example_mha_inference.py 14.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
import torch
import torch.nn.functional as F
import tilelang
from tilelang.autotuner import *
import tilelang.language as T
from functools import partial

num_split = 4


11
@tilelang.jit(out_idx=[5])
12
def flashattn(batch, heads, seqlen_q, seqlen_kv, dim, is_causal, block_M, block_N):
13
14
15
16
17
18
19
20
21
    scale = (1.0 / dim)**0.5 * 1.44269504  # log2(e)
    shape_q = [batch, seqlen_q, heads, dim]
    shape_kv = [batch, seqlen_kv, heads, dim]
    part_shape = [batch, seqlen_q, heads, num_split, dim]
    dtype = "float16"
    accum_dtype = "float"

    @T.macro
    def MMA0(
22
23
24
25
        K: T.Tensor(shape_kv, dtype),
        Q_shared: T.SharedBuffer([block_M, dim], dtype),
        K_shared: T.SharedBuffer([block_N, dim], dtype),
        acc_s: T.FragmentBuffer([block_M, block_N], accum_dtype),
26
27
28
29
30
31
32
33
34
        k: T.int32,
        mid: T.int32,
        hid: T.int32,
        bid: T.int32,
        sid: T.int32,
    ):
        T.copy(
            K[bid, (seqlen_kv // num_split) * sid + k * block_N:(seqlen_kv // num_split) * sid +
              (k + 1) * block_N, hid, :], K_shared)
35
36
        # TODO: Handle causal split case
        if is_causal:
37
38
39
40
41
42
43
44
45
            for i, j in T.Parallel(block_M, block_N):
                acc_s[i, j] = T.if_then_else(mid * block_M + i >= k * block_N + j, 0,
                                             -T.infinity(acc_s.dtype))
        else:
            T.clear(acc_s)
        T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)

    @T.macro
    def MMA1(
46
        V: T.Tensor(shape_kv, dtype),
47
        V_shared: T.SharedBuffer([block_N, dim], dtype),
48
49
        acc_s_cast: T.FragmentBuffer([block_M, block_N], dtype),
        acc_o: T.FragmentBuffer([block_M, dim], accum_dtype),
50
51
52
53
54
55
56
57
58
59
60
61
        k: T.int32,
        hid: T.int32,
        bid: T.int32,
        sid: T.int32,
    ):
        T.copy(
            V[bid, (seqlen_kv // num_split) * sid + k * block_N:(seqlen_kv // num_split) * sid +
              (k + 1) * block_N, hid, :], V_shared)
        T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)

    @T.macro
    def Softmax(
62
63
64
65
66
67
68
            acc_s: T.FragmentBuffer([block_M, block_N], accum_dtype),
            acc_s_cast: T.FragmentBuffer([block_M, block_N], dtype),
            scores_max: T.FragmentBuffer([block_M], accum_dtype),
            scores_max_prev: T.FragmentBuffer([block_M], accum_dtype),
            scores_scale: T.FragmentBuffer([block_M], accum_dtype),
            scores_sum: T.FragmentBuffer([block_M], accum_dtype),
            logsum: T.FragmentBuffer([block_M], accum_dtype),
69
70
71
72
    ):
        T.copy(scores_max, scores_max_prev)
        T.fill(scores_max, -T.infinity(accum_dtype))
        T.reduce_max(acc_s, scores_max, dim=1, clear=False)
73
74
        for i in T.Parallel(block_M):
            scores_max[i] = T.max(scores_max[i], scores_max_prev[i])
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
        # To do causal softmax, we need to set the scores_max to 0 if it is -inf
        # This process is called Check_inf in FlashAttention3 code, and it only need to be done
        # in the first ceil_div(kBlockM, kBlockN) steps.
        # for i in T.Parallel(block_M):
        #     scores_max[i] = T.if_then_else(scores_max[i] == -T.infinity(accum_dtype), 0, scores_max[i])
        for i in T.Parallel(block_M):
            scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
        for i, j in T.Parallel(block_M, block_N):
            # Instead of computing exp(x - max), we compute exp2(x * log_2(e) -
            # max * log_2(e)) This allows the compiler to use the ffma
            # instruction instead of fadd and fmul separately.
            acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
        T.reduce_sum(acc_s, scores_sum, dim=1)
        for i in T.Parallel(block_M):
            logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
        T.copy(acc_s, acc_s_cast)

