"vscode:/vscode.git/clone" did not exist on "612a20410f9decc43e46d9fbb0f7dc92d96521a0"
gemm_sm89.h 18.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
#pragma once

#include "common.h"
#include "cuda_fp8.h"
#include <cute/algorithm/clear.hpp>
#include <cute/arch/mma_sm80.hpp>
#include <cute/atom/mma_atom.hpp>
#include <cute/atom/mma_traits.hpp>
#include <cute/underscore.hpp>

namespace cute {

template <typename A_type, typename B_type, typename C_type, int num_warp_m,
          int num_warp_n>
struct DispatchInstruction;

using _X = Underscore;

#if (defined(__CUDA_ARCH_LIST__) && (__CUDA_ARCH_LIST__ >= 890))

struct SM89_16x8x32_F32F8F8F32_E4M3_TN {
  using DRegisters = float[4];
  using ARegisters = uint32_t[4];
  using BRegisters = uint32_t[2];
  using CRegisters = float[4];

  CUTE_HOST_DEVICE static void fma(float &d0, float &d1, float &d2, float &d3,
                                   uint32_t const &a0, uint32_t const &a1,
                                   uint32_t const &a2, uint32_t const &a3,
                                   uint32_t const &b0, uint32_t const &b1,
                                   float const &c0, float const &c1,
                                   float const &c2, float const &c3) {
    asm volatile("mma.sync.aligned.m16n8k32.row.col.f32.e4m3.e4m3.f32 "
                 "{%0,  %1,  %2,  %3},"
                 "{%4,  %5,  %6,  %7},"
                 "{%8,  %9},"
                 "{%10, %11, %12, %13};\n"
                 : "=f"(d0), "=f"(d1), "=f"(d2), "=f"(d3)
                 : "r"(a0), "r"(a1), "r"(a2), "r"(a3), "r"(b0), "r"(b1),
                   "f"(c0), "f"(c1), "f"(c2), "f"(c3));
  }
};

struct SM89_16x8x32_F32F8F8F32_E5M2_TN {
  using DRegisters = float[4];
  using ARegisters = uint32_t[4];
  using BRegisters = uint32_t[2];
  using CRegisters = float[4];

  CUTE_HOST_DEVICE static void fma(float &d0, float &d1, float &d2, float &d3,
                                   uint32_t const &a0, uint32_t const &a1,
                                   uint32_t const &a2, uint32_t const &a3,
                                   uint32_t const &b0, uint32_t const &b1,
                                   float const &c0, float const &c1,
                                   float const &c2, float const &c3) {
    asm volatile("mma.sync.aligned.m16n8k32.row.col.f32.e5m2.e5m2.f32 "
                 "{%0,  %1,  %2,  %3},"
                 "{%4,  %5,  %6,  %7},"
                 "{%8,  %9},"
                 "{%10, %11, %12, %13};\n"
                 : "=f"(d0), "=f"(d1), "=f"(d2), "=f"(d3)
                 : "r"(a0), "r"(a1), "r"(a2), "r"(a3), "r"(b0), "r"(b1),
                   "f"(c0), "f"(c1), "f"(c2), "f"(c3));
  }
};

// (T32,V1) -> (M8,N8)
using SM80_8x4 = Layout<Shape<Shape<_4, _8>, _1>, Stride<Stride<_8, _1>, _0>>;
// (T32,V2) -> (M8,N8)
using SM80_8x8_Row =
    Layout<Shape<Shape<_4, _8>, _2>, Stride<Stride<_16, _1>, _8>>;
// (T32,V4) -> (M8,N16)
using SM80_8x16_Row =
    Layout<Shape<Shape<_4, _8>, _4>, Stride<Stride<_32, _1>, _8>>;
// (T32,V4) -> (M16,N8)
using SM80_16x8_Row = Layout<Shape<Shape<_4, _8>, Shape<_2, _2>>,
                             Stride<Stride<_32, _1>, Stride<_16, _8>>>;

template <> struct MMA_Traits<SM89_16x8x32_F32F8F8F32_E4M3_TN> {
  using ValTypeD = float;
  using ValTypeA = fp8_e4_t;
  using ValTypeB = fp8_e4_t;
  using ValTypeC = float;

