thread_partial_sync.cc 11.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

/*!
 * \file thread_storage_sync.cc
 */
#include <tvm/runtime/registry.h>
#include <tvm/tir/analysis.h>
#include <tvm/tir/builtin.h>
#include <tvm/tir/expr.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>

#include <unordered_map>
#include <unordered_set>

#include "../op/builtin.h"
18
#include "./storage_access.h"
19
20
21
22
23
24
25
26
#include "runtime/thread_storage_scope.h"
#include "tir/transforms/ir_utils.h"

namespace tvm {
namespace tl {

using namespace tir;

27
class TileLangThreadPartialSyncPlanner : public TileLangStorageAccessVisitor {
28
public:
29
  explicit TileLangThreadPartialSyncPlanner(StorageScope sync_scope)
30
      : sync_scope_(sync_scope) {}
31
32

  // The syncs inserted before each statement
33
34
  std::unordered_set<const Object *> syncs_inserted_;
  std::unordered_map<const Object *, int> partial_syncs_inserted_;
35

36
37
protected:
  bool Enabled(const VarNode *buf, const StorageScope &scope) const final {
38
39
40
    return in_device_env() && scope == sync_scope_;
  }
  // Plan the sync
41
42
  std::vector<AccessEntry> Summarize(std::vector<StmtEntry> seq,
                                     const ForNode *loop) final {
43
44
45
    // Redirect all "shared.dyn" buffer access to the same buffer var
    // so that the accesses can be planned together.
    Var shared_dyn_buf;
46
47
48
49
    for (StmtEntry &entry : seq) {
      for (AccessEntry &access : entry.access) {
        if (access.scope.rank == StorageRank::kShared &&
            access.scope.tag == ".dyn" && access.buffer.defined()) {
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
          if (!shared_dyn_buf.defined()) {
            shared_dyn_buf = access.buffer;
          } else {
            access.buffer = shared_dyn_buf;
          }
        }
      }
    }

    // Unsynced reads and writes
    std::vector<AccessEntry> reads;
    std::vector<AccessEntry> writes;
    // if it is a loop, rotate two times to consider effect of loop.
    // simulation based approach to find dependencies
    for (size_t i = 0; i < seq.size(); ++i) {
65
      const StmtEntry &s = seq[i];
66
67
68
69
70
71
72
      // check if sync before statement is needed.
      bool sync_before_stmt = (syncs_inserted_.count(s.stmt) != 0);
      // Apply the syncs added already.
      if (sync_before_stmt) {
        reads.clear();
        writes.clear();
      }
73
      for (const AccessEntry &acc : s.access) {
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
        if (acc.type == kRead) {
          if (FindConflict(writes, acc, false)) {
            sync_before_stmt = true;
            break;
          }
        } else if (acc.type == kWrite) {
          if (FindConflict(reads, acc, false)) {
            sync_before_stmt = true;
            break;
          }
        } else if (acc.type == kSync) {
          reads.clear();
          writes.clear();
        }
      }
      // If sync is inserted. remove the irrelevant things.
      if (sync_before_stmt) {
        reads.clear();
        writes.clear();
      }
      // Add the read/write of current statement
95
      for (const AccessEntry &acc : s.access) {
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
        if (acc.type == kRead) {
          reads.push_back(acc);
        } else if (acc.type == kWrite) {
          writes.push_back(acc);
        } else if (acc.type == kSync) {
          reads.clear();
          writes.clear();
        }
      }
      if (sync_before_stmt) {
        insert_syncs(s.stmt);
      }
    }
    if (loop != nullptr) {
      for (size_t i = 0; i < seq.size(); ++i) {
111
112
113
114
115
        const StmtEntry &s = seq[i];
        if (syncs_inserted_.count(s.stmt) != 0)
          break;
        if (reads.empty() && writes.empty())
          break;
116
        bool sync_before_stmt = false;
117
        for (const AccessEntry &acc : s.access) {
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
          if (acc.type == kRead) {
            if (FindConflict(writes, acc, true)) {
              sync_before_stmt = true;
              break;
            }
          } else if (acc.type == kWrite) {
            if (FindConflict(reads, acc, true)) {
              sync_before_stmt = true;
              break;
            }
          } else if (acc.type == kSync) {
            reads.clear();
            writes.clear();
          }
        }
        if (sync_before_stmt) {
          insert_syncs(s.stmt);
          break;
        }
      }
    }
    // return the exposed entries, remove unnecessary ones.
    int sync_count = 0;
    // head are before first sync, tail are after last sync
    std::vector<AccessEntry> head, tail;
    AccessEntry esync;
    esync.threads = this->env_threads();
    esync.type = kSync;
    esync.scope = sync_scope_;

