block_sparse_attn_triton.py 10.9 KB
Newer Older
1
# ruff: noqa: E712
2
3
4
5
6
7
8
import math
import torch

import triton
import triton.language as tl
import torch.nn.functional as F

9

10
11
12
13
14
15
16
17
def is_hip():
    return triton.runtime.driver.active.get_current_target().backend == "hip"


def get_sparse_attn_mask_from_topk(x, topk, use_dense_for_last_block=False):
    bsz, num_head, downsample_len, _ = x.shape
    # N_CTX = downsample_len * BLOCK
    sparse_index = torch.topk(x, topk, dim=-1).indices
18
19
20
21
    dense_mask = torch.full([bsz, num_head, downsample_len, downsample_len],
                            False,
                            dtype=torch.bool,
                            device=x.device)
22
23
    dense_mask.scatter_(-1, sparse_index, True)
    if use_dense_for_last_block:
24
        dense_mask[:, :, -2:, :] = True
25
    dense_mask.tril_()
26
    return dense_mask
27
28
29


def get_sparse_attn_mask_from_threshold(x, threshold, use_dense_for_last_block=False):
30
    dense_mask = x > threshold
31
    if use_dense_for_last_block:
32
        dense_mask[:, :, -2:, :] = True
33
    dense_mask.tril_()
34
    return dense_mask
35
36
37
38


@triton.jit
def _fwd_kernel_inner(
39
40
41
    acc,
    l_i,
    m_i,
42
43
44
    q,
    k_block_col_idx,
    block_mask_ptr,
45
46
47
48
49
50
51
    k_ptrs,
    v_ptrs,
    offs_m,
    offs_n,
    stride_kt,
    stride_vt,
    stride_bmask_n,
52
53
54
55
56
57
58
59
60
    sm_scale,
    seqlen_k,
    past_len,
    LAST_K_BLOCK: tl.constexpr,
    BLOCK_M: tl.constexpr,
    BLOCK_N: tl.constexpr,
):

    mask_val = tl.load(block_mask_ptr + k_block_col_idx * stride_bmask_n)
61
62
    # print

63
64
65
66
67
68
69
70
71
72
73
74
75
76
    if k_block_col_idx == 3:
        print("mask_val", mask_val)
    if mask_val == True:
        start_n = k_block_col_idx * BLOCK_N
        # -- compute qk ----

        k = tl.load(k_ptrs + start_n * stride_kt)

        qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
        qk += tl.dot(q, k)

        qk *= sm_scale

        # the following is needed only when LAST_K_BLOCK or BLOCK_M < BLOCK_N
77
78
79
        if LAST_K_BLOCK:
            qk += tl.where(offs_m[:, None] + past_len >= (start_n + offs_n[None, :]), 0,
                           float('-inf'))
80
81
82
83
84
85
86
87

        m_ij = tl.maximum(m_i, tl.max(qk, 1))
        qk -= m_ij[:, None]
        p = tl.exp(qk)
        l_ij = tl.sum(p, 1)
        alpha = tl.exp(m_i - m_ij)
        l_i = l_i * alpha + l_ij
        acc = acc * alpha[:, None]
88

89
90
91
92
93
94
95
96
97
98
99
100
101
        # update acc
        v = tl.load(v_ptrs + start_n * stride_vt)

        p = p.to(v.type.element_ty)

        acc += tl.dot(p, v)
        # update m_i and l_i
        m_i = m_ij
    return acc, l_i, m_i


@triton.jit
def _fwd_kernel(
102
103
104
105
    Q,
    K,
    V,
    sm_scale,
106
107
    block_mask_ptr,
    Out,
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    stride_qz,
    stride_qh,
    stride_qm,
    stride_qd,
    stride_kz,
    stride_kh,
    stride_kn,
    stride_kd,
    stride_vz,
    stride_vh,
    stride_vn,
    stride_vd,
    stride_bmz,
    stride_bmh,
    stride_bmm,
    stride_bmn,
    stride_oz,
    stride_oh,
    stride_om,
    stride_od,
    H,
    N_CTX,
130
    PAST_LEN,
131
    BLOCK_M: tl.constexpr,
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
    BLOCK_N: tl.constexpr,
    BLOCK_DMODEL: tl.constexpr,
):
    Q_LEN = N_CTX - PAST_LEN
    start_m = tl.program_id(0)
    off_hz = tl.program_id(1)
    off_h = off_hz % H
    off_z = off_hz // H
    Q += off_z * stride_qz + off_h * stride_qh
    K += off_z * stride_kz + off_h * stride_kh
    V += off_z * stride_vz + off_h * stride_vh
    block_mask_ptr += off_z * stride_bmz + off_h * stride_bmh