  using Shape_MNK = Shape<_16, _8, _32>;
  using ThrID = Layout<_32>;
  using ALayout = Layout<Shape<Shape<_4, _8>, Shape<_4, _2, _2>>,
                         Stride<Stride<_64, _1>, Stride<_16, _8, _256>>>;
  using BLayout = Layout<Shape<Shape<_4, _8>, Shape<_4, _2>>,
                         Stride<Stride<_32, _1>, Stride<_8, _128>>>;
  using CLayout = SM80_16x8_Row;
};

template <> struct MMA_Traits<SM89_16x8x32_F32F8F8F32_E5M2_TN> {
  using ValTypeD = float;
  using ValTypeA = fp8_e5_t;
  using ValTypeB = fp8_e5_t;
  using ValTypeC = float;

  using Shape_MNK = Shape<_16, _8, _32>;
  using ThrID = Layout<_32>;
  using ALayout = Layout<Shape<Shape<_4, _8>, Shape<_4, _2, _2>>,
                         Stride<Stride<_64, _1>, Stride<_16, _8, _256>>>;
  using BLayout = Layout<Shape<Shape<_4, _8>, Shape<_4, _2>>,
                         Stride<Stride<_32, _1>, Stride<_8, _128>>>;
  using CLayout = SM80_16x8_Row;
};

template <int num_warp_m, int num_warp_n>
struct DispatchInstruction<fp8_e4_t, fp8_e4_t, float, num_warp_m, num_warp_n> {
  using MMA = MMA_Atom<SM89_16x8x32_F32F8F8F32_E4M3_TN>;
  using MMA_Group = Tile<_X, Int<num_warp_n * 16>, _X>;
};
template <int num_warp_m, int num_warp_n>
struct DispatchInstruction<fp8_e5_t, fp8_e5_t, float, num_warp_m, num_warp_n> {
  using MMA = MMA_Atom<SM89_16x8x32_F32F8F8F32_E5M2_TN>;
  using MMA_Group = Tile<_X, Int<num_warp_n * 16>, _X>;
};

template <int num_warp_m, int num_warp_n>
struct DispatchInstruction<half_t, half_t, half_t, num_warp_m, num_warp_n> {
  using MMA = MMA_Atom<SM80_16x8x16_F16F16F16F16_TN>;
  using MMA_Group = Tile<_X, Int<num_warp_n * 16>, _X>;
};
template <int num_warp_m, int num_warp_n>
struct DispatchInstruction<half_t, half_t, float, num_warp_m, num_warp_n> {
  using MMA = MMA_Atom<SM80_16x8x16_F32F16F16F32_TN>;
  using MMA_Group = Tile<_X, Int<num_warp_n * 16>, _X>;
};
template <int num_warp_m, int num_warp_n>
struct DispatchInstruction<bfloat16_t, bfloat16_t, float, num_warp_m,
                           num_warp_n> {
  using MMA = MMA_Atom<SM80_16x8x16_F32BF16BF16F32_TN>;
  using MMA_Group = Tile<_X, Int<num_warp_n * 16>, _X>;
};
template <int num_warp_m, int num_warp_n>
struct DispatchInstruction<tfloat32_t, tfloat32_t, float, num_warp_m,
                           num_warp_n> {
  using MMA = MMA_Atom<SM80_16x8x8_F32TF32TF32F32_TN>;
  using MMA_Group = Tile<_X, Int<num_warp_n * 16>, _X>;
};
template <int num_warp_m, int num_warp_n>
struct DispatchInstruction<int8_t, int8_t, int, num_warp_m, num_warp_n> {
  using MMA = MMA_Atom<SM80_16x8x32_S32S8S8S32_TN>;
  using MMA_Group = Tile<_X, Int<num_warp_n * 16>, _X>;
};
template <int num_warp_m, int num_warp_n>
struct DispatchInstruction<double, double, double, num_warp_m, num_warp_n> {
  using MMA = MMA_Atom<SM80_8x8x4_F64F64F64F64_TN>;
  using MMA_Group = Tile<Int<num_warp_m * 16>, Int<num_warp_n * 16>, _X>;
};
#elif (defined(__CUDA_ARCH_LIST__) && (__CUDA_ARCH_LIST__ >= 750))
template <int num_warp_m, int num_warp_n>
struct DispatchInstruction<half_t, half_t, float, num_warp_m, num_warp_n> {
  using MMA = MMA_Atom<SM75_16x8x8_F32F16F16F32_TN>;
  using MMA_Group = Tile<_X, Int<num_warp_n * 16>, _16>;
};
#endif