148
    for (const StmtEntry &s : seq) {
149
150
151
152
153
154
155
156
      if (syncs_inserted_.count(s.stmt)) {
        if (sync_count != 0) {
          tail.clear();
        } else {
          head.push_back(esync);
        }
        ++sync_count;
      }
157
      for (const AccessEntry &acc : s.access) {
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
        if (acc.type == kSync) {
          if (sync_count != 0) {
            tail.clear();
          } else {
            head.push_back(esync);
          }
          ++sync_count;
        } else {
          if (sync_count != 0) {
            tail.push_back(acc);
          } else {
            head.push_back(acc);
          }
        }
      }
    }
    head.insert(head.end(), tail.begin(), tail.end());
    if (loop != nullptr) {
      // clear double buffer flag after a loop is finished.
177
      for (AccessEntry &e : head) {
178
179
180
181
182
183
        e.double_buffer_write = false;
      }
    }
    return head;
  }

184
private:
185
  // find conflicting entry in vec.
186
187
188
  bool FindConflict(const std::vector<AccessEntry> &prev,
                    const AccessEntry &curr, bool loop_carry) {
    for (const AccessEntry &x : prev) {
189
190
191
192
193
194
195
      if (FindConflict(x, curr, loop_carry)) {
        return true;
      }
    }
    return false;
  }

196
197
  bool FindConflict(const AccessEntry &prev, const AccessEntry &curr,
                    bool loop_carry) {
198
199
200
201
202
203
204
205
206
207
208
209
    // Access to different buffers does not conflict.
    if (!prev.buffer.same_as(curr.buffer)) {
      return false;
    }

    // Assumes no race between threads
    // Same index value means no conflicts
    // TODO(tqchen) more standard set based testing.
    bool has_same_index = true;
    // Even if access has the same index, those indices need to
    // depend on the innermost thread id to avoid race condition
    bool depends_on_thread_index = true;
210
    const VarNode *thread_index_var = nullptr;
211
212
213
214
215
    if (!curr.threads.empty()) {
      thread_index_var = curr.threads.back()->var.get();
    }

    for (size_t i = 0; i < prev.touched.size(); i++) {
216
217
      const auto &prev_intset = prev.touched[i];
      const auto &curr_intset = curr.touched[i];
218
219
220
221
222
223

      if (prev_intset.IsSinglePoint() && curr_intset.IsSinglePoint()) {
        PrimExpr prev_index = prev_intset.PointValue();
        PrimExpr curr_index = curr_intset.PointValue();
        has_same_index = ExprDeepEqual()(prev_index, curr_index);
        if (thread_index_var != nullptr) {
224
          auto f_uses_thread_index = [=](const tvm::tir::VarNode *parameter) {
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
            return parameter == thread_index_var;
          };
          depends_on_thread_index = depends_on_thread_index &&
                                    UsesVar(curr_index, f_uses_thread_index) &&
                                    UsesVar(prev_index, f_uses_thread_index);
        }
      } else {
        has_same_index = false;
      }

      if (!(has_same_index && depends_on_thread_index)) {
        break;
      }
    }
    if (has_same_index && depends_on_thread_index) {
      return false;
    }

    // If this is a read into a double buffer that was previously
    // swapped out, then it doesn't conflict.
    if (prev.double_buffer_write && curr.type == kRead && !loop_carry) {
      return false;
    }

    // If nothing else allows sharing the same buffer, then they are
    // in conflict.
    return true;
  }

254
  void VisitStmt_(const AttrStmtNode *op) final {
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
    if (op->attr_key == "kWarpSpecializationScope") {
      IfThenElse body = Downcast<IfThenElse>(op->body);
      auto partitions = Downcast<Array<IntImm>>(op->node);
      ICHECK(partitions.size() == 2);

      scope_.push_back(std::vector<StmtEntry>());
      num_partial_threads_ = partitions[0];
      this->VisitStmt(body->then_case);
      StmtEntry s;
      s.stmt = op;
      s.access = Summarize(std::move(scope_.back()), nullptr);
      scope_.pop_back();

      num_partial_threads_ = partitions[1];
      scope_.push_back(std::vector<StmtEntry>());
      VisitStmt(body->else_case.value());
      auto v = Summarize(std::move(scope_.back()), nullptr);
      scope_.pop_back();
      s.access.insert(s.access.end(), v.begin(), v.end());

      num_partial_threads_ = NullOpt;
    } else {
277
      TileLangStorageAccessVisitor::VisitStmt_(op);
278
279
280
    }
  }

