example_gqa_decode.py 22.3 KB
Newer Older
1
2
3
4
5
6
7
8
import torch
import torch.nn.functional as F
import tilelang
from tilelang.autotuner import *
import tilelang.language as T
from einops import rearrange, einsum
import argparse
import itertools
9
10
from functools import lru_cache
from typing import Tuple, Dict
11

12
torch.random.manual_seed(0)
13

14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
def get_configs():
    block_N = [64, 128]
    block_H = [64]
    num_split = [2, 4, 8]
    num_stages = [1, 2, 3]
    threads = [128]
    _configs = list(itertools.product(block_N, block_H, num_split, num_stages, threads))

    configs = [{
        'block_N': c[0],
        'block_H': c[1],
        'num_split': c[2],
        'num_stages': c[3],
        'threads': c[4]
    } for c in _configs]
    return configs


33
34
35
36
37
38
39
40
41
42
@lru_cache(maxsize=1)
def get_heuristic_config() -> Tuple[Dict, int]:
    # Get CUDA device properties
    if not torch.cuda.is_available():
        raise RuntimeError("CUDA is not available")
    device = torch.cuda.current_device()
    sm_major, sm_minor = torch.cuda.get_device_capability(device)
    sm_version = sm_major * 10 + sm_minor
    print(f"CUDA device capability: {sm_version}")
    if sm_version == 89:
43
        cfg = dict(block_N=128, block_H=64, num_split=1, num_stages=0, threads=128)
44
    else:
45
        cfg = dict(block_N=128, block_H=64, num_split=1, num_stages=2, threads=128)
46
47
48
    return cfg, sm_version


49
# TODO(lei): fix warp specialized and tma lower pass
50
def get_pass_configs():
51
52
53
54
    return {
        tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True,
        tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True
    }
55
56


57
58
59
60
@autotune(configs=get_configs(), warmup=10, rep=10)
@tilelang.jit(out_idx=[6], pass_configs=get_pass_configs())
def flashattn(batch, heads, groups, seqlen_kv, dim, block_N, block_H, num_split, num_stages,
              threads):
61
62
63
64
65
66
67
68
69
    scale = (1.0 / dim)**0.5 * 1.44269504  # log2(e)
    shape_q = [batch, heads, dim]
    shape_k = [batch, seqlen_kv, groups, dim]
    shape_v = [batch, seqlen_kv, groups, dim]
    shape_o = [batch, heads, dim]
    dtype = "float16"
    accum_dtype = "float"
    kv_group_num = heads // groups

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    part_shape = [batch, heads, num_split, dim]
    valid_block_H = min(block_H, kv_group_num)
    valid_block_N = min(block_N, seqlen_kv // num_split)

    @T.macro
    def flash_attn(
            Q: T.Tensor(shape_q, dtype),
            K: T.Tensor(shape_k, dtype),
            V: T.Tensor(shape_v, dtype),
            mask: T.Tensor([batch, seqlen_kv, groups], "uint8"),
            Output: T.Tensor([batch, heads, dim], dtype),
    ):
        with T.Kernel(batch, heads // valid_block_H, num_split, threads=threads) as (bx, by, bz):
            Q_shared = T.alloc_shared([block_H, dim], dtype)
            K_shared = T.alloc_shared([block_N, dim], dtype)
            V_shared = T.alloc_shared([block_N, dim], dtype)
            O_shared = T.alloc_shared([valid_block_H, dim], dtype)
            acc_s = T.alloc_fragment([block_H, block_N], accum_dtype)
            acc_s_cast = T.alloc_fragment([block_H, block_N], dtype)
            mask_local = T.alloc_fragment([block_N], "uint8")
            acc_o = T.alloc_fragment([block_H, dim], accum_dtype)
            scores_max = T.alloc_fragment([block_H], accum_dtype)
            scores_max_prev = T.alloc_fragment([block_H], accum_dtype)
            scores_scale = T.alloc_fragment([block_H], accum_dtype)
            scores_sum = T.alloc_fragment([block_H], accum_dtype)
            logsum = T.alloc_fragment([block_H], accum_dtype)

            bid = bx
            hid = by
            cur_kv_head = hid // (kv_group_num // valid_block_H)