template <int Bits, int N, int K, bool K_inner, typename Enable = void>
struct OperandTraits {
  // Primary template, use padded layout and default copy
  static constexpr int stride = K_inner ? K : N;
  static constexpr int padded =
      stride % (256 / Bits) == 0 ? stride + 128 / Bits : stride;
  using Layout = typename std::conditional<
      K_inner, Layout<Shape<Int<N>, Int<K>>, Shape<Int<padded>, _1>>,
      Layout<Shape<Int<N>, Int<K>>, Shape<_1, Int<padded>>>>::type;
  using Copy = DefaultCopy;
};

template <int N, int K>
struct OperandTraits<16, N, K, true,
                     typename std::enable_if<K % 64 == 32>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 3, 3>{}, Layout<Shape<_8, _32>, Stride<_32, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
  using Copy = SM75_U32x4_LDSM_N;
};

template <int N, int K>
struct OperandTraits<16, N, K, true,
                     typename std::enable_if<K % 64 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<3, 3, 3>{}, Layout<Shape<_8, _64>, Stride<_64, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
  using Copy = SM75_U32x4_LDSM_N;
};

template <int N, int K>
struct OperandTraits<16, N, K, false,
                     typename std::enable_if<N % 64 == 32>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 3, 3>{}, Layout<Shape<_32, _8>, Stride<_1, _32>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{},
                                        Step<_2, _1>{}));
  using Copy = SM75_U16x8_LDSM_T;
};

template <int N, int K>
struct OperandTraits<16, N, K, false,
                     typename std::enable_if<N % 64 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<3, 3, 3>{}, Layout<Shape<_64, _8>, Stride<_1, _64>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{},
                                        Step<_2, _1>{}));
  using Copy = SM75_U16x8_LDSM_T;
};

template <int N, int K>
struct OperandTraits<32, N, K, true,
                     typename std::enable_if<K % 32 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<3, 2, 3>{}, Layout<Shape<_8, _32>, Stride<_32, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
  using Copy = SM75_U32x4_LDSM_N;
};

template <int N, int K>
struct OperandTraits<32, N, K, true,
                     typename std::enable_if<K % 32 == 16>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 2, 3>{}, Layout<Shape<_8, _16>, Stride<_16, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
  using Copy = SM75_U32x4_LDSM_N;
};

template <int N, int K>
struct OperandTraits<32, N, K, false,
                     typename std::enable_if<N % 32 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<3, 2, 3>{}, Layout<Shape<_32, _8>, Stride<_1, _32>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{},
                                        Step<_2, _1>{}));
  using Copy = UniversalCopy<tfloat32_t>;
};

template <int N, int K>
struct OperandTraits<32, N, K, false,
                     typename std::enable_if<N % 32 == 16>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 2, 3>{}, Layout<Shape<_16, _8>, Stride<_1, _16>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{},
                                        Step<_2, _1>{}));
  using Copy = UniversalCopy<tfloat32_t>;
};

template <int N, int K>
struct OperandTraits<8, N, K, true,
                     typename std::enable_if<K % 128 == 64>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 4, 3>{}, Layout<Shape<_8, _64>, Stride<_64, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
  using Copy = SM75_U32x4_LDSM_N;
};

template <int N, int K>
struct OperandTraits<8, N, K, true,
                     typename std::enable_if<K % 128 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<3, 4, 3>{}, Layout<Shape<_8, _128>, Stride<_128, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
  using Copy = SM75_U32x4_LDSM_N;
};

template <int N, int K>
struct OperandTraits<64, N, K, true,
                     typename std::enable_if<K % 16 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 0, 4>{}, Layout<Shape<_4, _16>, Stride<_16, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
  using Copy = DefaultCopy;
};

template <int N, int K>
struct OperandTraits<64, N, K, false,
                     typename std::enable_if<N % 16 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 2, 2>{}, Layout<Shape<_16, _4>, Stride<_1, _16>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{},
                                        Step<_2, _1>{}));
  using Copy = DefaultCopy;
};

template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
          bool trans_B, bool clear_accum, typename A_type_raw,
          typename B_type_raw, typename C_type_raw>
class GemmTensorOp {
public:
  using A_type =
      typename std::conditional<std::is_same<A_type_raw, float>::value,
                                tfloat32_t, A_type_raw>::type;
  using B_type =
      typename std::conditional<std::is_same<B_type_raw, float>::value,
                                tfloat32_t, A_type_raw>::type;
  using C_type = C_type_raw;
  using Instruction =
      DispatchInstruction<A_type, B_type, C_type, num_warp_m, num_warp_n>;

