"git@developer.sourcefind.cn:OpenDAS/nni.git" did not exist on "5296a5280850e81cd92d9c4e0a6e9603cac0c0c0"
example_blocksparse_gemm.py 6.82 KB
Newer Older
1
2
import argparse
import itertools
3
4
import tilelang
import tilelang.language as T
5
from tilelang.engine.param import KernelParam
6
from tilelang.utils.tensor import get_tensor_supply, TensorSupplyType
7
import torch
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
from typing import List

DEFAULT_BLOCK_M = 128
DEFAULT_BLOCK_N = 128
DEFAULT_BLOCK_K = 32
DEFAULT_NUM_STAGES = 2
DEFAULT_THREAD_NUM = 128
DEFAULT_ENABLE_RASTERIZATION = True

parser = argparse.ArgumentParser(description="Autotuned BlockSparse MatMul Benchmark")
parser.add_argument("--m", type=int, default=1024, help="Matrix dimension M")
parser.add_argument("--n", type=int, default=1024, help="Matrix dimension N")
parser.add_argument("--k", type=int, default=1024, help="Matrix dimension K")
parser.add_argument("--sparsity", type=float, default=0.5, help="Sparsity ratio (0-1)")
parser.add_argument(
    "--use_autotune", action="store_true", default=False, help="Whether to use autotune")

25
args, _ = parser.parse_known_args()
26
27
28
M, N, K = args.m, args.n, args.k
sparsity = args.sparsity
use_autotune = args.use_autotune
29
default_tensor_supply = get_tensor_supply(TensorSupplyType.Auto)
30
31
32
33

print(f"Running BlockSparse MatMul Benchmark for M={M}, N={N}, K={K}")
print(f"Target Block Sparsity: {sparsity}")
print(f"Using Autotuner: {use_autotune}\n")
34
35


36
def get_configs():
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
    block_M = [64, 128, 256]
    block_N = [64, 128, 256]
    block_K = [32, 64]
    num_stages = [1, 2, 3]
    thread_num = [128, 256]
    enable_rasterization = [True, False]

    _configs = list(
        itertools.product(block_M, block_N, block_K, num_stages, thread_num, enable_rasterization))

    return [{
        "block_M": c[0],
        "block_N": c[1],
        "block_K": c[2],
        "num_stages": c[3],
        "thread_num": c[4],
        "enable_rasteration": c[5],
    } for c in _configs]


57
58
59
60
def ref_program(A, B, BlockMask, block_M, block_N, block_K):
    ref_c = torch.zeros((M, N), dtype=torch.float16, device=A.device)
    for i in range(M // block_M):
        for j in range(N // block_N):
61
            accu = torch.zeros((block_M, block_N), dtype=torch.float32, device=A.device)
62
            for k in range(K // block_K):
63
                if BlockMask[i, j, k]:
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
                    accu += (
                        A[i * block_M:(i + 1) * block_M, k * block_K:(k + 1) * block_K].to(
                            torch.float32) @ B[k * block_K:(k + 1) * block_K,
                                               j * block_N:(j + 1) * block_N].to(torch.float32))
            ref_c[i * block_M:(i + 1) * block_M,
                  j * block_N:(j + 1) * block_N] = accu.to(torch.float16)
    return ref_c


def supply_program(params: List[KernelParam]):
    input_tensors = []

    for p in params:
        # Check if the kernel parameter is BlockMask tensor.
        # Here, BlockMask is uniquely identified by having 3 dimensions.
        if len(p.shape) != 3:
            # For non-BlockMask tensors, use the default tensor generation logic.
            input_tensors.append(default_tensor_supply(p))
        else:
            # For BlockMask tensor, randomly set elements to True based on desired
            # sparsity level.
            block_mask = torch.zeros(p.shape, dtype=torch.bool, device=torch.cuda.current_device())
            block_mask[:, :, :] = torch.rand(p.shape) > sparsity
            input_tensors.append(block_mask)

    return input_tensors
90
91


92
@tilelang.autotune(configs=get_configs(),)
93
@tilelang.jit(out_idx=[-1])
94
95
96
97
98
99
100
101
102
103
104
def blocksparse_matmul(M,
                       N,
                       K,
                       block_M,
                       block_N,
                       block_K,
                       num_stages,
                       thread_num,
                       enable_rasteration,
                       dtype="float16",
                       accum_dtype="float"):
105
106
107
108

    block_mask_shape = (M // block_M, N // block_N, K // block_K)

