gemm_py.cc 12.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
/*!
 * \file tl/op/gemm_py.cc
 * \brief Implementation of General Matrix Multiplication (GEMM) operators
 */

#include "gemm_py.h"

#include "builtin.h"
#include <tvm/tir/builtin.h>
#include <tvm/tir/op.h>
#include <tvm/tir/op_attr_types.h>
#include <tvm/tir/transform.h>

#include "../target/utils.h"
15
#include "tcgen5_meta.h"
16
#include "utils.h"
17
18
19
20
21
22

namespace tvm {
namespace tl {

using namespace tir;

23
// NormalizeToBufferRegion moved to src/op/utils.{h,cc}
24

25
// MakeAccessPtrFromRegion moved to src/op/utils.{h,cc}
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
/**
 * @brief Construct a Gemm operator from serialized TL arguments and a buffer
 * map.
 *
 * This constructor deserializes operator parameters from `args` and resolves
 * buffer references via `vmap`, populating an internal GemmPyNode with:
 * - device pointers for A, B, C and their corresponding Buffer objects,
 * - transpose flags for A and B,
 * - matrix dimensions M, N, K,
 * - warp allocation policy and clear_accum flag,
 * - strides and memory offsets for A and B,
 * - optional kPack (must be 1 or 2) and optional wg_wait.
 *
 * The populated GemmPyNode is stored into the wrapper's internal `data_`.
 *
 * @param args Positional serialized arguments produced by the TL frontend:
 *   expected layout is:
 *     [Aptr, Bptr, Cptr, trans_A (Bool), trans_B (Bool),
 *      M (Int), N (Int), K (Int), policy (Int), clear_accum (Bool),
 *      stride_A (Int), stride_B (Int), offset_A (Int), offset_B (Int),
 *      (optional) kPack (Int), (optional) wg_wait (Int)]
 *
 * @note If `kPack` is provided it must be 1 or 2; otherwise the constructor
 *       fails with an ICHECK (runtime assertion). No other validation is
 *       performed here.
 */
53
GemmPy::GemmPy(Array<PrimExpr> args) {
54
  ObjectPtr<GemmPyNode> node = tvm::ffi::make_object<GemmPyNode>();
55

56
57
58
  node->aRegion_ = NormalizeToBufferRegion(args[0]);
  node->bRegion_ = NormalizeToBufferRegion(args[1]);
  node->cRegion_ = NormalizeToBufferRegion(args[2]);
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

  node->a_ = node->aRegion_->buffer;
  node->b_ = node->bRegion_->buffer;
  node->c_ = node->cRegion_->buffer;
  node->transA_ = args[3].as<Bool>().value();
  node->transB_ = args[4].as<Bool>().value();
  node->m_ = args[5].as<IntImm>().value()->value;
  node->n_ = args[6].as<IntImm>().value()->value;
  node->k_ = args[7].as<IntImm>().value()->value;
  node->policy_ = GemmWarpPolicy(args[8].as<IntImm>().value()->value);
  node->clearAccum_ = args[9].as<PrimExpr>().value();
  node->strideA_ = args[10].as<IntImm>().value()->value;
  node->strideB_ = args[11].as<IntImm>().value()->value;
  node->offsetA_ = args[12].as<IntImm>().value()->value;
  node->offsetB_ = args[13].as<IntImm>().value()->value;
74
  if (args.size() > 14) {
75
76
    node->kPack_ = args[14].as<IntImm>().value()->value;
    if (node->kPack_ != 1 && node->kPack_ != 2) {
77
78
79
80
      ICHECK(false) << "kPack must be 1 or 2";
    }
  }
  if (args.size() > 15) {
81
    node->wgWait_ = args[15].as<IntImm>().value()->value;
82
  }
83
84
85
86
87
88
  if (args.size() > 16) {
    if (const auto *load = args[16].as<BufferLoadNode>()) {
      node->mbarRegion_ =
          NormalizeToBufferRegion(Downcast<BufferLoad>(args[16]));
      node->mbar_ = node->mbarRegion_->buffer;
    }
89
  }
90
91
  node->cCoords_ = Array<PrimExpr>(
      {args[17].as<PrimExpr>().value(), args[18].as<PrimExpr>().value()});
92
93
94
95
96
97
98
99
100
101
102
103
  data_ = std::move(node);
}

