indexer_bwd.py 10.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import torch
import torch.nn.functional as F
from einops import einsum, repeat

import tilelang as tl
import tilelang.language as T
from typing import Optional
from index import prepare_token_indices

from utils import get_abs_err, get_err_ratio

BF16 = "bfloat16"
FP32 = "float32"
INT32 = "int32"

pass_configs = {
    tl.PassConfigKey.TL_DISABLE_TMA_LOWER: True,
    tl.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True,
}


@tl.jit(pass_configs=pass_configs)
def tl_indexer_bwd_impl(
    heads: int,
    dim: int,
    topk: int,
    sm_scale: Optional[float] = None,
    block_I: int = 32,
    num_stages: int = 0,
    num_threads: int = 128,
):
    assert num_stages == 0
    assert topk == tl.math.next_power_of_2(topk)
    assert topk % block_I == 0
    assert heads <= 64 and heads % 8 == 0
    batch_plus_one = T.symbolic("batch_plus_one")
    seq_len = T.symbolic("seq_len")
    dtype: str = BF16
    accum_dtype: str = FP32
    index_q_shape = [seq_len, heads, dim]
    weights_shape = [seq_len, heads]
    index_k_shape = [seq_len, dim]
    shape_p = [seq_len, topk]
    topk_indices_shape = [seq_len, topk]
    offsets_shape = [batch_plus_one]
    token_indices_shape = [seq_len, 2]
    if sm_scale is None:
        sm_scale = dim**-0.5

    @T.prim_func
    def tl_indexer_bwd_kernel(
            IndexQ: T.Tensor(index_q_shape, dtype),
            Weights: T.Tensor(weights_shape, dtype),
            IndexK: T.Tensor(index_k_shape, dtype),
            dIndexQ: T.Tensor(index_q_shape, dtype),
            dWeights: T.Tensor(weights_shape, dtype),
            dIndexK: T.Tensor(index_k_shape, dtype),
            AttnScore: T.Tensor(shape_p, FP32),
            IndexScore: T.Tensor(shape_p, FP32),
            TopkIndices: T.Tensor(topk_indices_shape, INT32),
            Offsets: T.Tensor(offsets_shape, INT32),
            TokenIndices: T.Tensor(token_indices_shape, INT32),
    ):
        with T.Kernel(seq_len, threads=num_threads) as (bx):
            i_b, i_t = TokenIndices[bx, 0], TokenIndices[bx, 1]
            bos = Offsets[i_b]
            num_blocks = T.ceildiv(topk, block_I)

            index_q_shared = T.alloc_shared([heads, dim], dtype=dtype)
            weights_shared = T.alloc_shared([heads], dtype=dtype)

            d_index_q_frag = T.alloc_fragment([heads, dim], dtype=accum_dtype)
            d_weights_frag = T.alloc_fragment([heads], dtype=accum_dtype)

            T.copy(IndexQ[bos + i_t, :, :], index_q_shared)
            T.copy(Weights[bos + i_t, :], weights_shared)
            T.fill(d_index_q_frag, 0)
            T.fill(d_weights_frag, 0)

            for i, j in T.Parallel(heads, dim):
                index_q_shared[i, j] = index_q_shared[i, j] * sm_scale

            for bi_i in T.Pipelined(num_blocks, num_stages=num_stages):

                i_st = bi_i * block_I
                i_ed = (bi_i + 1) * block_I

                indices_shared = T.alloc_shared([block_I], dtype=INT32)
                T.copy(TopkIndices[bos + i_t, i_st:i_ed], indices_shared)

                index_k_shared = T.alloc_shared([block_I, dim], dtype=dtype)
                for i, j in T.Parallel(block_I, dim):
                    pos = indices_shared[i]
                    index_k_shared[i, j] = T.if_then_else((pos > -1) & (pos <= i_t),
                                                          IndexK[bos + pos, j], 0)

