dilation):
    A = A.permute(0, 3, 1, 2)  # N, H, W, C -> N, C, H, W
    B = B.permute(3, 2, 0, 1)  # H, W, C, F -> F, C, H, W
    C = torch.conv2d(A, B, stride=stride, padding=padding, dilation=dilation)
    C = C.permute(0, 2, 3, 1)  # N, C, H, W -> N, H, W, C
    return C


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--n', type=int, default=128, help='n')
    parser.add_argument('--c', type=int, default=128, help='c')
    parser.add_argument('--h', type=int, default=64, help='h')
    parser.add_argument('--w', type=int, default=64, help='w')
    parser.add_argument('--f', type=int, default=128, help='f')
    parser.add_argument('--k', type=int, default=3, help='k')
    parser.add_argument('--s', type=int, default=1, help='s')
    parser.add_argument('--d', type=int, default=1, help='d')
    parser.add_argument('--p', type=int, default=1, help='p')
    parser.add_argument('--tune', action='store_true', help='tune configs')
    args = parser.parse_args()
    N, C, H, W, F, K, S, D, P = args.n, args.c, args.h, args.w, args.f, args.k, args.s, args.d, args.p
    OH = (H + 2 * P - D * (K - 1) - 1) // S + 1
    OW = (W + 2 * P - D * (K - 1) - 1) // S + 1
    total_flops = 2 * N * C * OH * OW * F * K * K

    if (not args.tune):
        program = convolution(
            N, C, H, W, F, K, S, D, P, tune=args.tune)(
                block_M=256, block_N=128, block_K=64, num_stages=4, threads=256)
        ref_program = partial(ref_program, stride=S, padding=P, dilation=D)
147
148
149
        kernel = tilelang.compile(program, out_idx=[2])
        profiler = kernel.get_profiler(tilelang.TensorSupplyType.Normal)
        profiler.assert_allclose(ref_program, rtol=0.01, atol=0.01)
150
        print("All checks pass.")
151
        latency = profiler.do_bench(ref_program, warmup=500)
152
153
        print("Ref: {:.2f} ms".format(latency))
        print("Ref: {:.2f} TFlops".format(total_flops / latency * 1e-9))
154
        latency = profiler.do_bench(warmup=500)
155
156
157
158
159
160
161
162
        print("Tile-lang: {:.2f} ms".format(latency))
        print("Tile-lang: {:.2f} TFlops".format(total_flops / latency * 1e-9))
    else:
        best_latency, best_config, ref_latency = convolution(
            N, C, H, W, F, K, S, D, P, tune=args.tune)
        print(f"Best latency: {best_latency}")
        print(f"Best TFlops: {total_flops / best_latency * 1e-9}")
        print(f"Best config: {best_config}")