  using OperandATraits =
      OperandTraits<sizeof_bits<A_type>::value, M, K, !trans_A>;
  using OperandBTraits =
      OperandTraits<sizeof_bits<B_type>::value, N, K, trans_B>;
  using SmemLayoutA = typename OperandATraits::Layout;
  using SmemLayoutB = typename OperandBTraits::Layout;
  using SmemCopyA = Copy_Atom<typename OperandATraits::Copy, A_type>;
  using SmemCopyB = Copy_Atom<typename OperandBTraits::Copy, B_type>;

  using TileMma = TiledMMA<typename Instruction::MMA,
                           Layout<Shape<Int<num_warp_m>, Int<num_warp_n>, _1>>,
                           typename Instruction::MMA_Group>;

  template <class... Args>
  static CUTE_DEVICE auto remove_swizzle(Layout<Args...> const &layout) {
    return layout;
  }
  // In fp16, when layout is KxN and n_warp is 1 and N % 64 == 0
  // the original layout fail to compile, currently using this as a workaround
  template <class... Args>
  static CUTE_DEVICE auto
  remove_swizzle(ComposedLayout<Args...> const &layout) {
    if constexpr (sizeof(A_type) == 2)
      return layout.layout_b();
    else
      return layout;
  }

  static CUTE_DEVICE void body(A_type_raw *pA, B_type_raw *pB, C_type_raw *pC) {
    const int tid = threadIdx.x;
    Tensor sA = make_tensor(make_smem_ptr(reinterpret_cast<A_type *>(pA)),
                            SmemLayoutA{});
    Tensor sB = make_tensor(make_smem_ptr(reinterpret_cast<B_type *>(pB)),
                            SmemLayoutB{});
    TileMma tiled_mma;
    auto thr_mma = tiled_mma.get_thread_slice(tid);
    auto tiled_copy_A = make_tiled_copy_A(SmemCopyA{}, tiled_mma);
    auto tiled_copy_B = make_tiled_copy_B(SmemCopyB{}, tiled_mma);
    auto thr_copy_A = tiled_copy_A.get_thread_slice(tid);
    auto thr_copy_B = tiled_copy_B.get_thread_slice(tid);

    Tensor tCrA = thr_mma.partition_fragment_A(sA);
    Tensor tCrB = thr_mma.partition_fragment_B(sB);
    Tensor tCsA = thr_copy_A.partition_S(sA);
    Tensor tCsB = thr_copy_B.partition_S(sB);

    Tensor tCrA_copy_view = thr_copy_A.retile_D(tCrA);
    Tensor tCrB_copy_view = thr_copy_B.retile_D(tCrB);

    Tensor acc =
        make_tensor(make_rmem_ptr(reinterpret_cast<C_type *>(pC)),
                    partition_shape_C(tiled_mma, Shape<Int<M>, Int<N>>{}));

    if constexpr (clear_accum) {
      clear(acc);
    }
    // when layout is KxN and n_warp is 1, there seem to be a bug, use this as a
    // workaround
    auto tCrA_view = make_tensor(tCrA.data(), remove_swizzle(tCrA.layout()));
    auto tCrB_view = make_tensor(tCrB.data(), remove_swizzle(tCrB.layout()));
    CUTE_UNROLL
    for (int k = 0; k < size<2>(tCrA); ++k) {
      copy(tiled_copy_A, tCsA(_, _, k), tCrA_copy_view(_, _, k));
      copy(tiled_copy_B, tCsB(_, _, k), tCrB_copy_view(_, _, k));
      gemm(tiled_mma, tCrA_view(_, _, k), tCrB_view(_, _, k), acc);
    }
  }

  static CUTE_DEVICE void body_rs(A_type_raw *pA, B_type_raw *pB,
                                  C_type_raw *pC) {
    const int tid = threadIdx.x;
    Tensor sB = make_tensor(make_smem_ptr(reinterpret_cast<B_type *>(pB)),
                            SmemLayoutB{});
    TileMma tiled_mma;
    auto thr_mma = tiled_mma.get_thread_slice(tid);
    auto tiled_copy_B = make_tiled_copy_B(SmemCopyB{}, tiled_mma);
    auto thr_copy_B = tiled_copy_B.get_thread_slice(tid);

    Tensor tCrB = thr_mma.partition_fragment_B(sB);
    Tensor tCsB = thr_copy_B.partition_S(sB);

    Tensor tCrB_copy_view = thr_copy_B.retile_D(tCrB);