                attn_score_shared = T.alloc_shared([block_I], dtype=accum_dtype)
                index_score_shared = T.alloc_shared([block_I], dtype=accum_dtype)
                for i in T.Parallel(block_I):
                    attn_score_shared[i] = AttnScore[bos + i_t, i_st + i]
                    index_score_shared[i] = IndexScore[bos + i_t, i_st + i]

                logits = T.alloc_fragment((block_I, heads), accum_dtype)
                T.gemm(
                    index_k_shared,
                    index_q_shared,
                    logits,
                    transpose_A=False,
                    transpose_B=True,
                    clear_accum=True,
                )
                for i, j in T.Parallel(block_I, heads):
                    logits[i, j] = T.max(logits[i, j], 0)

                # dw
                d_weights_i = T.alloc_fragment((block_I, heads), accum_dtype)
                for i, j in T.Parallel(block_I, heads):
                    d_weights_i[i,
                                j] = (index_score_shared[i] - attn_score_shared[i]) * logits[i, j]
                T.reduce_sum(d_weights_i, d_weights_frag, dim=0, clear=False)

                d_logits_qk = T.alloc_shared((block_I, heads), accum_dtype)
                d_logits_qk_cast1 = T.alloc_fragment((block_I, heads), dtype)
                d_logits_qk_cast2 = T.alloc_fragment((block_I, heads), dtype)

                for i, j in T.Parallel(block_I, heads):
                    d_relu = T.alloc_var(accum_dtype)
                    if logits[i, j] > 0:
                        d_relu = 1.0
                    else:
                        d_relu = 0.0
                    d_logits_qk[i, j] = (index_score_shared[i] -
                                         attn_score_shared[i]) * d_relu * weights_shared[j]

                # dq
                T.copy(d_logits_qk, d_logits_qk_cast1)
                T.gemm(
                    d_logits_qk_cast1,  # [BS, HQ]
                    index_k_shared,  # [BS, K]
                    d_index_q_frag,  # [HQ, K]
                    transpose_A=True,
                    transpose_B=False,
                    clear_accum=False,
                )

                # dk
                T.copy(d_logits_qk, d_logits_qk_cast2)
                d_index_k_frag = T.alloc_fragment([block_I, dim], dtype=accum_dtype)
                T.gemm(
                    d_logits_qk_cast2,  # [BS, HQ]
                    index_q_shared,  # [HQ, K]
                    d_index_k_frag,  # [BS, K]
                    transpose_A=False,
                    transpose_B=False,
                    clear_accum=True,
                )

                for i, j in T.Parallel(block_I, dim):
                    pos = indices_shared[i]
                    if ((pos > -1) & (pos <= i_t)):
                        T.atomic_add(dIndexK[bos + pos, j], d_index_k_frag[i, j])

            for i, j in T.Parallel(heads, dim):
                d_index_q_frag[i, j] = d_index_q_frag[i, j] * sm_scale

            T.copy(d_index_q_frag, dIndexQ[bos + i_t, :, :])
            T.copy(d_weights_frag, dWeights[bos + i_t, :])

    return tl_indexer_bwd_kernel


def indexer_bwd_interface(
    q: torch.Tensor,
    weights: torch.Tensor,
    k: torch.Tensor,
    attn_score: torch.Tensor,
    index_score: torch.Tensor,
    topk_indices: torch.Tensor,
    offsets: torch.Tensor,
):
    _, heads, dim, topk = *q.shape, topk_indices.shape[-1]
    token_indices = prepare_token_indices(offsets)
    dq = torch.zeros_like(q)
    dweights = torch.zeros_like(weights)
    dk = torch.zeros_like(k)
    kernel = tl_indexer_bwd_impl(heads, dim, topk)
    kernel(q, weights, k, dq, dweights, dk, attn_score, index_score, topk_indices, offsets,
           token_indices)
    return dq, dweights, dk


