"vscode:/vscode.git/clone" did not exist on "13bec75948a3a00dd0d20c9c5ab5402d2503023d"
example_amd_flash_attn_fwd.py 9.46 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# Copyright (c) Tile-AI Corporation.
# Licensed under the MIT License.
#
# Modified to implement FlashAttention-2 forward pass principles.
# Corrected loop implementation using T.while_loop.

import torch
import torch.nn.functional as F
import tilelang
import tilelang.language as T
import itertools
import argparse
from functools import partial


# PyTorch 参考实现保持不变
def ref_program(Q, K, V, is_causal, groups=1):
    assert Q.size(
        2) == K.size(2) * groups, f"Q heads {Q.size(2)} K heads {K.size(2)} groups {groups}"
    assert Q.size(
        2) == V.size(2) * groups, f"Q heads {Q.size(2)} V heads {V.size(2)} groups {groups}"
    dim = Q.size(-1)
    K = K.repeat_interleave(groups, dim=2)
    V = V.repeat_interleave(groups, dim=2)
    scores = torch.einsum('bqhd,bkhd->bhqk', Q, K)
    scores = scores / torch.sqrt(torch.tensor(dim, dtype=scores.dtype))
    if is_causal:
        seq_len = Q.size(1)
        mask = torch.tril(torch.ones(seq_len, seq_len, device=scores.device))
        mask = mask.unsqueeze(0).unsqueeze(0)
        scores = scores.masked_fill(mask == 0, float('-inf'))
    attention_weights = F.softmax(scores, dim=-1)
    output = torch.einsum('bhqk,bkhd->bqhd', attention_weights, V)
    return output


def get_v2_configs():
    """Generates configurations for the autotuner, tailored for FA-2 style parallelism."""
    block_M = [64, 128, 256]
    block_N = [32, 64, 128]
    threads = [128, 256, 512]
    num_split_q = [32, 64, 128]
    num_stages = [1, 2, 3]
    enable_rasterization = [True]
    k_pack = [2]

    valid_configs = []

    for m, n, s, t, stages, r, k in itertools.product(block_M, block_N, num_split_q, threads,
                                                      num_stages, enable_rasterization, k_pack):
        valid_configs.append({
            "block_M": m,
            "block_N": n,
            "num_split_q": s,
            "threads": t,
            "num_stages": stages,
            "enable_rasterization": r,
            "k_pack": k
        })
    if not valid_configs:
        valid_configs.append({
            'block_M': 64,
            'block_N': 64,
            'num_split_q': 64,
            'threads': 256,
            'num_stages': 1,
            'enable_rasterization': True,
            'k_pack': 2
        })
    return valid_configs


@tilelang.autotune(configs=get_v2_configs(), cache_input_tensors=True)
@tilelang.jit(out_idx=[3])
def fast_flashattn_v2(
    batch,
    heads,
    seq_len,
    dim,
    is_causal,
    groups,
    block_M: int,
    block_N: int,
    num_split_q: int,
    threads: int,
    num_stages: int,
    enable_rasterization: bool,
    k_pack: int,
):
    scale = (1.0 / dim)**0.5 * 1.44269504
    head_kv = heads // groups
    q_shape = [batch, seq_len, heads, dim]
    kv_shape = [batch, seq_len, head_kv, dim]
    dtype = "float16"
    accum_dtype = "float"

    v_vec_size = 4

    vec_size = 4 * k_pack

    @T.macro
    def compute_block(
            bz,
            by,
            bx,
            Q: T.Tensor(q_shape, dtype),
            K: T.Tensor(kv_shape, dtype),
            V: T.Tensor(kv_shape, dtype),
            acc_o: T.FragmentBuffer([block_M, dim], accum_dtype),
            m_i: T.FragmentBuffer([block_M], accum_dtype),
            l_i: T.FragmentBuffer([block_M], accum_dtype),
    ):
        Q_shared = T.alloc_shared([block_M, dim], dtype)
        K_shared = T.alloc_shared([block_N, dim], dtype)
        V_shared = T.alloc_shared([block_N, dim], dtype)
        P_shared = T.alloc_shared([block_M, block_N], dtype)

        acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
        m_prev = T.alloc_fragment([block_M], accum_dtype)
        scale_factor = T.alloc_fragment([block_M], accum_dtype)

        q_block_offset = bx * block_M
        T.copy(
            Q[bz, q_block_offset:q_block_offset + block_M, by, :],
            Q_shared,
            coalesced_width=vec_size)

        loop_end_k = T.ceildiv(q_block_offset +
                               block_M, block_N) if is_causal else T.ceildiv(seq_len, block_N)
        for k in T.Pipelined(loop_end_k, num_stages=num_stages):
            kv_idx = k * block_N
            T.copy(
                K[bz, kv_idx:kv_idx + block_N, by // groups, :], K_shared, coalesced_width=vec_size)
            T.copy(
                V[bz, kv_idx:kv_idx + block_N, by // groups, :],
                V_shared,
                coalesced_width=v_vec_size)

            T.clear(acc_s)
            T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, k_pack=k_pack)

            if is_causal:
                for i, j in T.Parallel(block_M, block_N):
                    acc_s[i, j] = T.if_then_else(q_block_offset + i >= kv_idx + j, acc_s[i, j],
                                                 -T.infinity(acc_s.dtype))