            T.copy(Q[bid, hid * valid_block_H:hid * valid_block_H + block_H, :], Q_shared)
            T.fill(acc_o, 0)
            T.fill(logsum, 0)
            T.fill(scores_max, -T.infinity(accum_dtype))

            loop_range = T.ceildiv((seqlen_kv // num_split), block_N)
            for k in T.Pipelined(loop_range, num_stages=num_stages):
                T.copy(K[bid, k * block_N:(k + 1) * block_N, cur_kv_head, :], K_shared)
                T.copy(mask[bid, k * block_N:(k + 1) * block_N, cur_kv_head], mask_local)
                T.clear(acc_s)
                T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
                for i, j in T.Parallel(block_H, block_N):
                    acc_s[i, j] = T.if_then_else(mask_local[j] != 0, acc_s[i, j],
                                                 -T.infinity(accum_dtype))
                T.copy(scores_max, scores_max_prev)
116
                T.fill(scores_max, -T.infinity(accum_dtype))
117
                T.reduce_max(acc_s, scores_max, dim=1, clear=False)
118
                for i in T.Parallel(block_H):
119
120
121
122
123
124
125
                    scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
                for i, j in T.Parallel(block_H, block_N):
                    acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
                T.reduce_sum(acc_s, scores_sum, dim=1)
                for i in T.Parallel(block_H):
                    logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
                T.copy(acc_s, acc_s_cast)
126
                for i, j in T.Parallel(block_H, dim):
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
                    acc_o[i, j] *= scores_scale[i]
                T.copy(V[bid, k * block_N:(k + 1) * block_N, cur_kv_head, :], V_shared)
                T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)
            for i, j in T.Parallel(block_H, dim):
                acc_o[i, j] /= logsum[i]
            for i in T.Parallel(block_H):
                logsum[i] = T.log2(logsum[i]) + scores_max[i] * scale
            T.copy(acc_o[:valid_block_H, :], O_shared)
            T.copy(O_shared, Output[bid, hid * valid_block_H:(hid + 1) * valid_block_H, :])

    @T.macro
    def flash_attn_split(
            Q: T.Tensor(shape_q, dtype),
            K: T.Tensor(shape_k, dtype),
            V: T.Tensor(shape_v, dtype),
            mask: T.Tensor([batch, seqlen_kv, groups], "uint8"),
            glse: T.Tensor([batch, heads, num_split], dtype),
            Output_partial: T.Tensor(part_shape, dtype),
    ):
        with T.Kernel(batch, heads // valid_block_H, num_split, threads=threads) as (bx, by, bz):
            Q_shared = T.alloc_shared([block_H, dim], dtype)
            K_shared = T.alloc_shared([block_N, dim], dtype)
            V_shared = T.alloc_shared([block_N, dim], dtype)
            O_shared = T.alloc_shared([valid_block_H, dim], dtype)
            acc_s = T.alloc_fragment([block_H, block_N], accum_dtype)
            acc_s_cast = T.alloc_fragment([block_H, block_N], dtype)
            mask_local = T.alloc_fragment([block_N], "uint8")
            acc_o = T.alloc_fragment([block_H, dim], accum_dtype)
            scores_max = T.alloc_fragment([block_H], accum_dtype)
            scores_max_prev = T.alloc_fragment([block_H], accum_dtype)
            scores_scale = T.alloc_fragment([block_H], accum_dtype)
            scores_sum = T.alloc_fragment([block_H], accum_dtype)
            logsum = T.alloc_fragment([block_H], accum_dtype)

            bid = bx
            hid = by
            sid = bz
            cur_kv_head = hid // (kv_group_num // valid_block_H)