    @T.prim_func
109
    def block_sparse_matmul(
110
111
112
113
            A: T.Tensor((M, K), dtype),
            B: T.Tensor((K, N), dtype),
            BlockMask: T.Tensor(block_mask_shape, "bool"),
            C: T.Tensor((M, N), dtype),
114
    ):
115
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=thread_num) as (bx, by):
116
117
118
            A_shared = T.alloc_shared((block_M, block_K), dtype)
            B_shared = T.alloc_shared((block_K, block_N), dtype)
            C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
119
            C_shared = T.alloc_shared((block_M, block_N), dtype)
120

121
            T.use_swizzle(panel_size=10, enable=enable_rasteration)
122
            T.clear(C_local)
123
124

            for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
125
126
127
128
129
                if BlockMask[by, bx, k]:
                    T.copy(A[by * block_M, k * block_K], A_shared)
                    T.copy(B[k * block_K, bx * block_N], B_shared)
                    T.gemm(A_shared, B_shared, C_local)

130
131
            T.copy(C_local, C_shared)
            T.copy(C_shared, C[by * block_M, bx * block_N])
132

133
    return block_sparse_matmul
134
135


136
def main():
137
138

    # Initialize input matrices A and B on the GPU with half precision
139
140
141
142
    a = torch.randn(M, K).cuda().half()
    b = torch.randn(K, N).cuda().half()

    if args.use_autotune:
143
144
145
        # Run the autotuner to find the best kernel configuration and performance
        # get_best_config is expected to return an object containing the compiled kernel,
        # the best configuration found, latency, and reference latency.
146
        kernel = blocksparse_matmul(M, N, K)
147

148
149
150
151
        best_config = kernel.config
        best_latency = kernel.latency
        block_M, block_N, block_K = best_config["block_M"], best_config["block_N"], best_config[
            "block_K"]
152
153
154
155

        print(f"Best Config: {best_config}")
        print(f"Sparsity Ratio: {sparsity}")
        print(f"Best Kernel Latency: {best_latency:.6f} ms")
156
    else:
157
158
159
        kernel = blocksparse_matmul(M, N, K, DEFAULT_BLOCK_M, DEFAULT_BLOCK_N, DEFAULT_BLOCK_K,
                                    DEFAULT_NUM_STAGES, DEFAULT_THREAD_NUM,
                                    DEFAULT_ENABLE_RASTERIZATION)
160
161
        block_M, block_N, block_K = DEFAULT_BLOCK_M, DEFAULT_BLOCK_N, DEFAULT_BLOCK_K
        print(f"Using default kernel with block size ({block_M}, {block_N}, {block_K})")
162
163
164

    # Create block mask with desired sparsity
    mask_shape = (M // block_M, N // block_N, K // block_K)
165
    block_mask = torch.rand(mask_shape).cuda() > sparsity
166

167
    # Run the compiled kernel (either tuned or default) with the inputs
168
169
    c = kernel(a, b, block_mask)

170
171
    # Compute the reference result using the naive PyTorch implementation
    ref_c = ref_program(a, b, block_mask, block_M, block_N, block_K)
172

173
174
175
176
177
178
    try:
        torch.testing.assert_close(c, ref_c, rtol=1e-2, atol=1e-2)
        print("✅ Results are close! Verification successful.")
    except AssertionError as e:
        print("❌ Verification FAILED: Results differ significantly.")
        print(e)
179
180
181
182


if __name__ == "__main__":
    main()