example_gemm_intrinsics.py 5.48 KB
Newer Older
1
2
from tilelang import tvm as tvm
from tvm import DataType
3
import tilelang
4
5
6
import tilelang.language as T
from tilelang.intrinsics import get_swizzle_layout
from tilelang.intrinsics.mma_macro_generator import (
7
    TensorCoreIntrinEmitter,)
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from tilelang.transform import simplify_prim_func


def make_swizzle_layout(shared_buf):
    dtype = shared_buf.dtype
    shape = shared_buf.shape

    can_swizzle = shape[-1] * DataType(dtype).bits == 512
    if not can_swizzle:
        return T.Layout(shape, lambda *args: args)

    def transform_func(i, j):
        new_warp_i, new_warp_j = get_swizzle_layout(i, j, shape[-1], dtype)
        return [new_warp_i, new_warp_j]

    return T.Layout(shape, transform_func)


@simplify_prim_func
def tl_matmul(
    M,
    N,
    K,
    in_dtype,
    out_dtype,
    accum_dtype,
):
    assert in_dtype in [
        "float16",
        "int8",
    ], "Currently only float16 and int8 are supported"
    assert out_dtype in [
        "float16",
        "float32",
        "int32",
    ], "Currently only float16, float32 and int32 are supported"

    micro_size_x = micro_size_y = micro_size_k = 16

    if out_dtype == "int32":
        micro_size_k = 32

    # This is a debug config
51
52
53
54
    block_row_warps = 2
    block_col_warps = 2
    warp_row_tiles = 64
    warp_col_tiles = 64
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    # chunk = 32 if in_dtype == "float16" else 64
    chunk = 32
    shared_scope = "shared.dyn"

    # Pipeline Stage
    stage = 2

    block_M = block_row_warps * warp_row_tiles
    block_N = block_col_warps * warp_col_tiles
    block_K = chunk

    A_shape = (M, K)
    B_shape = (N, K)
    A_shared_shape = (block_M, block_K)
    B_shared_shape = (block_N, block_K)
    C_shared_shape = (
        block_M // micro_size_x,
        block_N // micro_size_y,
        micro_size_x,
        micro_size_y,
    )

    warp_size = 32
    threads = warp_size * (block_row_warps * block_col_warps)
    local_size_a = (micro_size_x * micro_size_k) // warp_size
    local_size_b = (micro_size_y * micro_size_k) // warp_size
    local_size_c = (micro_size_x * micro_size_y) // warp_size
    warp_rows = warp_row_tiles // micro_size_x
    warp_cols = warp_col_tiles // micro_size_y

    # MMA Wrapper to Auto Generate Code for MMA
    mma_emitter = TensorCoreIntrinEmitter(
        a_dtype=in_dtype,
        b_dtype=in_dtype,
        accum_dtype=accum_dtype,
        a_transposed=False,
        b_transposed=True,
        block_row_warps=block_row_warps,
        block_col_warps=block_col_warps,
        warp_row_tiles=warp_row_tiles,
        warp_col_tiles=warp_col_tiles,
        chunk=chunk,
    )

    @T.prim_func
100
    def gemm_intrinsics(
101
102
103
            A: T.Tensor(A_shape, in_dtype),
            B: T.Tensor(B_shape, in_dtype),
            C: T.Tensor((M, N), out_dtype),
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
    ):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by):

            A_shared = T.alloc_shared(A_shared_shape, in_dtype, scope=shared_scope)
            B_shared = T.alloc_shared(B_shared_shape, in_dtype, scope=shared_scope)
            C_shared = T.alloc_shared(C_shared_shape, out_dtype, scope=shared_scope)
            A_local = T.alloc_local((warp_rows * local_size_a), in_dtype)
            B_local = T.alloc_local((warp_cols * local_size_b), in_dtype)
            C_local = T.alloc_local((warp_rows * warp_cols * local_size_c), accum_dtype)

            T.annotate_layout({
                A_shared: make_swizzle_layout(A_shared),
                B_shared: make_swizzle_layout(B_shared),
            })

            # Improve L2 Cache
            T.use_swizzle(panel_size=10)

            T.clear(C_local)

            for ko in T.Pipelined((K // block_K), num_stages=stage):

                # Load A into shared memory
                for i, k in T.Parallel(block_M, block_K):
                    A_shared[i, k] = A[by * block_M + i, ko * block_K + k]

                # Load B into shared memory
                for j, k in T.Parallel(block_N, block_K):
                    B_shared[j, k] = B[bx * block_N + j, ko * block_K + k]

                for ki in T.serial(0, (block_K // micro_size_k)):

                    # Load A into fragment
137
                    mma_emitter.ldmatrix_a(A_local, A_shared, ki)
138
139

                    # Load B into fragment
140
                    mma_emitter.ldmatrix_b(B_local, B_shared, ki)
141
142
143
144
145

                    # Perform Matrix Multiplication
                    mma_emitter.mma(A_local, B_local, C_local)

            # Perform STMatrix
146
            mma_emitter.stmatrix(C_local, C_shared)
147
148
149
150
151
152
153
154
155
156

            # Store shared into global
            for i, j in T.Parallel(block_M, block_N):
                C[by * block_M + i, bx * block_N + j] = C_shared[
                    i // micro_size_x,
                    j // micro_size_y,
                    i % micro_size_x,
                    j % micro_size_y,
                ]

157
    return gemm_intrinsics
158

159

160
161
def ref_program(A, B):
    return A @ B.T
162
163


164
165
166
167
168
169
170
171
def main():
    M, N, K = 16384, 16384, 16384
    in_dtype, out_dtype, accum_dtype = "float16", "float16", "float32"
    matmul = tl_matmul(M, N, K, in_dtype, out_dtype, accum_dtype)
    kernel = tilelang.compile(matmul, out_idx=[2])
    src_code = kernel.get_kernel_source()
    # src_code is the generated cuda source
    assert src_code is not None
172

173
    profiler = kernel.get_profiler()
174

175
    latency = profiler.do_bench(profiler.func, warmup=25)
176

177
    print(latency)
178

179
180
    # Ensure that the latency is not None
    assert latency is not None
181

182
    profiler.assert_allclose(ref_program, atol=1e-2, rtol=1e-2)
183
184


185
186
if __name__ == "__main__":
    main()