            T.copy(m_i, m_prev)
            T.reduce_max(acc_s, m_i, dim=1, clear=False)

            for i in T.Parallel(block_M):
                sf = T.exp2(m_prev[i] * scale - m_i[i] * scale)
                l_i[i] *= sf
                scale_factor[i] = sf

            for i, j in T.Parallel(block_M, dim):
                acc_o[i, j] *= scale_factor[i]

            for i, j in T.Parallel(block_M, block_N):
                acc_s[i, j] = T.exp2(acc_s[i, j] * scale - m_i[i] * scale)

            row_sum = T.alloc_fragment([block_M], accum_dtype)
            T.reduce_sum(acc_s, row_sum, dim=1)
            for i in T.Parallel(block_M):
                l_i[i] += row_sum[i]

            T.copy(acc_s, P_shared)
            T.sync_threads()

            T.gemm(P_shared, V_shared, acc_o)

    # 修复:将宏移至内核外部,以实现清晰的代码结构。
    @T.macro
    def scale_and_write_back(src_buffer, scale_vector, dest_tensor, bz, by, q_block_offset):
        # 此宏执行融合的缩放和写回操作,这对性能至关重要。
        for i, j in T.Parallel(block_M, dim):
            dest_tensor[bz, q_block_offset + i, by, j] = src_buffer[i, j] * scale_vector[i]

    @T.macro
    def flash_attn_forward_kernel(Q: T.Tensor(q_shape, dtype), K: T.Tensor(kv_shape, dtype),
                                  V: T.Tensor(kv_shape, dtype), Output: T.Tensor(q_shape, dtype)):
        with T.Kernel(num_split_q, batch * heads, threads=threads) as (b_split, byz_combined):
            T.use_swizzle(10, enable=enable_rasterization)

            bz = byz_combined // heads
            by = byz_combined % heads

            num_q_blocks = T.ceildiv(seq_len, block_M)

            bx = T.alloc_var("int32")
            bx[0] = b_split

            with T.While(bx[0] < num_q_blocks):
                acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
                m_i = T.alloc_fragment([block_M], accum_dtype)
                l_i = T.alloc_fragment([block_M], accum_dtype)
                T.fill(acc_o, 0)
                T.fill(m_i, -T.infinity(accum_dtype))
                T.fill(l_i, 0)

                current_bx = bx[0]

                compute_block(bz, by, current_bx, Q, K, V, acc_o, m_i, l_i)

                l_inv = T.alloc_fragment([block_M], accum_dtype)
                for i in T.Parallel(block_M):
                    safe_l = T.if_then_else(l_i[i] > 1e-6, l_i[i], 1.0)
                    l_inv[i] = 1.0 / safe_l

                # 修复:现在对宏的调用对编译器来说更清晰。
                q_block_offset = current_bx * block_M
                scale_and_write_back(acc_o, l_inv, Output, bz, by, q_block_offset)

                bx[0] = current_bx + num_split_q

    @T.prim_func
    def main(
            Q: T.Tensor(q_shape, dtype),
            K: T.Tensor(kv_shape, dtype),
            V: T.Tensor(kv_shape, dtype),
            Output: T.Tensor(q_shape, dtype),
    ):
        flash_attn_forward_kernel(Q, K, V, Output)

    return main


# main 函数保持不变
def main_v2(batch: int = 1,
            heads: int = 8,
            seq_len: int = 4096,
            dim: int = 128,
            is_causal: bool = False,
            groups: int = 1):

    flops_per_matmul = 2.0 * batch * heads * seq_len * seq_len * dim
    total_flops = 2 * flops_per_matmul
    if is_causal:
        total_flops *= 0.5

    print("Starting autotuning for FlashAttention-V2...")
    kernel = fast_flashattn_v2(batch, heads, seq_len, dim, is_causal, groups=groups)
    print(f"Autotuning finished. Best Configuration: {kernel.config}")

    ref_program_processed = partial(ref_program, is_causal=is_causal, groups=groups)

    profiler = kernel.get_profiler(tensor_supply_type=tilelang.TensorSupplyType.Normal)

    print("Verifying correctness...")
    profiler.assert_allclose(ref_program_processed, rtol=0.01, atol=0.01)
    print("All checks pass.")

    latency = profiler.do_bench(ref_program_processed, warmup=100)
    print(f"Reference (PyTorch): {latency:.2f} ms | {total_flops / latency * 1e-9:.2f} TFlops")

    latency = profiler.do_bench(warmup=100)
    print(
        f"Fast Flash Attention V2 (Tile-lang): {latency:.2f} ms | {total_flops / latency * 1e-9:.2f} TFlops"
    )


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch', type=int, default=1, help='batch size')
    parser.add_argument('--heads', type=int, default=8, help='heads')
    parser.add_argument('--seq_len', type=int, default=4096, help='sequence length')
    parser.add_argument('--dim', type=int, default=128, help='dim')
    parser.add_argument('--is_causal', action='store_true', help='causal')
    parser.add_argument('--groups', type=int, default=1, help='groups')
    args = parser.parse_args()
    main_v2(args.batch, args.heads, args.seq_len, args.dim, args.is_causal, args.groups)