    @T.macro
    def Rescale(
94
95
            acc_o: T.FragmentBuffer([block_M, dim], accum_dtype),
            scores_scale: T.FragmentBuffer([block_M], accum_dtype),
96
97
98
99
100
101
    ):
        for i, j in T.Parallel(block_M, dim):
            acc_o[i, j] *= scores_scale[i]

    @T.macro
    def flash_attn_split(
102
103
104
105
106
            Q: T.Tensor(shape_q, dtype),
            K: T.Tensor(shape_kv, dtype),
            V: T.Tensor(shape_kv, dtype),
            glse: T.Tensor([batch, heads, num_split, seqlen_q], dtype),
            Output_partial: T.Tensor(part_shape, dtype),
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    ):
        with T.Kernel(
                T.ceildiv(seqlen_q, block_M), heads * batch, num_split,
                threads=128) as (bx, by, bz):
            Q_shared = T.alloc_shared([block_M, dim], dtype)
            K_shared = T.alloc_shared([block_N, dim], dtype)
            V_shared = T.alloc_shared([block_N, dim], dtype)
            O_shared = T.alloc_shared([block_M, dim], dtype)
            acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
            acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
            acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
            scores_max = T.alloc_fragment([block_M], accum_dtype)
            scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
            scores_scale = T.alloc_fragment([block_M], accum_dtype)
            scores_sum = T.alloc_fragment([block_M], accum_dtype)
            logsum = T.alloc_fragment([block_M], accum_dtype)

            mid = bx
            hid = by % heads
            bid = by // heads
            sid = bz

129
130
131
            # NOTE(wt): tma barrier has some problems with padded dimensions (seq_q here) currently
            # disable relevant tma copy and use SIMT as fallback for now
            T.copy(Q[bid, mid * block_M:(mid + 1) * block_M, hid, :], Q_shared, disable_tma=True)
132
133
134
135
            T.fill(acc_o, 0)
            T.fill(logsum, 0)
            T.fill(scores_max, -T.infinity(accum_dtype))

136
            # TODO: Handle causal split case
137
138
            loop_range = (
                T.min(T.ceildiv(seqlen_kv, block_N), T.ceildiv(
139
                    (mid + 1) * block_M, block_N)) if is_causal else T.ceildiv(
140
141
142
143
144
145
146
147
148
149
150
151
152
153
                        (seqlen_kv // num_split), block_N))

            for k in T.Pipelined(loop_range, num_stages=2):
                MMA0(K, Q_shared, K_shared, acc_s, k, mid, hid, bid, sid)
                Softmax(acc_s, acc_s_cast, scores_max, scores_max_prev, scores_scale, scores_sum,
                        logsum)
                Rescale(acc_o, scores_scale)
                MMA1(V, V_shared, acc_s_cast, acc_o, k, hid, bid, sid)
            for i, j in T.Parallel(block_M, dim):
                acc_o[i, j] /= logsum[i]
            for i in T.Parallel(block_M):
                logsum[i] = T.log2(logsum[i]) + scores_max[i] * scale
            T.copy(logsum, glse[bid, hid, sid, mid * block_M:(mid + 1) * block_M])
            T.copy(acc_o, O_shared)
154
155
156
157
            T.copy(
                O_shared,
                Output_partial[bid, mid * block_M:(mid + 1) * block_M, hid, sid, :],
                disable_tma=True)
158
159
160

    @T.macro
    def combine(
161
162
163
            glse: T.Tensor([batch, heads, num_split, seqlen_q], dtype),
            Output_partial: T.Tensor(part_shape, dtype),
            Output: T.Tensor(shape_q, dtype),
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    ):
        with T.Kernel(T.ceildiv(seqlen_q, block_M), heads, batch, threads=128) as (bx, by, bz):
            po_local = T.alloc_fragment([block_M, dim], dtype)
            po_shared = T.alloc_shared([block_M, dim], dtype)
            o_accum_local = T.alloc_fragment([block_M, dim], accum_dtype)
            o_shared = T.alloc_shared([block_M, dim], dtype)
            lse_local = T.alloc_fragment([num_split, block_M], dtype)
            lse_local_split = T.alloc_fragment([block_M], accum_dtype)
            lse_logsum_local = T.alloc_fragment([block_M], accum_dtype)
            lse_max_local = T.alloc_fragment([block_M], accum_dtype)
            scale_local = T.alloc_fragment([block_M], accum_dtype)

