benchmark_mamba_chunk_scan.py 16.2 KB
Newer Older
1
2
3
4
5
6
7
import argparse
import torch
import tilelang
from tilelang.autotuner import *
import tilelang.language as T
from einops import rearrange, repeat
import itertools
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import math
from tilelang.profiler import do_bench

try:
    from mamba_ssm.ops.triton.ssd_chunk_scan import _chunk_scan_fwd
except ImportError as err:
    raise ImportError("Please install mamba-ssm to use the triton chunk scan operator.") from err

try:
    import helion
    from helion._testing import run_example
    import helion.language as hl
except ImportError as err:
    raise ImportError("Please install helion to use the helion chunk scan operator.") from err
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70


def ref_program(cb, x, dt, dA_cumsum, C, prev_states, D):
    """
    Argument:
        cb: (batch, nchunks, ngroups, chunk_size, chunk_size)
        x: (batch, seqlen, nheads, headdim)
        dt: (batch, nheads, nchunks, chunk_size)
        dA_cumsum: (batch, nheads, nchunks, chunk_size)
        C: (batch, seqlen, ngroups, dstate)
        prev_states: (batch, nchunks, nheads, headdim, dstate)
        D: (nheads, headdim) or (nheads,)
        z: (batch, seqlen, nheads, headdim)
    Return:
        out: (batch, seqlen, nheads, headdim)
    """
    _, _, ngroups, _, _ = cb.shape
    batch, seqlen, nheads, headdim = x.shape
    # _, _, ngroups, dstate = B.shape
    # assert B.shape == (batch, seqlen, ngroups, dstate)
    _, _, nchunks, chunk_size = dt.shape
    assert seqlen == nchunks * chunk_size
    # assert C.shape == B.shape
    # B = repeat(B, "b l g d -> b l (g h) d", h=nheads // ngroups)
    C = repeat(C, "b l g d -> b l (g h) d", h=nheads // ngroups)
    cb = repeat(cb, "b c g l s -> b c (g h) l s", h=nheads // ngroups)
    # CB = torch.einsum("bclhn,bcshn->bchls", rearrange(C, "b (c l) h n -> b c l h n", c=nchunks),
    #                   rearrange(B, "b (c s) h n -> b c s h n", c=nchunks))
    # (batch, nheads, nchunks, chunksize, chunksize)
    dt_segment_sum = dA_cumsum[:, :, :, :, None] - dA_cumsum[:, :, :, None, :]
    decay = torch.exp(dt_segment_sum)
    scores_decay = cb * rearrange(decay, "b h c l s -> b c h l s")
    causal_mask = torch.tril(
        torch.ones(chunk_size, chunk_size, device=x.device, dtype=bool), diagonal=0)
    scores_decay = scores_decay.masked_fill(~causal_mask, 0)
    out = torch.einsum('bchls,bhcs,bcshp->bclhp', scores_decay.to(x.dtype), dt.to(x.dtype),
                       rearrange(x, "b (c s) h p -> b c s h p", c=nchunks))
    state_decay_out = torch.exp(rearrange(dA_cumsum, "b h c l -> b c l h 1"))
    out_prev = torch.einsum('bclhn,bchpn->bclhp', rearrange(
        C, "b (c l) h n -> b c l h n", c=nchunks), prev_states.to(C.dtype)) * state_decay_out
    out = out + out_prev
    out = rearrange(out, "b c l h p -> b (c l) h p")
    if D is not None:
        if D.dim() == 1:
            D = rearrange(D, "h -> h 1")
        out = out + x * D
    return out


71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
def chunk_scan_triton(cb, x, dt, dA_cumsum, C, states, D):
    out, _ = _chunk_scan_fwd(cb, x, dt, dA_cumsum, C, states, D)
    return out


def chunk_scan_helion(cb, x, dt, dA_cumsum, C, states, D):

    @helion.kernel()
    def helion_mamba2_chunk_scan_kernel(
        cb: torch.Tensor,
        x: torch.Tensor,
        dt: torch.Tensor,
        dA_cumsum: torch.Tensor,
        C: torch.Tensor,
        prev_states: torch.Tensor,
        D: torch.Tensor,
    ) -> torch.Tensor:
        """
        Argument:
            cb: (batch, nchunks, ngroups, chunk_size, chunk_size)
            x: (batch, seqlen, nheads, headdim)
            dt: (batch, nheads, nchunks, chunk_size)
            dA_cumsum: (batch, nheads, nchunks, chunk_size)
            C: (batch, seqlen, ngroups, dstate)
            prev_states: (batch, nchunks, nheads, headdim, dstate)
            D: (nheads,)
        Return:
            out: (batch, seqlen, nheads, headdim)
        """