def ref_indexer_bwd(Q: torch.Tensor, Weights: torch.Tensor, K: torch.Tensor,
                    TopkIndices: torch.Tensor, AttnScore: torch.Tensor,
                    offsets: torch.Tensor) -> torch.Tensor:
    Q.requires_grad_(True)
    Weights.requires_grad_(True)
    K.requires_grad_(True)
    softmax_scale = Q.shape[-1]**-0.5
    all_loss = []
    all_log_topk_prob = []
    for i in range(offsets.shape[0] - 1):
        assert (offsets[i + 1] - offsets[i]).item() >= TopkIndices.shape[-1]
        q = Q[offsets[i]:offsets[i + 1]]
        weights = Weights[offsets[i]:offsets[i + 1]]
        k = K[offsets[i]:offsets[i + 1]]
        topk_indices = TopkIndices[offsets[i]:offsets[i + 1]]
        attn_score = AttnScore[offsets[i]:offsets[i + 1]]
        s = q.shape[0]
        mask = (torch.arange(s)[:, None] >= torch.arange(s)[None, :]).to(q.device)
        logits = einsum(q, k, 's1 h k, s2 k -> s1 h s2') * softmax_scale
        logits = F.relu(logits)
        score = (logits * weights.unsqueeze(-1)).sum(dim=-2, dtype=torch.float32)
        score = torch.where(mask, score, float('-inf'))
        topk_value = torch.gather(score, dim=-1, index=topk_indices.to(torch.int64))
        log_topk_prob = F.log_softmax(topk_value, dim=-1, dtype=torch.float32)
        loss = F.kl_div(
            log_topk_prob.clip(-100, 0),
            attn_score.log().clip(-100, 0),
            log_target=True,
            reduction="sum")
        all_loss.append(loss)
        all_log_topk_prob.append(log_topk_prob)
    loss = torch.stack(all_loss).sum()
    loss.backward()
    log_topk_prob = torch.cat(all_log_topk_prob, dim=0)
    return log_topk_prob.exp(), Q.grad, Weights.grad, K.grad


def test_kernel(
    B=1,
    S=2048,
    H=16,
    D=128,
    topk=64,
):
    torch.manual_seed(42)
    q = torch.randn((S, H, D)).cuda().bfloat16()
    w = torch.randn((S, H)).cuda().bfloat16()
    k = torch.randn((S, D)).cuda().bfloat16()
    offsets = torch.tensor([0, 1023, S], dtype=torch.int32).cuda()

    all_attn_score = []
    for i in range(offsets.shape[0] - 1):
        seq_len = (offsets[i + 1] - offsets[i]).item()
        mask = (torch.arange(seq_len)[:, None] >= torch.arange(topk)[None, :]).to(q.device)
        logits = torch.ones(seq_len, topk).cuda()
        logits = torch.where(mask, logits, float('-inf'))
        attn_score = F.softmax(logits, dim=-1, dtype=torch.float32)
        all_attn_score.append(attn_score)
    attn_score = torch.cat(all_attn_score, dim=0)

    topk_indices = repeat(
        torch.arange(topk, dtype=torch.int32).cuda(), 'k -> s k', s=S).contiguous()
    index_score, ref_dq, ref_dw, ref_dk = ref_indexer_bwd(q, w, k, topk_indices, attn_score,
                                                          offsets)

    dq, dw, dk = indexer_bwd_interface(q, w, k, attn_score, index_score, topk_indices, offsets)

    print(f"dq err: {get_abs_err(dq, ref_dq):.6f} ratio: {get_err_ratio(dq, ref_dq):.6f}")
    print(f"dq err: {get_abs_err(dw, ref_dw):.6f} ratio: {get_err_ratio(dw, ref_dw):.6f}")
    print(f"dq err: {get_abs_err(dk, ref_dk):.6f} ratio: {get_err_ratio(dk, ref_dk):.6f}")


if __name__ == '__main__':
    test_kernel()