            T.annotate_layout({
                o_accum_local: T.Fragment(o_accum_local.shape, forward_thread_fn=lambda i, j: i),
                o_shared: tilelang.layout.make_swizzled_layout(o_shared),
                po_shared: tilelang.layout.make_swizzled_layout(po_shared),
            })

            T.clear(lse_logsum_local)
            T.clear(o_accum_local)
            T.copy(glse[
                bz,
                by,
                :,
                bx * block_M:(bx + 1) * block_M,
            ], lse_local)
            T.reduce_max(lse_local, lse_max_local, dim=0, clear=False)
            for k in T.Pipelined(num_split):
                T.copy(lse_local[k, :], lse_local_split)
                for i in T.Parallel(block_M):
                    lse_logsum_local[i] += T.exp2(lse_local_split[i] - lse_max_local[i])
            for i in T.Parallel(block_M):
                lse_logsum_local[i] = T.log2(lse_logsum_local[i]) + lse_max_local[i]
            for k in T.Pipelined(num_split, num_stages=2):
198
199
200
201
                T.copy(
                    Output_partial[bz, bx * block_M:(bx + 1) * block_M, by, k, :],
                    po_shared,
                    disable_tma=True)
202
                T.copy(po_shared, po_local)
203
204
                for i in T.Parallel(block_M):
                    lse_local_split[i] = lse_local[k, i]
205
206
207
208
209
                for i in T.Parallel(block_M):
                    scale_local[i] = T.exp2(lse_local_split[i] - lse_logsum_local[i])
                for i, j in T.Parallel(block_M, dim):
                    o_accum_local[i, j] += po_local[i, j] * scale_local[i]
            T.copy(o_accum_local, o_shared)
210
            T.copy(o_shared, Output[bz, bx * block_M:(bx + 1) * block_M, by, :], disable_tma=True)
211
212

    @T.prim_func
213
    def flashattn_mha_inference(
214
215
216
217
218
219
            Q: T.Tensor(shape_q, dtype),
            K: T.Tensor(shape_kv, dtype),
            V: T.Tensor(shape_kv, dtype),
            glse: T.Tensor([batch, heads, num_split, seqlen_q], dtype),
            Output_partial: T.Tensor(part_shape, dtype),  # [batch, seqlen_q, heads, num_split, dim]
            Output: T.Tensor(shape_q, dtype),
220
221
222
223
    ):
        flash_attn_split(Q, K, V, glse, Output_partial)
        combine(glse, Output_partial, Output)

224
    return flashattn_mha_inference
225
226


227
228
def ref_program(Q, K, V, glse, Output_partial, causal):
    assert causal is False
229
230
231
232
233
234
235
236
    dim = Q.size(-1)
    scores = torch.einsum('bqhd,bkhd->bhqk', Q, K)
    scores = scores / torch.sqrt(torch.tensor(dim, dtype=scores.dtype))
    attention_weights = F.softmax(scores, dim=-1)
    output = torch.einsum('bhqk,bkhd->bqhd', attention_weights, V)
    return output


237
def reduce_ref(Q, K, V, glse, Output_partial, causal):
238
239
240
241
242
243
244
245
246
247
248
249
250
251
    o = torch.empty_like(Output_partial[:, :, :, 0, :]).fill_(0)
    lse_logsum = torch.empty_like(glse[:, :, 0, :]).fill_(0)  # [batch, seqlen_q, heads]
    lse_max = glse.max(dim=2, keepdim=False).values
    for ks in range(num_split):
        lse = glse[:, :, ks, :]
        lse_logsum += torch.exp2(lse - lse_max)
    lse_logsum = torch.log2(lse_logsum) + lse_max
    for ks in range(num_split):
        lse = glse[:, :, ks, :]
        scale = torch.exp2(lse - lse_logsum)  # [batch, heads, seqlen_q]
        o += Output_partial[:, :, :, ks, :] * scale[:, :, :, None].transpose(1, 2)
    return o.to(torch.float16)