    # initialize offsets
    offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
    offs_n = tl.arange(0, BLOCK_N)
    offs_d = tl.arange(0, BLOCK_DMODEL)
    off_q = offs_m[:, None] * stride_qm + offs_d[None, :] * stride_qd
    # off_k = offs_n[:, None] * stride_kn + offs_d[None, :] * stride_kd
    off_k = offs_n[None, :] * stride_kn + offs_d[:, None] * stride_kd
    off_v = offs_n[:, None] * stride_vn + offs_d[None, :] * stride_vd
    # Initialize pointers to Q, K, V
    q_ptrs = Q + off_q
    k_ptrs = K + off_k
    v_ptrs = V + off_v
    mask_ptrs = block_mask_ptr + start_m * stride_bmm

    m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
    l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
    acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)

    q = tl.load(q_ptrs, mask=offs_m[:, None] < Q_LEN)

    k_block_start = 0
    k_block_end = tl.cdiv((start_m + 1) * BLOCK_M, BLOCK_N)

    # loop over k, v and update accumulator
    for col_idx in range(k_block_start, k_block_end):
        acc, l_i, m_i = _fwd_kernel_inner(
171
172
173
            acc,
            l_i,
            m_i,
174
175
176
            q,
            col_idx,
            mask_ptrs,
177
178
179
180
181
182
183
            k_ptrs,
            v_ptrs,
            offs_m,
            offs_n,
            stride_kn,
            stride_vn,
            stride_bmn,
184
185
186
187
188
189
190
191
192
193
194
            sm_scale,
            N_CTX,
            PAST_LEN,
            col_idx == k_block_end - 1,
            BLOCK_M,
            BLOCK_N,
        )

    m_i += tl.math.log(l_i)
    l_recip = 1 / l_i[:, None]
    acc = acc * l_recip
195
    acc = acc.to(Out.dtype.element_ty)
196

197
198
    off_o = off_z * stride_oz + off_h * stride_oh + offs_m[:, None] * stride_om + offs_d[
        None, :] * stride_od
199
200
201
202
    out_ptrs = Out + off_o
    tl.store(out_ptrs, acc, mask=offs_m[:, None] < N_CTX)


203
204
205
206
207
208
209
210
211
212
213
def _forward(ctx,
             q,
             k,
             v,
             block_sparse_mask,
             sm_scale,
             BLOCK_M=64,
             BLOCK_N=64,
             num_warps=None,
             num_stages=1,
             out=None):
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

    assert q.shape[-1] == k.shape[-1] == v.shape[-1]
    assert k.shape[2] == v.shape[2]
    o = out if out is not None else torch.empty_like(q).contiguous()
    grid = (triton.cdiv(q.shape[2], BLOCK_M), q.shape[0] * q.shape[1])

    assert q.shape[-1] in [64, 128]
    BLOCK_DMODEL = q.shape[-1]

    if is_hip():
        num_warps, num_stages = 8, 1
    else:
        num_warps, num_stages = 4, 2

    N_CTX = k.shape[2]
    PAST_LEN = N_CTX - q.shape[2]

    H = q.shape[1]

    _fwd_kernel[grid](
234
235
236
237
        q,
        k,
        v,
        sm_scale,
238
239
        block_sparse_mask,
        o,
240
241
242
243
        *q.stride(),
        *k.stride(),
        *v.stride(),
        *block_sparse_mask.stride(),
244
        *o.stride(),
245
246
        H,
        N_CTX,
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
        PAST_LEN,
        BLOCK_M,
        BLOCK_N,
        BLOCK_DMODEL,
        num_warps=num_warps,
        num_stages=num_stages,
    )

    return o


class _sparse_attention(torch.autograd.Function):

    @staticmethod
    def forward(ctx, q, k, v, block_sparse_dense, sm_scale):
        # shape constraints
        return _forward(ctx, q, k, v, block_sparse_dense, sm_scale)

    @staticmethod
    def backward(ctx, do):
        # No gradient propagation.
        raise NotImplementedError("It does not support gradient propagation yet")
        return None, None, None, None, None


272
block_sparse_triton_fn = _sparse_attention.apply
273
274
275
276
277
278
279
280
281
282
283
284
285


def test_topk_sparse_attention():
    # Config
    BATCH, N_HEADS, SEQ_LEN, D_HEAD = 1, 1, 256, 64
    TOPK = 2  # Keep top 8 elements per row
    BLOCK = 64
    torch.manual_seed(0)

    # Create inputs
    q = torch.randn(BATCH, N_HEADS, SEQ_LEN, D_HEAD, device='cuda', dtype=torch.bfloat16)
    k = torch.randn(BATCH, N_HEADS, SEQ_LEN, D_HEAD, device='cuda', dtype=torch.bfloat16)
    v = torch.randn(BATCH, N_HEADS, SEQ_LEN, D_HEAD, device='cuda', dtype=torch.bfloat16)
286
    sm_scale = 1.0 / (D_HEAD**0.5)
287
288
289
290
291