        batch, nchunks, ngroups, chunk_size, _ = cb.shape
        _, seqlen, nheads, headdim = x.shape
        _, _, _, dstate = C.shape
        assert nchunks == (seqlen + chunk_size - 1) // chunk_size

        block_m = hl.register_block_size(chunk_size)
        block_n = hl.register_block_size(headdim)
        block_k = hl.register_block_size(64, 64)
        dstate = hl.specialize(dstate)

        assert cb.shape == (batch, nchunks, ngroups, chunk_size, chunk_size)
        assert x.shape == (batch, seqlen, nheads, headdim)
        assert dt.shape == (batch, nheads, nchunks, chunk_size)
        assert dA_cumsum.shape == (batch, nheads, nchunks, chunk_size)
        assert C.shape == (batch, seqlen, ngroups, dstate)
        assert prev_states.shape == (batch, nchunks, nheads, headdim, dstate)
        assert D.shape == (nheads,)

        dtype = cb.dtype
        accum_dtype = torch.float32
        assert (x.dtype == dt.dtype == dA_cumsum.dtype == C.dtype == prev_states.dtype == D.dtype ==
                dtype)

        out = torch.empty_like(x)

        p = 1.44269504

        for tile_h, tile_m, tile_n, tile_b, tile_c in hl.tile(
            [nheads, chunk_size, headdim, batch, nchunks],
                block_size=[1, block_m, block_n, 1, 1],
        ):
            acc_o = hl.zeros([tile_m, tile_n], dtype=accum_dtype)
            dA_cumsum_local_m = dA_cumsum[tile_b.begin, tile_h.begin, tile_c.begin,
                                          tile_m].to(torch.float32)
            scale_m_local = torch.exp2(dA_cumsum_local_m * p)

            C_local = C[
                tile_b.begin,
                tile_m.index + tile_c.begin * chunk_size,
                tile_h.begin // (nheads // ngroups),
                :,
            ]
            prev_states_local = prev_states[tile_b.begin, tile_c.begin, tile_h.begin, tile_n, :]
            acc_o = hl.dot(C_local, prev_states_local.T, acc=acc_o)
            acc_o *= scale_m_local[:, None]

            for tile_k in hl.tile((tile_m.id + 1) * block_m, block_size=block_k):
                cb_local = cb[
                    tile_b.begin,
                    tile_c.begin,
                    tile_h.begin // (nheads // ngroups),
                    tile_m,
                    tile_k,
                ]
                dA_cumsum_local_k = dA_cumsum[tile_b.begin, tile_h.begin, tile_c.begin,
                                              tile_k].to(torch.float32)
                cb_local *= torch.exp2(dA_cumsum_local_m[:, None] * p -
                                       dA_cumsum_local_k[None, :] * p)
                dt_local = dt[tile_b.begin, tile_h.begin, tile_c.begin, tile_k].to(torch.float32)
                cb_local = (cb_local * dt_local[None, :]).to(dtype)
                pred = (tile_m.index + 0)[:, None] >= (tile_k.index + 0)[None, :]
                cb_local = torch.where(pred, cb_local, torch.zeros_like(cb_local))
                x_local = x[
                    tile_b.begin,
                    tile_c.begin * chunk_size + tile_k.index,
                    tile_h.begin,
                    tile_n,
                ]
                acc_o = hl.dot(cb_local, x_local, acc=acc_o)

            D_local = D[tile_h.begin].to(torch.float32)
            x_residual = x[tile_b.begin, tile_c.begin * chunk_size + tile_m.index, tile_h.begin,
                           tile_n].to(torch.float32)
            acc_o += x_residual * D_local
            out[tile_b.begin, tile_c.begin * chunk_size + tile_m.index, tile_h.begin,
                tile_n] = acc_o.to(dtype=dtype)

        return out

    args = (cb, x, dt, dA_cumsum, C, states, D)
    run_example(helion_mamba2_chunk_scan_kernel, ref_program, args)


184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
def get_configs():
    iter_params = dict(
        block_M=[64, 128, 256],
        block_N=[32, 64],
        block_K=[64, 128, 256],
        block_Dstate=[128],
        num_stages=[1, 2, 3, 4, 5])
    return [dict(zip(iter_params, values)) for values in itertools.product(*iter_params.values())]