            T.copy(Q[bid, hid * valid_block_H:hid * valid_block_H + block_H, :], Q_shared)
            T.fill(acc_o, 0)
            T.fill(logsum, 0)
            T.fill(scores_max, -T.infinity(accum_dtype))

            loop_range = T.ceildiv((seqlen_kv // num_split), block_N)
172

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
            for k in T.Pipelined(loop_range, num_stages=num_stages):
                T.copy(
                    K[bid, (seqlen_kv // num_split) * sid +
                      k * valid_block_N:(seqlen_kv // num_split) * sid + (k + 1) * valid_block_N,
                      cur_kv_head, :], K_shared)
                T.copy(
                    mask[bid, (seqlen_kv // num_split) * sid +
                         k * valid_block_N:(seqlen_kv // num_split) * sid + (k + 1) * valid_block_N,
                         cur_kv_head], mask_local)
                T.clear(acc_s)
                T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
                for i, j in T.Parallel(block_H, block_N):
                    acc_s[i,
                          j] = T.if_then_else((mask_local[j] != 0) & (j < seqlen_kv // num_split),
                                              acc_s[i, j], -T.infinity(accum_dtype))
                T.copy(scores_max, scores_max_prev)
                T.fill(scores_max, -T.infinity(accum_dtype))
                T.reduce_max(acc_s, scores_max, dim=1, clear=False)
191
                for i in T.Parallel(block_H):
192
193
194
195
                    scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
                for i, j in T.Parallel(block_H, block_N):
                    acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
                T.reduce_sum(acc_s, scores_sum, dim=1)
196
                for i in T.Parallel(block_H):
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
                    logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
                T.copy(acc_s, acc_s_cast)
                for i, j in T.Parallel(block_H, dim):
                    acc_o[i, j] *= scores_scale[i]
                T.copy(
                    V[bid, (seqlen_kv // num_split) * sid +
                      k * valid_block_N:(seqlen_kv // num_split) * sid + (k + 1) * valid_block_N,
                      cur_kv_head, :], V_shared)
                T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)
            for i, j in T.Parallel(block_H, dim):
                acc_o[i, j] /= logsum[i]
            for i in T.Parallel(block_H):
                logsum[i] = T.log2(logsum[i]) + scores_max[i] * scale

            for i in T.Parallel(block_H):
                if i < valid_block_H:
                    glse[bid, hid * valid_block_H + i, sid] = logsum[i]
            T.copy(acc_o[:valid_block_H, :], O_shared)
            T.copy(O_shared, Output_partial[bid, hid * valid_block_H:(hid + 1) * valid_block_H,
                                            sid, :])

    @T.macro
    def combine(
            glse: T.Tensor([batch, heads, num_split], dtype),
            Output_partial: T.Tensor(part_shape, dtype),
            Output: T.Tensor(shape_o, dtype),
    ):
        with T.Kernel(heads, batch, threads=128) as (by, bz):
            po_local = T.alloc_fragment([dim], dtype)
            o_accum_local = T.alloc_fragment([dim], accum_dtype)
            lse_local = T.alloc_fragment([num_split, 128], dtype)
            lse_local_split = T.alloc_local([1], accum_dtype)
            lse_logsum_local = T.alloc_local([1], accum_dtype)
            lse_max_local = T.alloc_fragment([128], accum_dtype)
            scale_local = T.alloc_local([1], accum_dtype)

            T.annotate_layout({
                lse_logsum_local: T.Fragment(lse_logsum_local.shape, forward_thread_fn=lambda i: i),
                lse_max_local: T.Fragment(lse_max_local.shape, forward_thread_fn=lambda i: i),
                # lse_local: (local_id, thread_id)
                lse_local: T.Fragment(lse_local.shape, forward_fn=lambda i, j: (j, i)),
            })

            T.clear(lse_logsum_local)
            T.clear(o_accum_local)
            for k, j in T.Parallel(num_split, 128):
                lse_local[k, j] = glse[bz, by, k]
            T.reduce_max(lse_local, lse_max_local, dim=0, clear=True)
            for k in T.Pipelined(num_split, num_stages=1):
                lse_local_split[0] = glse[bz, by, k]
                lse_logsum_local[0] += T.exp2(lse_local_split[0] - lse_max_local[0])
            lse_logsum_local[0] = T.log2(lse_logsum_local[0]) + lse_max_local[0]
            for k in T.serial(num_split):
                for i in T.Parallel(dim):
                    po_local[i] = Output_partial[bz, by, k, i]
                lse_local_split[0] = glse[bz, by, k]
                scale_local[0] = T.exp2(lse_local_split[0] - lse_logsum_local[0])
254
                for i in T.Parallel(dim):
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
                    o_accum_local[i] += po_local[i] * scale_local[0]
            for i in T.Parallel(dim):
                Output[bz, by, i] = o_accum_local[i]

