example_convolution_autotune.py 7.18 KB
Newer Older
1
2
3
import torch
import argparse
import itertools
4
import tilelang
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import tilelang.language as T


def check_hopper():
    if not torch.cuda.is_available():
        return None
    props = torch.cuda.get_device_properties(0)
    compute_capability = props.major, props.minor
    return compute_capability == (9, 0)


def ref_program(stride, padding, dilation):

    def main(A, B):
        A = A.permute(0, 3, 1, 2)  # N, H, W, C -> N, C, H, W
        B = B.permute(3, 2, 0, 1)  # H, W, C, F -> F, C, H, W
        C = torch.conv2d(A, B, stride=stride, padding=padding, dilation=dilation)
        C = C.permute(0, 2, 3, 1)  # N, C, H, W -> N, H, W, C
        return C

    return main


28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
def get_configs():
    block_M = [64, 128, 256]
    block_N = [64, 128, 256]
    block_K = [32, 64]
    num_stages = [0, 1, 2, 3]
    thread_num = [128, 256]
    enable_rasterization = [True, False]
    _configs = list(
        itertools.product(
            block_M,
            block_N,
            block_K,
            num_stages,
            thread_num,
            enable_rasterization,
        ))

    configs = [
        {
            "block_M": c[0],
            "block_N": c[1],
            "block_K": c[2],
            "num_stages": c[3],
            "thread_num": c[4],
            "enable_rasteration": c[5],  # keep param name for backward-compat
        } for c in _configs
    ]
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    return configs


def get_heuristic_config() -> dict:
    # Get CUDA device properties
    if not torch.cuda.is_available():
        raise RuntimeError("CUDA is not available")
    device = torch.cuda.current_device()
    sm_major, sm_minor = torch.cuda.get_device_capability(device)
    sm_version = sm_major * 10 + sm_minor
    print(f"CUDA device capability: {sm_version}")
    if sm_version in {80}:
        return {
            "block_M": 128,
            "block_N": 256,
            "block_K": 32,
            "num_stages": 2,
            "thread_num": 128,
            "enable_rasteration": True
        }
    elif sm_version in {90}:
        return {
            "block_M": 128,
            "block_N": 256,
            "block_K": 64,
            "num_stages": 3,
            "thread_num": 256,
            "enable_rasteration": True
        }
    else:
        return {
            "block_M": 128,
            "block_N": 256,
            "block_K": 32,
            "num_stages": 0,
            "thread_num": 128,
            "enable_rasteration": True
        }


95
@tilelang.autotune(configs=get_configs())
96
@tilelang.jit(out_idx=[2])
97
98
99
100
101
102
103
104
105
106
107
108
109
110
def convolution(N,
                C,
                H,
                W,
                F,
                K,
                S,
                D,
                P,
                block_M,
                block_N,
                block_K,
                num_stages,
                thread_num,
111
                enable_rasteration,
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
                dtype="float16",
                accum_dtype="float"):
    KH, KW = K, K
    OH = (H + 2 * P - D * (K - 1) - 1) // S + 1
    OW = (W + 2 * P - D * (K - 1) - 1) // S + 1
    dtype = "float16"
    accum_dtype = "float"
    is_hopper = check_hopper()

    @T.prim_func
    def main(
            data: T.Tensor((N, H, W, C), dtype),
            kernel: T.Tensor((KH, KW, C, F), dtype),
            out: T.Tensor((N, OH, OW, F), dtype),
    ):
        with T.Kernel(
                T.ceildiv(F, block_N), T.ceildiv(N * OH * OW, block_M),
                threads=thread_num) as (bx, by):
            data_shared = T.alloc_shared((block_M, block_K), dtype)
            kernel_shared = T.alloc_shared((block_K, block_N), dtype)
            out_local = T.alloc_fragment((block_M, block_N), accum_dtype)
            out_shared = T.alloc_shared((block_M, block_N), dtype)

            kernel_flat = T.Tensor((KH * KW * C, F), dtype, kernel.data)
            out_flat = T.Tensor((N * OH * OW, F), dtype, out.data)

138
139
140
141
            if is_hopper:
                T.annotate_layout({
                    out_shared: tilelang.layout.make_swizzled_layout(out_shared),
                })
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

            T.clear(out_local)
            for k_iter in T.Pipelined(T.ceildiv(KH * KW * C, block_K), num_stages=num_stages):
                if is_hopper:
                    T.c2d_im2col(data, data_shared, by, k_iter, KH, S, D, P)
                else:
                    for i, j in T.Parallel(block_M, block_K):
                        k = k_iter * block_K + j
                        m = by * block_M + i
                        access_h = m % (OH * OW) // OW * S + k // (KW * C) * D - P
                        access_w = m % OW * S + k // C % KW * D - P
                        in_bound = ((access_h >= 0) and (access_w >= 0) and (access_h < H) and
                                    (access_w < W))
                        data_shared[i, j] = T.if_then_else(
                            in_bound, data[m // (OH * OW), access_h, access_w, k % C], 0)
                T.copy(kernel_flat[k_iter * block_K, bx * block_N], kernel_shared)
                T.gemm(data_shared, kernel_shared, out_local)

160
161
162
163
164
            if is_hopper:
                T.copy(out_local, out_shared)
                T.copy(out_shared, out_flat[by * block_M, bx * block_N])
            else:
                T.copy(out_local, out_flat[by * block_M, bx * block_N])
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

    return main


def main(n: int = 128,
         c: int = 128,
         h: int = 64,
         w: int = 64,
         f: int = 128,
         k: int = 3,
         s: int = 1,
         d: int = 1,
         p: int = 1,
         use_autotune: bool = False,
         with_roller: bool = True):
    N, C, H, W, F, K, S, D, P = n, c, h, w, f, k, s, d, p
    ref_prog = ref_program(S, P, D)
182

183
    if use_autotune:
184
        kernel = convolution(N, C, H, W, F, K, S, D, P)
185
186
    else:
        config = get_heuristic_config()
187
        kernel = convolution(N, C, H, W, F, K, S, D, P, **config)
188

189
    profiler = kernel.get_profiler(tensor_supply_type=tilelang.TensorSupplyType.Auto)
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
    tilelang_latency = profiler.do_bench()
    ref_latency = profiler.do_bench(ref_prog)
    profiler.assert_allclose(ref_prog, atol=1e-2, rtol=1e-2)
    print(f"TileLang latency: {tilelang_latency}")
    print(f"Ref latency: {ref_latency}")


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Autotuned MatMul Benchmark")
    parser.add_argument('--n', type=int, default=128, help='n')
    parser.add_argument('--c', type=int, default=128, help='c')
    parser.add_argument('--h', type=int, default=64, help='h')
    parser.add_argument('--w', type=int, default=64, help='w')
    parser.add_argument('--f', type=int, default=128, help='f')
    parser.add_argument('--k', type=int, default=3, help='k')
    parser.add_argument('--s', type=int, default=1, help='s')
    parser.add_argument('--d', type=int, default=1, help='d')
    parser.add_argument('--p', type=int, default=1, help='p')
    parser.add_argument(
        "--use_autotune",
        action="store_true",
        default=False,
        help="Whether to use autotune for matmul configs")
    parser.add_argument(
        "--with_roller",
        action="store_true",
        default=True,
        help="Whether to enable BitBLAS roller for search space")
    args = parser.parse_args()
    main(args.n, args.c, args.h, args.w, args.f, args.k, args.s, args.d, args.p, args.use_autotune,
         args.with_roller)