/**
 * @brief Create a copy of this GemmPyNode as a TileOperator.
 *
 * Constructs a new GemmPyNode by copying the current node state and returns it
 * wrapped in a Gemm TileOperator.
 *
 * @return TileOperator A Gemm operator that owns a copy of this node.
 */
TileOperator GemmPyNode::Clone() const {
104
  auto op = tvm::ffi::make_object<GemmPyNode>(*this);
105
106
107
  return GemmPy(op);
}

108
bool GemmPyNode::allowTcgen5Mma(Target target) const {
109
  return TargetIsSm100(target) &&
110
111
112
113
114
         ((a_.scope() == "shared.dyn" || a_.scope() == "shared" ||
           a_.scope() == "shared.tmem") &&
          (b_.scope() == "shared.dyn" || b_.scope() == "shared") &&
          c_.scope() == "shared.tmem") &&
         GetTCGEN5MMAMeta(m_, n_, k_, a_->dtype, c_->dtype).first;
115
116
}

117
bool GemmPyNode::allowWgmma(int block_size, Target target) const {
118
119
  tvm::transform::PassContext ctxt = tvm::transform::PassContext::Current();

120
121
  int warp_size = TargetGetWarpSize(target);
  int num_warps = block_size / warp_size;
122
  return !ctxt->GetConfig(kDisableWGMMA, Optional<Bool>()).value_or(false) &&
123
124
         TargetIsHopper(target) && (this->m_ >= 64) && (num_warps % 4 == 0) &&
         checkWgmma();
125
126
}

127
128
129
GemmInst GemmPyNode::getGemmInst(int block_size, Target target) const {
  bool allow_tcgen5mma = allowTcgen5Mma(target);
  bool allow_wgmma = allowWgmma(block_size, target);
130
131
132
  if (allow_tcgen5mma) {
    return GemmInst::kTCGEN5MMA;
  } else if (allow_wgmma) {
133
134
135
    return GemmInst::kWGMMA;
  } else if (TargetIsCDNA(target)) {
    return GemmInst::kMFMA;
136
137
  } else if (TargetIsVolta(target) || TargetIsAmpere(target) ||
             TargetIsTuring(target) || TargetIsHopper(target) ||
138
             TargetIsSm100(target) || TargetIsSM120(target)) {
139
140
141
    return GemmInst::kMMA;
  } else {
    ICHECK(0) << "Unsupported target for gemm: " << target->str();
142
143
    return GemmInst::kMMA; // This line will never be reached due to ICHECK, but
                           // satisfies compiler
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
  }
}

/**
 * @brief Checks whether WGMMA (warp-group MMA) can be used for this GEMM.
 *
 * Evaluates device-memory placement, data-type combinations, transpose flags,
 * and K divisibility constraints required for the Hopper WGMMA code path.
 *
 * The check returns true only when:
 * - B resides in shared memory ("shared" or "shared.dyn"); and
 * - (C, A, B) dtypes match one of the supported combinations below and K
 *   satisfies the required alignment; and
 * - for combinations that require specific orientations, A is not transposed
 *   and B is transposed.
 *
 * Supported combinations and constraints:
 * - C=float16:
 *   - A=float16, B=float16: K % 16 == 0
 *   - Various float8 mixes (e4m3/e5m2): require (!trans_A && trans_B) and K %
 * 32 == 0
 * - C=float32:
 *   - A=float16, B=float16: K % 16 == 0
 *   - A=bfloat16, B=bfloat16: K % 16 == 0
 *   - A=float32, B=float32: require (!trans_A && trans_B) and K % 8 == 0
 *   - Various float8 mixes: require (!trans_A && trans_B) and K % 32 == 0
 * - C=int32:
 *   - 8-bit integer combinations (Int8/UInt8): require (!trans_A && trans_B)
 * and K % 32 == 0
 *
 * @return true if WGMMA is supported for the current buffers, dtypes, and
 *         transpose/shape constraints; false otherwise.
 */
177
178
bool GemmPyNode::checkWgmma() const {
  if (b_.scope() != "shared.dyn" && b_.scope() != "shared") {
179
180
181
    return false;
  }