    @T.prim_func
    def flashattn_gqa_decode_split(
            Q: T.Tensor(shape_q, dtype),
            K: T.Tensor(shape_k, dtype),
            V: T.Tensor(shape_v, dtype),
            mask: T.Tensor([batch, seqlen_kv, groups], "uint8"),
            glse: T.Tensor([batch, heads, num_split], dtype),
            Output_partial: T.Tensor(part_shape, dtype),
            Output: T.Tensor(shape_o, dtype),
    ):
        flash_attn_split(Q, K, V, mask, glse, Output_partial)
        combine(glse, Output_partial, Output)

    @T.prim_func
    def flashattn_gqa_decode_no_split(
            Q: T.Tensor(shape_q, dtype),
            K: T.Tensor(shape_k, dtype),
            V: T.Tensor(shape_v, dtype),
            mask: T.Tensor([batch, seqlen_kv, groups], "uint8"),
            glse: T.Tensor([batch, heads, num_split], dtype),
            Output_partial: T.Tensor(part_shape, dtype),
            Output: T.Tensor(shape_o, dtype),
    ):
        flash_attn(Q, K, V, mask, Output)

    if num_split > 1:
        return flashattn_gqa_decode_split
286
    else:
287
        return flashattn_gqa_decode_no_split
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327


def ref_program(query, key, value, mask, glse, Output_partial):
    #     """
    #     Inputs:
    #     - query (Tensor): [batch, heads, dim]
    #     - key (Tensor): [batch, seqlen_kv, groups, dim]
    #     - value (Tensor): [batch, seqlen_kv, groups, dim]
    #     - mask (Tensor): [batch, seqlen_kv, groups]
    #     Outputs:
    #     - output (Tensor): [batch, heads, dim]
    #     """
    dim = query.shape[-1]
    num_head_groups = query.shape[1] // key.shape[2]
    scale = dim**0.5
    key = rearrange(key, 'b n h d -> b h n d')  # [batch_size, groups, seqlen_kv, dim]
    value = rearrange(value, 'b n h d -> b h n d')  # [batch_size, groups, seqlen_kv, dim]

    query = rearrange(
        query, 'b (h g) d -> b g h d',
        g=num_head_groups)  # [batch_size, num_head_groups, groups, dim]

    scores = einsum(
        query, key,
        'b g h d, b h s d -> b g h s')  # [batch_size, num_head_groups, groups, seqlen_kv]
    if mask is not None:
        mask = rearrange(mask, 'b s h -> b h s')
        mask = mask.unsqueeze(1)
        scores = scores.masked_fill(mask == 0, float('-inf'))

    attention = F.softmax(
        scores / scale, dim=-1)  # [batch_size, num_head_groups, groups, seqlen_kv]

    out = einsum(attention, value,
                 'b g h s, b h s d -> b g h d')  # [batch_size, num_head_groups, groups, dim]
    out = rearrange(out, 'b g h d -> b (h g) d')  # [batch_size, heads, dim]
    return out


def flash_split_ref(Q, K, V, mask):
328
    num_split = 16
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
    batch = Q.size(0)
    nheads = Q.size(1)
    groups = K.size(2)
    dim = Q.size(-1)
    block_N = 32
    seqlen_kv = K.size(1)
    num_head_groups = nheads // groups

    scale = (1.0 / dim)**0.5 * 1.44269504  # log2(e)
    acc_s = torch.empty((batch, num_head_groups, groups, block_N), device="cuda", dtype=torch.float)
    acc_s_cast = torch.empty((batch, num_head_groups, groups, block_N),
                             device="cuda",
                             dtype=torch.float16)
    acc_o = torch.empty((batch, num_head_groups, groups, dim), device="cuda", dtype=torch.float)
    scores_max = torch.empty((batch, num_head_groups, groups), device="cuda", dtype=torch.float)
    scores_max_prev = torch.empty((batch, num_head_groups, groups),
                                  device="cuda",
                                  dtype=torch.float)
    scores_scale = torch.empty((batch, num_head_groups, groups), device="cuda", dtype=torch.float)
    scores_sum = torch.empty((batch, num_head_groups, groups), device="cuda", dtype=torch.float)
    logsum = torch.empty((batch, num_head_groups, groups), device="cuda", dtype=torch.float)
    gacc_o = torch.empty((num_split, batch, nheads, dim), device="cuda", dtype=torch.float)
    glogsum = torch.empty((num_split, batch, nheads), device="cuda", dtype=torch.float)