@autotune(configs=get_configs(), warmup=10, rep=10)
@tilelang.jit(
    out_idx=[7],
    pass_configs={
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
    },
)
def chunk_scan_fwd(batch,
                   seqlen,
                   chunk_size,
                   ngroups,
                   nheads,
                   headdim,
                   dstate,
                   block_M=64,
                   block_N=64,
                   block_K=64,
                   block_Dstate=128,
                   num_stages=2,
                   threads=128):
    dtype = "float16"
    accum_dtype = "float"
    nchunks = T.ceildiv(seqlen, chunk_size)
    p = 1.44269504

    @T.prim_func
    def main(
            cb: T.Tensor((batch, nchunks, ngroups, chunk_size, chunk_size), dtype),  # type: ignore
            x: T.Tensor((batch, seqlen, nheads, headdim), dtype),  # type: ignore
            dt: T.Tensor((batch, nheads, nchunks, chunk_size), dtype),  # type: ignore
            dA_cumsum: T.Tensor((batch, nheads, nchunks, chunk_size), dtype),  # type: ignore
            C: T.Tensor((batch, seqlen, ngroups, dstate), dtype),  # type: ignore
            prev_states: T.Tensor((batch, nchunks, nheads, headdim, dstate), dtype),  # type: ignore
            D: T.Tensor((nheads), dtype),  # type: ignore
            Output: T.Tensor((batch, seqlen, nheads, headdim), dtype)  # type: ignore
    ):
        with T.Kernel(
                nheads,
                T.ceildiv(chunk_size, block_M) * T.ceildiv(headdim, block_N),
                batch * nchunks,
                threads=threads) as (bz, bx, by):
            acc_o = T.alloc_fragment((block_M, block_N), accum_dtype)
            acc_o_shared = T.alloc_shared((block_M, block_N), dtype)
            cb_shared = T.alloc_shared((block_M, block_K), dtype, scope="shared.dyn")
            cb_local = T.alloc_fragment((block_M, block_K), dtype)
            dA_cs_k_shared = T.alloc_shared((block_K), dtype, scope="shared")
            dA_cs_k_local = T.alloc_fragment((block_K), accum_dtype)
            dA_cs_m_local = T.alloc_fragment((block_M), accum_dtype)
            dt_shared = T.alloc_shared((block_K), dtype, scope="shared")
            dt_local = T.alloc_fragment((block_K), accum_dtype)
            x_shared = T.alloc_shared((block_K, block_N), dtype, scope="shared.dyn")
            dA_cs_m_shared = T.alloc_shared((block_M), dtype, scope="shared")
            scale_m_local = T.alloc_fragment((block_M), accum_dtype)
            C_shared = T.alloc_shared((block_M, block_Dstate), dtype)
            prev_state_shared = T.alloc_shared((block_N, block_Dstate), dtype)
            D_local = T.alloc_fragment((1), accum_dtype)
            x_residual_shared = T.alloc_shared((block_M, block_N), dtype, scope="shared.dyn")
            x_residual_local = T.alloc_fragment((block_M, block_N), accum_dtype)

            batch_idx = by % batch
            chunk_idx = by // batch
            # m: chunk_size
            # n : headdim
            m_idx = bx // T.ceildiv(headdim, block_N)
            n_idx = bx % T.ceildiv(headdim, block_N)

            T.annotate_layout({
                acc_o_shared: tilelang.layout.make_swizzled_layout(acc_o_shared),
                cb_shared: tilelang.layout.make_swizzled_layout(cb_shared),
                x_residual_shared: tilelang.layout.make_swizzled_layout(x_residual_shared)
            })

            T.no_set_max_nreg()

            T.copy(dA_cumsum[batch_idx, bz, chunk_idx, m_idx * block_M:(m_idx + 1) * block_M],
                   dA_cs_m_shared)
            T.copy(dA_cs_m_shared, dA_cs_m_local)
            T.clear(acc_o)

            for i in T.Parallel(block_M):
                scale_m_local[i] = T.exp2(dA_cs_m_local[i] * p)
            T.copy(
                C[batch_idx, chunk_idx * chunk_size + m_idx * block_M:chunk_idx * chunk_size +
                  (m_idx + 1) * block_M, bz // (nheads // ngroups), 0:block_Dstate], C_shared)
            T.copy(
                prev_states[batch_idx, chunk_idx, bz, n_idx * block_N:(n_idx + 1) * block_N,
                            0:block_Dstate], prev_state_shared)
            T.gemm(C_shared, prev_state_shared, acc_o, transpose_B=True)
            for i, j in T.Parallel(block_M, block_N):
                acc_o[i, j] *= scale_m_local[i]

            loop_range = T.ceildiv((m_idx + 1) * block_M, block_K)