182
183
184
  if (c_->dtype == DataType::Float(16)) {
    if (a_->dtype == DataType::Float(16) && b_->dtype == DataType::Float(16))
      return k_ % 16 == 0;
185
    else if (a_->dtype.is_float8() && b_->dtype.is_float8())
186
      return (!transA_) && transB_ && k_ % 32 == 0;
187
188
    else
      return false;
189
190
191
192
193
194
195
196
197
  } else if (c_->dtype == DataType::Float(32)) {
    if (a_->dtype == DataType::Float(16) && b_->dtype == DataType::Float(16))
      return k_ % 16 == 0;
    else if (a_->dtype == DataType::BFloat(16) &&
             b_->dtype == DataType::BFloat(16))
      return k_ % 16 == 0;
    else if (a_->dtype == DataType::Float(32) &&
             b_->dtype == DataType::Float(32))
      return (!transA_) && transB_ && k_ % 8 == 0;
198
    else if (a_->dtype.is_float8() && b_->dtype.is_float8())
199
      return (!transA_) && transB_ && k_ % 32 == 0;
200
201
    else
      return false;
202
203
204
205
206
207
208
209
210
  } else if (c_->dtype == DataType::Int(32)) {
    if (a_->dtype == DataType::Int(8) && b_->dtype == DataType::Int(8))
      return (!transA_) && transB_ && k_ % 32 == 0;
    else if (a_->dtype == DataType::Int(8) && b_->dtype == DataType::UInt(8))
      return (!transA_) && transB_ && k_ % 32 == 0;
    else if (a_->dtype == DataType::UInt(8) && b_->dtype == DataType::Int(8))
      return (!transA_) && transB_ && k_ % 32 == 0;
    else if (a_->dtype == DataType::UInt(8) && b_->dtype == DataType::UInt(8))
      return (!transA_) && transB_ && k_ % 32 == 0;
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
    else
      return false;
  } else {
    return false;
  }
}

/**
 * @brief Parse and return the numeric GPU architecture from a Target's "arch"
 * attribute.
 *
 * Examines the target's "arch" string and, if it matches the pattern
 * "sm_<num>", returns <num> as an int. If the attribute is present but does not
 * match that pattern, returns 0.
 *
 * Preconditions: the target must have an "arch" attribute (this is checked via
 * ICHECK).
 *
 * @return int The parsed architecture number (e.g., 80 for "sm_80"), or 0 if
 * the arch string does not match "sm_<num>".
 */
static int GetArchInt(Target target) {
  int arch_int = 0;
234
235
  auto s = target->GetAttr<tvm::ffi::String>("arch");
  ICHECK(s.has_value());
236
237
238
239
240
241
242
243
244
245
246
  std::string arch = s.value();
  if (arch.rfind("sm_", 0) == 0) {
    arch_int = std::stoi(arch.substr(3));
  } else {
    arch_int = 0;
  }
  return arch_int;
}

Stmt GemmPyNode::Lower(const LowerArgs &T, arith::Analyzer *analyzer) const {
  auto block_size = *as_const_int(T.thread_bounds->extent);
247
  GemmInst gemm_inst = getGemmInst(block_size, T.target);
248
249

  auto [warp_m, warp_n] =
250
      policy_->computeWarpPartition(m_, n_, block_size, T.target, gemm_inst);
251
252