    Q_ = Q * scale
    Q_ = rearrange(Q_, 'b (h g) d -> b g h d', g=num_head_groups)

    for ks in range(num_split):
        acc_o.fill_(0)
        logsum.fill_(0)
        scores_max.fill_(float('-inf'))
        scores_max_prev.fill_(float('-inf'))
        for i in range(int((seqlen_kv // num_split) / block_N)):
            acc_s.fill_(0)
            acc_s = torch.einsum('bghd,bkhd->bghk', Q_,
                                 K[:, (seqlen_kv // num_split) * ks +
                                   i * block_N:(seqlen_kv // num_split) * ks +
                                   (i + 1) * block_N, :, :])  # [batch, nheads, block_N]
            if mask is not None:
                mask_local = mask[:, (seqlen_kv // num_split) * ks +
                                  i * block_N:(seqlen_kv // num_split) * ks + (i + 1) * block_N, :]
                mask_local = rearrange(mask_local, 'b s h -> b h s')
                mask_local = mask_local.unsqueeze(1)
                acc_s = acc_s.masked_fill(mask_local == 0, float('-inf'))
            scores_max_prev = scores_max
            scores_max = acc_s.max(dim=-1, keepdim=False).values  # [batch, nheads]
            scores_scale = torch.exp2(scores_max_prev - scores_max)  # [batch, nheads]
            acc_o *= scores_scale[:, :, :, None]
            acc_s = torch.exp2(acc_s - scores_max[:, :, :, None])
            acc_s_cast = acc_s.to(torch.float16)  # [batch, nheads, block_N]
            acc_o += torch.einsum(
                'bghk,bkhd->bghd', acc_s_cast,
                V[:, (seqlen_kv // num_split) * ks + i * block_N:(seqlen_kv // num_split) * ks +
                  (i + 1) * block_N, :, :])
            scores_sum = acc_s.sum(dim=-1, keepdim=False)
            logsum = logsum * scores_scale + scores_sum
        acc_o_out = rearrange(acc_o, 'b g h d->b (h g) d')
        logsum_out = rearrange(logsum, 'b g h->b (h g)')
        acc_o_out /= logsum_out[:, :, None]
        logsum_out = torch.log2(logsum_out) + rearrange(scores_max, 'b g h->b (h g)')
        gacc_o[ks, :, :, :] = acc_o_out
        glogsum[ks, :, :] = logsum_out

    return glogsum.to(torch.float16).permute(1, 2, 0), gacc_o.to(torch.float16).permute(1, 2, 0, 3)


def reduce_ref(Q, K, V, mask, glse, Output_partial):
396
    num_split = 16
397
398
399
400
401
402
403
404
405
406
407
408
409
410
    o = torch.empty_like(Output_partial[:, :, 0, :]).fill_(0)
    lse_logsum = torch.empty_like(glse[:, :, 0]).fill_(0)  # [batch, heads]
    lse_max = glse.max(dim=2, keepdim=False).values
    for ks in range(num_split):
        lse = glse[:, :, ks]
        lse_logsum += torch.exp2(lse - lse_max)
    lse_logsum = torch.log2(lse_logsum) + lse_max
    for ks in range(num_split):
        lse = glse[:, :, ks]
        scale = torch.exp2(lse - lse_logsum)  # [batch, heads]
        o += Output_partial[:, :, ks, :] * scale[:, :, None]
    return o.to(torch.float16)