            for k in T.Pipelined(loop_range, num_stages=num_stages):
                T.copy(
                    cb[batch_idx, chunk_idx, bz // (nheads // ngroups),
                       m_idx * block_M:(m_idx + 1) * block_M, k * block_K:(k + 1) * block_K],
                    cb_shared)
                T.copy(cb_shared, cb_local)
                T.copy(dA_cumsum[batch_idx, bz, chunk_idx, k * block_K:(k + 1) * block_K],
                       dA_cs_k_shared)
                T.copy(dA_cs_k_shared, dA_cs_k_local)
                for i, j in T.Parallel(block_M, block_K):
                    cb_local[i,
                             j] = cb_local[i,
                                           j] * T.exp2(dA_cs_m_local[i] * p - dA_cs_k_local[j] * p)
                T.copy(dt[batch_idx, bz, chunk_idx, k * block_K:(k + 1) * block_K], dt_shared)
                T.copy(dt_shared, dt_local)
                for i, j in T.Parallel(block_M, block_K):
                    cb_local[i, j] *= dt_local[j]
                for i, j in T.Parallel(block_M, block_K):
                    cb_local[i, j] = T.if_then_else(m_idx * block_M + i >= k * block_K + j,
                                                    cb_local[i, j], 0)
                T.copy(
                    x[batch_idx, chunk_idx * chunk_size + k * block_K:chunk_idx * chunk_size +
                      (k + 1) * block_K, bz, n_idx * block_N:(n_idx + 1) * block_N], x_shared)
                T.gemm(cb_local, x_shared, acc_o)

            D_local[0] = D[bz]
            T.copy(
                x[batch_idx, chunk_idx * chunk_size + m_idx * block_M:chunk_idx * chunk_size +
                  (m_idx + 1) * block_M, bz, n_idx * block_N:(n_idx + 1) * block_N],
                x_residual_shared)
            T.copy(x_residual_shared, x_residual_local)
            for i, j in T.Parallel(block_M, block_N):
                acc_o[i, j] += x_residual_local[i, j] * D_local[0]

            T.copy(acc_o, acc_o_shared)
            T.copy(
                acc_o_shared,
                Output[batch_idx, chunk_idx * chunk_size + m_idx * block_M:chunk_idx * chunk_size +
                       (m_idx + 1) * block_M, bz, n_idx * block_N:(n_idx + 1) * block_N])

    return main


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch', type=int, default=8, help='batch size')
    parser.add_argument('--heads', type=int, default=80, help='heads')
    parser.add_argument('--groups', type=int, default=1, help='groups')
    parser.add_argument('--seq_len', type=int, default=4096, help='sequence length')
    parser.add_argument('--chunk_size', type=int, default=256, help='chunk size')
    parser.add_argument('--dim', type=int, default=64, help='dim')
    parser.add_argument('--dstate', type=int, default=128, help='dstate')
    parser.add_argument('--tune', action='store_true', help='tune configs')
    args = parser.parse_args()
    batch, heads, groups, seq_len, chunk_size, dim, dstate = args.batch, args.heads, args.groups, args.seq_len, args.chunk_size, args.dim, args.dstate
342
    nchunks = math.ceil(seq_len / chunk_size)
343
344
    total_flops = 2 * batch * seq_len * chunk_size * heads * dim * 0.5 + 2 * batch * seq_len * heads * dim * dstate

345
    print("Benchmarking TileLang...")
346
347
348
349
350
351
352
    kernel = chunk_scan_fwd(batch, seq_len, chunk_size, groups, heads, dim, dstate)
    best_latency = kernel.latency
    best_config = kernel.config
    ref_latency = kernel.ref_latency
    print(f"Best latency: {best_latency}")
    print(f"Best TFlops: {total_flops / best_latency * 1e-9}")
    print(f"Best config: {best_config}")
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

    cb = torch.randn(batch, nchunks, groups, chunk_size, chunk_size).half().cuda()
    x = torch.randn(batch, seq_len, heads, dim).half().cuda()
    dt = torch.randn(batch, heads, nchunks, chunk_size).half().cuda()
    dA_cumsum = torch.randn(batch, heads, nchunks, chunk_size).half().cuda()
    C = torch.randn(batch, seq_len, groups, dstate).half().cuda()
    states = torch.randn(batch, nchunks, heads, dim, dstate).half().cuda()
    D = torch.randn(heads).half().cuda()

    print("Benchmarking Triton...")
    triton_latency = do_bench(
        lambda: chunk_scan_triton(cb, x, dt, dA_cumsum, C, states, D), _n_warmup=10, _n_repeat=10)
    print(f"Triton TFlops: {total_flops / triton_latency * 1e-9}")

    print("Benchmarking Helion...")
    chunk_scan_helion(cb, x, dt, dA_cumsum, C, states, D)