    # Create sparse mask (downsampled to block level)
    downsample_factor = BLOCK
    downsample_len = math.ceil(SEQ_LEN / downsample_factor)
    print("downsample_len", downsample_len)
292
293
294
295
296

    x_ds = torch.randn([BATCH, N_HEADS, downsample_len, downsample_len],
                       device='cuda',
                       dtype=torch.bfloat16)
    x_ds[:, :, :, 0] = 100
297
    print("x_ds.shape", x_ds.shape)
298
    block_mask = get_sparse_attn_mask_from_topk(x_ds, topk=TOPK)
299
300
301
302
    # print("block_mask", block_mask)
    print("block_mask.shape", block_mask.shape)

    # Run Triton kernel
303
    triton_output = block_sparse_triton_fn(q, k, v, block_mask, sm_scale)
304
305
306

    # Compute reference
    # Expand block mask to full attention matrix
307
    full_mask = torch.kron(block_mask.float(), torch.ones(BLOCK, BLOCK, device='cuda'))
308
309
    full_mask = full_mask[..., :SEQ_LEN, :SEQ_LEN].bool()
    full_mask = full_mask & torch.tril(torch.ones_like(full_mask))  # Apply causal
310

311
312
313
314
315
    # PyTorch reference implementation
    attn = torch.einsum('bhsd,bhtd->bhst', q, k) * sm_scale
    attn = attn.masked_fill(~full_mask, float('-inf'))
    attn = F.softmax(attn, dim=-1)
    ref_output = torch.einsum('bhst,bhtd->bhsd', attn, v)
316

317
318
319
320
321
322
323
324
325
    # print("ref_output", ref_output)
    # print("triton_output", triton_output)

    # Verify accuracy
    assert torch.allclose(triton_output, ref_output, atol=1e-2, rtol=1e-2), \
        "Triton output doesn't match reference"
    print("Pass topk sparse attention test with qlen == klen")


326
327
328
329
330
331
def test_topk_sparse_attention_qlt_kl():
    BATCH, N_HEADS = 2, 4
    Q_LEN, K_LEN, D_HEAD = 128, 256, 64  # qlen < klen; here, past_len = 256 - 128 = 128.
    TOPK = 1
    BLOCK = 64  # block size used in downsampling
    torch.manual_seed(0)
332

333
334
335
336
337
338
    # Create inputs.
    q = torch.randn(BATCH, N_HEADS, Q_LEN, D_HEAD, device='cuda', dtype=torch.bfloat16)
    k = torch.randn(BATCH, N_HEADS, K_LEN, D_HEAD, device='cuda', dtype=torch.bfloat16)
    v = torch.randn(BATCH, N_HEADS, K_LEN, D_HEAD, device='cuda', dtype=torch.bfloat16)
    # softmax scale
    sm_scale = 1.0 / (D_HEAD**0.5)
339

340
341
342
343
344
345
346
347
348
349
350
351
352
    downsample_factor = BLOCK
    print("downsample_factor", downsample_factor)
    downsample_len = math.ceil(K_LEN / downsample_factor)  # number of blocks along one dimension
    print("downsample_len", downsample_len)
    x_ds = torch.randn(
        BATCH, N_HEADS, downsample_len, downsample_len, device='cuda', dtype=torch.bfloat16)
    # Force the first column to be high so that the first block is always selected.
    x_ds[:, :, :, 0] = 100
    block_mask = get_sparse_attn_mask_from_topk(x_ds, topk=TOPK)
    print("block_mask", block_mask)
    print("block_mask.shape", block_mask.shape)
    # Run Triton kernel.
    triton_output = block_sparse_triton_fn(q, k, v, block_mask, sm_scale)
353

354
    past_len = K_LEN - Q_LEN
355

356
    attn = torch.einsum('bhsd,bhtd->bhst', q, k) * sm_scale
357

358
359
    full_mask_full = torch.kron(block_mask.float(), torch.ones(BLOCK, BLOCK, device='cuda')).bool()
    full_mask_full = full_mask_full[..., :K_LEN, :K_LEN]
360

361
    effective_mask = full_mask_full[..., past_len:K_LEN, :]  # shape: (B, H, Q_LEN, K_LEN)
362

363
364
365
    i_global = torch.arange(past_len, K_LEN, device=k.device).unsqueeze(1)  # shape: (Q_LEN, 1)
    j_global = torch.arange(K_LEN, device=k.device).unsqueeze(0)  # shape: (1, K_LEN)
    causal_mask = (j_global <= i_global)  # shape: (Q_LEN, K_LEN)
366

367
    final_mask = effective_mask & causal_mask  # shape: (B, H, Q_LEN, K_LEN)
368

369
370
371
    attn = attn.masked_fill(~final_mask, float('-inf'))
    attn = F.softmax(attn, dim=-1)
    ref_output = torch.einsum('bhst,bhtd->bhsd', attn, v)
372

373
374
375
    # Verify accuracy.
    assert torch.allclose(triton_output, ref_output, atol=1e-2, rtol=1e-2), \
        "Triton output doesn't match reference when qlen < klen"
376

377
    print("Pass topk sparse attention test with qlen < klen")
378
379
380
381


if __name__ == "__main__":
    test_topk_sparse_attention()
382
    test_topk_sparse_attention_qlt_kl()