411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
def ref_split_program(Q, K, V, mask, glse=None, Output_partial=None):
    glse_, Output_partial_ = flash_split_ref(Q, K, V, mask)
    return reduce_ref(Q, K, V, mask, glse_, Output_partial_)


def print_red_warning(msg):
    print(f"\033[91m{msg}\033[0m")


def calc_sim(x, y, name="tensor"):
    x, y = x.data.double(), y.data.double()
    denominator = (x * x + y * y).sum()
    if denominator == 0:
        print_red_warning(f'{name} all zero')
        return 1
    sim = 2 * (x * y).sum() / denominator
    return sim


def assert_similar(x, y, eps=1e-2, name="tensor", assert_=False, print_=True):
    sim = calc_sim(x, y, name)
    diff = 1. - sim
    if not (0 <= diff <= eps):
        print_red_warning(f'{name} Error: {diff}')
        if assert_:
            raise AssertionError(f'{name} Error: {diff}')
    else:
        if print_:
            print(f'passed: {name} diff={diff}')


442
443
444
445
446
447
448
def main(batch: int = 1,
         heads: int = 32,
         groups: int = 8,
         kv_seqlen: int = 8192,
         dim: int = 128,
         tune: bool = False):
    batch, heads, groups, kv_seqlen, dim = batch, heads, groups, kv_seqlen, dim
449
450
451
452
    qk_flops = 2 * batch * heads * kv_seqlen * dim
    pv_flops = 2 * batch * heads * kv_seqlen * dim
    total_flops = qk_flops + pv_flops

453
    if (not tune):
454
        config, sm_version = get_heuristic_config()
455
        kernel = flashattn(batch, heads, groups, kv_seqlen, dim, **config)
456
        profiler = kernel.get_profiler(tensor_supply_type=tilelang.TensorSupplyType.Auto)
457
458
459
460
461

        q = torch.randn(batch, heads, dim, device="cuda", dtype=torch.float16)
        k = torch.randn(batch, kv_seqlen, groups, dim, device="cuda", dtype=torch.float16)
        v = torch.randn(batch, kv_seqlen, groups, dim, device="cuda", dtype=torch.float16)
        mask = torch.randint(0, 2, (batch, kv_seqlen, groups), device="cuda", dtype=torch.uint8)
462
463
464
        split = config["num_split"]
        glse = torch.empty(batch, heads, split, device="cuda", dtype=torch.float16)
        Output_partial = torch.empty(batch, heads, split, dim, device="cuda", dtype=torch.float16)
465
466
467
468
        o = kernel(q, k, v, mask, glse, Output_partial)
        o_ref = ref_program(q, k, v, mask, glse, Output_partial)
        o_ref_split = ref_split_program(q, k, v, mask, glse, Output_partial)

469
470
471
472
473
        print(o)
        print(o_ref)

        assert_similar(o, o_ref, name="o_ref")
        assert_similar(o_ref_split, o_ref, name="o_ref_split")
474

475
        print("All checks pass.")
476
        latency = profiler.do_bench(ref_program, warmup=500)
477
478
        print("Ref: {:.2f} ms".format(latency))
        print("Ref: {:.2f} TFlops".format(total_flops / latency * 1e-9))
479
        latency = profiler.do_bench(warmup=500)
480
481
482
        print("Tile-lang: {:.2f} ms".format(latency))
        print("Tile-lang: {:.2f} TFlops".format(total_flops / latency * 1e-9))
    else:
483
484
485
486
        kernel = flashattn(batch, heads, groups, kv_seqlen, dim)
        best_latency = kernel.latency
        best_config = kernel.config
        ref_latency = kernel.ref_latency
487
488
489
        print(f"Best latency: {best_latency}")
        print(f"Best TFlops: {total_flops / best_latency * 1e-9}")
        print(f"Best config: {best_config}")
490
491
492
493
494
495
496
497
498
499
500
501
502
        print(f"Ref latency: {ref_latency}")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch', type=int, default=1, help='batch size')
    parser.add_argument('--heads', type=int, default=32, help='heads')
    parser.add_argument('--groups', type=int, default=8, help='groups')
    parser.add_argument('--kv_seqlen', type=int, default=8192, help='kv sequence length')
    parser.add_argument('--dim', type=int, default=128, help='dim')
    parser.add_argument('--tune', action='store_true', help='tune configs')
    args = parser.parse_args()
    main(args.batch, args.heads, args.groups, args.kv_seqlen, args.dim, args.tune)