281
282
283
284
285
  void insert_syncs(const Object *obj) {
    // ICHECK_EQ(condition_counter(), 0) << "Cannot insert syncs inside
    // condition";
    if (syncs_inserted_.count(obj))
      return;
286
287
    if (num_partial_threads_.defined()) {
      syncs_inserted_.insert(obj);
288
289
      partial_syncs_inserted_[obj] =
          static_cast<int>(num_partial_threads_.value()->value);
290
291
292
293
294
    } else {
      syncs_inserted_.insert(obj);
    }
  }

295
private:
296
297
298
299
300
  Optional<IntImm> num_partial_threads_;
  // synchronization scope
  StorageScope sync_scope_;
};

301
302
303
304
305
// There are cases where necessary syncthreads is not inserted by
// ThreadPartialSyncInserter. For example, syncthreads is needed after
// async_wait_queue in the second loop below, but since
// ThreadPartialSyncInserter is not aware of the asynchronous semantics, it
// cannot tell that the syncthreads is needed there.
306
307
308
309
310
311
312
313
314
315
316
317
318
319
//
// // Pipeline prologue
// for i in range(125):
//    async_commit_queue(0):
//       async_scope:
//          shared[(i + 3) % 4] = ...
// ...
//
// // Pipeline Epilogue
// for i in range(3):
//    async_wait_queue(0, 2 - i):
//       local[...] = shared[(i + 125) % 4]

class ThreadPartialSyncInserter : public StmtExprMutator {
320
321
322
323
public:
  ThreadPartialSyncInserter(
      StorageScope sync_scope, const std::unordered_set<const Object *> &syncs,
      std::unordered_map<const Object *, int> partial_syncs)
324
325
      : sync_scope_(sync_scope), syncs_(syncs), partial_syncs_(partial_syncs) {}

326
327
328
  Stmt VisitStmt(const Stmt &stmt) final {
    if (syncs_.size() == 0)
      return stmt;
329
330
331
332
333
    if (syncs_.count(stmt.get())) {
      Stmt barrier;
      if (partial_syncs_.count(stmt.get())) {
        auto iter = partial_syncs_.find(stmt.get());
        ICHECK(sync_scope_.rank == StorageRank::kShared);
334
335
        barrier = Evaluate(Call(DataType::Int(32), tl::SyncThreadsPartialOp(),
                                {iter->second}));
336
337
338
339
340
341
342
343
344
345
346
347
      } else {
        return StmtExprMutator::VisitStmt(stmt);
      }
      // Mutate after query, to avoid stmt change.
      auto ret = StmtExprMutator::VisitStmt(stmt);
      ret = SeqStmt({barrier, ret});
      return ret;
    } else {
      return StmtExprMutator::VisitStmt(stmt);
    }
  }

348
private:
349
350
  // data structure.
  StorageScope sync_scope_;
351
352
  const std::unordered_set<const Object *> &syncs_;
  const std::unordered_map<const Object *, int> &partial_syncs_;
353
354
};

355
Stmt TileLangThreadPartialSync(Stmt stmt, std::string storage_scope) {
356
  StorageScope sync_scope = StorageScope::Create(storage_scope);
357
  TileLangThreadPartialSyncPlanner planner(sync_scope);
358
359
  planner(stmt);
  return ThreadPartialSyncInserter(sync_scope, planner.syncs_inserted_,
360
361
                                   planner.partial_syncs_inserted_)(
      std::move(stmt));
362
363
364
365
366
367
}

using namespace tir::transform;

namespace transform {

368
Pass TileLangThreadPartialSync(String storage_scope) {
369
  auto pass_func = [storage_scope](PrimFunc f, IRModule m, PassContext ctx) {
370
    auto *n = f.CopyOnWrite();
371
    n->body = tl::TileLangThreadPartialSync(std::move(n->body), storage_scope);
372
373
374
375
376
    return f;
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.ThreadPartialSync", {});
}

377
TVM_REGISTER_GLOBAL("tl.transform.ThreadPartialSync")
378
    .set_body_typed(TileLangThreadPartialSync);
379

380
381
382
} // namespace transform
} // namespace tl
} // namespace tvm