252
def flash_split_ref(Q, K, V, causal):
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
    # [batch, seqlen_q, heads, dim]
    batch = Q.size(0)
    block_M = Q.size(1)
    nheads = Q.size(2)
    dim = Q.size(3)
    block_N = 128
    seqlen_kv = K.size(1)

    scale = (1.0 / dim)**0.5 * 1.44269504  # log2(e)
    acc_s = torch.empty((batch, nheads, block_M, block_N), device="cuda", dtype=torch.float)
    acc_s_cast = torch.empty((batch, nheads, block_M, block_N), device="cuda", dtype=torch.float16)
    acc_o = torch.empty((batch, block_M, nheads, dim), device="cuda", dtype=torch.float)
    scores_max = torch.empty((batch, nheads, block_M), device="cuda", dtype=torch.float)
    scores_max_prev = torch.empty((batch, nheads, block_M), device="cuda", dtype=torch.float)
    scores_scale = torch.empty((batch, nheads, block_M), device="cuda", dtype=torch.float)
    scores_sum = torch.empty((batch, nheads, block_M), device="cuda", dtype=torch.float)
    logsum = torch.empty((batch, nheads, block_M), device="cuda", dtype=torch.float)
    gacc_o = torch.empty((num_split, batch, block_M, nheads, dim), device="cuda", dtype=torch.float)
    glogsum = torch.empty((num_split, batch, nheads, block_M), device="cuda", dtype=torch.float)

    Q_ = Q * scale

    for ks in range(num_split):
        acc_o.fill_(0)
        logsum.fill_(0)
        scores_max.fill_(float('-inf'))
        scores_max_prev.fill_(float('-inf'))
        for i in range(int((seqlen_kv // num_split) / block_N)):
            acc_s.fill_(0)
            acc_s = torch.einsum('bqhd,bkhd->bhqk', Q_,
                                 K[:, (seqlen_kv // num_split) * ks +
                                   i * block_N:(seqlen_kv // num_split) * ks +
                                   (i + 1) * block_N, :, :])  # [batch, seqlen, nheads, block_N]
            scores_max_prev = scores_max
            scores_max = acc_s.max(dim=-1, keepdim=False).values  # [blockM]
            scores_scale = torch.exp2(scores_max_prev - scores_max)
            acc_o *= scores_scale[:, :, :, None].transpose(1, 2)
            acc_s = torch.exp2(acc_s - scores_max[:, :, :, None])
            acc_s_cast = acc_s.to(torch.float16)
            acc_o += torch.einsum(
                'bhqk,bkhd->bqhd', acc_s_cast,
                V[:, (seqlen_kv // num_split) * ks + i * block_N:(seqlen_kv // num_split) * ks +
                  (i + 1) * block_N, :, :])
            scores_sum = acc_s.sum(dim=-1, keepdim=False)
            logsum = logsum * scores_scale + scores_sum
        acc_o /= logsum[:, :, :, None].transpose(1, 2)
        logsum = torch.log2(logsum) + scores_max
        gacc_o[ks, :, :, :, :] = acc_o
        glogsum[ks, :, :, :] = logsum

    return glogsum.to(torch.float16).permute(1, 2, 0,
                                             3), gacc_o.to(torch.float16).permute(1, 2, 3, 0, 4)


307
def main(BATCH=1, H=32, Q_CTX=128, KV_CTX=8192, D_HEAD=128, causal=False):
308
309
    flops_per_matmul = 2.0 * BATCH * H * Q_CTX * KV_CTX * D_HEAD
    total_flops = 2 * flops_per_matmul
310
    if causal:
311
312
313
        total_flops *= 0.5
    BLOCK_M = 128
    BLOCK_N = 64  # if D_HEAD <= 128 else 32
314
    kernel = flashattn(BATCH, H, Q_CTX, KV_CTX, D_HEAD, causal, BLOCK_M, BLOCK_N)
315
    ref_fn = partial(ref_program, causal=causal)
316
    profiler = kernel.get_profiler(tensor_supply_type=tilelang.TensorSupplyType.Normal)
317
    profiler.assert_allclose(ref_fn, rtol=0.01, atol=0.01)
318
319
    print("All checks passed!")

320
    latency = profiler.do_bench(ref_fn, warmup=500)
321
322
    print("{:.2f} ms".format(latency))
    print("{:.2f} TFlops".format(total_flops / latency * 1e-9))
323
    latency = profiler.do_bench(n_warmup=10, n_repeat=10)
324
325
    print("{:.4f} ms".format(latency))
    print("{:.2f} TFlops".format(total_flops / latency * 1e-9))
326
327
328


if __name__ == "__main__":
329
    main()