  if (const auto f = ffi::Function::GetGlobal("tl.gemm_py.lower")) {
253
    auto prim_func =
254
255
        Downcast<PrimFunc>((*f)(tvm::ffi::GetRef<GemmPy>(this), T.layout_map,
                                T.target, T.thread_bounds, T.thread_var));
256
    ICHECK(prim_func->attrs.defined());
257
258
259
    auto global_symbol =
        prim_func->attrs.GetAttr<tvm::ffi::String>("global_symbol");
    ICHECK(global_symbol.has_value());
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
    if (prim_func->body.as<BlockRealizeNode>()) {
      BlockRealize block_realize = Downcast<BlockRealize>(prim_func->body);
      auto block = block_realize->block;
      {
        BlockNode *n = block.CopyOnWrite();
        n->name_hint = global_symbol.value();
      }
      return BlockRealize(block_realize->iter_values, block_realize->predicate,
                          block);
    }
    // warp with block realize node
    return BlockRealize(
        /*iter_values=*/Array<PrimExpr>(),
        /*predicate=*/const_true(),
        /*block=*/
        Block(/*iter_vars=*/{}, /*reads=*/{}, /*writes=*/{},
              /*name_hint=*/global_symbol.value(), prim_func->body));
  } else {
    LOG(FATAL) << "No lower function found for gemm_py";
279
280
    return Stmt(); // This line will never be reached due to LOG(FATAL), but
                   // satisfies compiler
281
282
283
284
285
286
287
288
289
290
291
  }
}

LayoutMap GemmPyNode::InferLayout(const LayoutInferArgs &T,
                                  InferLevel level) const {
  if (completed_)
    return {};
  LayoutMap results;

  if (const auto f = ffi::Function::GetGlobal("tl.gemm_py.infer_layout")) {
    results = Downcast<LayoutMap>(
292
        (*f)(tvm::ffi::GetRef<GemmPy>(this), T.target, T.thread_bounds));
293
294
295
296
297
298
299
300
    // Bind all fragment layouts with the provided thread range
    for (auto kv : results) {
      const Buffer &buf = kv.first;
      const Layout &layout = kv.second;
      if (auto frag = layout.as<Fragment>()) {
        results.Set(buf, frag.value()->BindThreadRange(T.thread_bounds));
      }
    }
301
302
303
304
305
306
307
308
  } else {
    LOG(FATAL) << "No infer layout function found for gemm_py";
  }

  completed_ = true;
  return results;
}

309
TIR_REGISTER_TL_TILE_OP(GemmPy, gemm_py)
310
311
312
313
    .set_num_inputs(5)
    .set_attr<TCallEffectKind>("TCallEffectKind",
                               Integer(CallEffectKind::kOpaque));

314
TVM_FFI_STATIC_INIT_BLOCK() { GemmPyNode::RegisterReflection(); }
315

316
TVM_FFI_STATIC_INIT_BLOCK() {
317
318
319
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.GemmPyGemmInst",
                        [](GemmPy gemm_py, int block_size, Target target) {
320
                          return gemm_py->getGemmInst(block_size, target);
321
                        });
322
}
323

324
325
326
327
328
329
330
331
332
333
334
TVM_FFI_STATIC_INIT_BLOCK() {
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def(
      "tl.get_tcgen5_mma_meta",
      [](int M, int N, int K, DataType ab_dtype, DataType c_dtype) {
        auto [success, meta] = GetTCGEN5MMAMeta(M, N, K, ab_dtype, c_dtype);
        Array<Integer> result;
        if (success) {
          result.push_back(Integer(meta.atom_m));
          result.push_back(Integer(meta.atom_n));
          result.push_back(Integer(meta.atom_k));
335
336
          result.push_back(Integer(meta.enable_ws));
          result.push_back(Integer(meta.enable_2cta));
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
        }
        return result;
      });
  refl::GlobalDef().def(
      "tl.get_tcgen5_instr_desc",
      [](int atom_m, int atom_n, int atom_k, DataType ab_dtype,
         DataType c_dtype, bool a_is_k_major, bool b_is_k_major, int scale_in_a,
         int scale_in_b) {
        uint32_t desc = GetTCGEN5InstrDesc(atom_m, atom_n, atom_k, ab_dtype,
                                           c_dtype, a_is_k_major, b_is_k_major,
                                           scale_in_a, scale_in_b);
        return Integer(static_cast<int64_t>(desc));
      });
}

352
353
} // namespace tl
} // namespace tvm