    Tensor acc =
        make_tensor(make_rmem_ptr(reinterpret_cast<C_type *>(pC)),
                    partition_shape_C(tiled_mma, Shape<Int<M>, Int<N>>{}));
    Tensor tCrA =
        make_tensor(make_rmem_ptr(reinterpret_cast<A_type *>(pA)),
                    partition_shape_A(tiled_mma, Shape<Int<M>, Int<K>>{}));

    if constexpr (clear_accum) {
      clear(acc);
    }
    auto tCrB_view = make_tensor(tCrB.data(), remove_swizzle(tCrB.layout()));
    copy(tiled_copy_B, tCsB(_, _, 0), tCrB_copy_view(_, _, 0));
    CUTE_UNROLL
    for (int k = 0; k < size<2>(tCrA); ++k) {
      if (k < size<2>(tCrA) - 1) {
        copy(tiled_copy_B, tCsB(_, _, k + 1), tCrB_copy_view(_, _, k + 1));
      }
      gemm(tiled_mma, tCrA(_, _, k), tCrB_view(_, _, k), acc);
    }
  }

  static CUTE_DEVICE void body_sr(A_type_raw *pA, B_type_raw *pB,
                                  C_type_raw *pC) {
    const int tid = threadIdx.x;
    Tensor sA = make_tensor(make_smem_ptr(reinterpret_cast<A_type *>(pA)),
                            SmemLayoutA{});
    TileMma tiled_mma;
    auto thr_mma = tiled_mma.get_thread_slice(tid);
    auto tiled_copy_A = make_tiled_copy_A(SmemCopyA{}, tiled_mma);
    auto thr_copy_A = tiled_copy_A.get_thread_slice(tid);

    Tensor tCrA = thr_mma.partition_fragment_A(sA);
    Tensor tCsA = thr_copy_A.partition_S(sA);

    Tensor tCrA_copy_view = thr_copy_A.retile_D(tCrA);

    Tensor acc =
        make_tensor(make_rmem_ptr(reinterpret_cast<C_type *>(pC)),
                    partition_shape_C(tiled_mma, Shape<Int<M>, Int<N>>{}));
    Tensor tCrB =
        make_tensor(make_rmem_ptr(reinterpret_cast<B_type *>(pB)),
                    partition_shape_B(tiled_mma, Shape<Int<N>, Int<K>>{}));

    if constexpr (clear_accum) {
      clear(acc);
    }
    auto tCrA_view = make_tensor(tCrA.data(), remove_swizzle(tCrA.layout()));
    copy(tiled_copy_A, tCsA(_, _, 0), tCrA_copy_view(_, _, 0));
    CUTE_UNROLL
    for (int k = 0; k < size<2>(tCrA); ++k) {
      if (k < size<2>(tCrA) - 1) {
        copy(tiled_copy_A, tCsA(_, _, k + 1), tCrA_copy_view(_, _, k + 1));
      }
      gemm(tiled_mma, tCrA_view(_, _, k), tCrB(_, _, k), acc);
    }
  }
};

} // namespace cute

namespace tl {

template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
          bool trans_B, bool clear_accum, typename A_type, typename B_type,
          typename C_type>
CUTLASS_DEVICE void gemm_ss(A_type *pA, B_type *pB, C_type *accum) {
  using MMA = cute::GemmTensorOp<M, N, K, num_warp_m, num_warp_n, trans_A,
                                 trans_B, clear_accum, A_type, B_type, C_type>;
  MMA::body(pA, pB, accum);
}

template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
          bool trans_B, bool clear_accum, typename A_type, typename B_type,
          typename C_type>
CUTLASS_DEVICE void gemm_rs(A_type *pA, B_type *pB, C_type *accum) {
  using MMA = cute::GemmTensorOp<M, N, K, num_warp_m, num_warp_n, trans_A,
                                 trans_B, clear_accum, A_type, B_type, C_type>;
  MMA::body_rs(pA, pB, accum);
}

template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
          bool trans_B, bool clear_accum, typename A_type, typename B_type,
          typename C_type>
CUTLASS_DEVICE void gemm_sr(A_type *pA, B_type *pB, C_type *accum) {
  using MMA = cute::GemmTensorOp<M, N, K, num_warp_m, num_warp_n, trans_A,
                                 trans_B, clear_accum, A_type, B_type, C_type>;
  MMA::body_sr(pA, pB, accum);
}

} // namespace tl