test_tilelang_language_copy.py 6.69 KB
Newer Older
1
2
3
import tilelang
import tilelang.language as T
import torch
4
import tilelang.testing
5

6
7
print(torch.__version__)

8

9
10
# add decorator @tilelang.jit if you want to return a torch function
# @tilelang.jit
11
def tilelang_copy(M, N, block_M, block_N, src_dtype="float16", dst_dtype="float16"):
12
13
    @T.prim_func
    def main(
14
15
        A: T.Tensor((M, N), src_dtype),
        B: T.Tensor((M, N), dst_dtype),
16
17
18
    ):
        # Initialize Kernel Context
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=128) as (bx, by):
19
20
21
22
            T.copy(
                A[by * block_M : (by + 1) * block_M, bx * block_N : (bx + 1) * block_N],
                B[by * block_M : (by + 1) * block_M, bx * block_N : (bx + 1) * block_N],
            )
23
24
25
26
27

    return main


def run_tilelang_copy(M=1024, N=1024, block_M=128, block_N=128, dtype="float16"):
28
    program = tilelang_copy(M, N, block_M, block_N, src_dtype=dtype, dst_dtype=dtype)
29
30
31
32
    kernel = tilelang.compile(
        program,
        out_idx=[1],
        target="cuda",
33
34
        pass_configs={tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True, tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True},
    )
35
36
    source = kernel.get_kernel_source()
    print(source)
37
38
39
40
41
42
43
44
45
46
47
    a = torch.randn(M, N, device="cuda", dtype=getattr(torch, dtype))
    b = kernel(a)
    torch.testing.assert_close(b, a, rtol=1e-2, atol=1e-2)


def test_tilelang_copy():
    run_tilelang_copy(M=1024, N=1024, block_M=128, block_N=128)
    run_tilelang_copy(M=1024, N=576, block_M=32, block_N=576)
    run_tilelang_copy(M=1024, N=576, block_M=32, block_N=576, dtype="float")


48
49
50
def tilelang_copy_with_stride(M, N, NN, block_M, block_N, dtype="float16"):
    @T.prim_func
    def main(
51
52
        A: T.StridedTensor((M, N), (NN, 1), dtype),
        B: T.Tensor((M, N), dtype),
53
54
55
56
57
58
59
60
61
    ):
        # Initialize Kernel Context
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=128) as (bx, by):
            for i, j in T.Parallel(block_M, block_N):
                B[by * block_M + i, bx * block_N + j] = A[by * block_M + i, bx * block_N + j]

    return main


62
def run_tilelang_copy_with_stride(M=1024, N=1024, NN=2048, block_M=128, block_N=128, dtype="float16"):
63
64
65
66
67
68
69
70
71
72
    if isinstance(NN, int):
        assert NN > N, "NN must be greater than N"
    program = tilelang_copy_with_stride(M, N, NN, block_M, block_N, dtype)
    kernel = tilelang.compile(
        program,
        out_idx=[1],
        target="cuda",
        pass_configs={
            tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True,
            tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True,
73
74
        },
    )
75
76
77
78
79
80
81
82
83
    if isinstance(NN, T.Var):
        NN = N * 2
    a = torch.randn(M, NN, device="cuda", dtype=getattr(torch, dtype))
    b = kernel(a[:, :N])
    torch.testing.assert_close(b, a[:, :N], rtol=1e-2, atol=1e-2)


def test_tilelang_copy_with_stride():
    run_tilelang_copy_with_stride(M=1024, N=1024, NN=2048, block_M=128, block_N=128)
84
    run_tilelang_copy_with_stride(M=1024, N=1024, NN=T.dynamic("NN"), block_M=128, block_N=128)
85
86


87
88
89
def tilelang_copy_bufferload(num_tokens, dtype="float16"):
    @T.prim_func
    def main(
90
91
        indices: T.Tensor((num_tokens,), "int32"),
        x: T.Tensor((num_tokens,), dtype),
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
    ):
        with T.Kernel(num_tokens, threads=32) as pid:
            idx = T.alloc_local([1], "int32")
            T.copy(indices[pid], idx[0])
            x[idx[0]] = x[idx[0]] + 1

    return main


def run_tilelang_copy_bufferload(num_tokens=128, dtype="float16"):
    program = tilelang_copy_bufferload(num_tokens, dtype)
    # test compilation only
    tilelang.compile(
        program,
        out_idx=[1],
107
108
        pass_configs={tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True, tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True},
    )
109
110
111
112
113
114
115
116
117


def test_tilelang_copy_bufferload():
    run_tilelang_copy_bufferload(num_tokens=128)


def tilelang_copy_buffer_load_with_parallel(M, N, block_M, block_N, dtype="float16"):
    @T.prim_func
    def main(
118
119
        A: T.Tensor((M, N), dtype),
        B: T.Tensor((M, N), dtype),
120
121
122
123
124
125
126
127
128
    ):
        # Initialize Kernel Context
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=128) as (bx, by):
            for i, j in T.Parallel(block_M, block_N):
                T.copy(A[by * block_M + i, bx * block_N + j], B[by * block_M + i, bx * block_N + j])

    return main


129
def run_tilelang_copy_buffer_load_with_parallel(M=1024, N=1024, block_M=128, block_N=128, dtype="float16"):
130
131
132
133
134
    program = tilelang_copy_buffer_load_with_parallel(M, N, block_M, block_N, dtype)
    kernel = tilelang.compile(
        program,
        out_idx=[1],
        target="cuda",
135
136
        pass_configs={tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True, tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True},
    )
137
138
139
140
141
142
143
144
145
    a = torch.randn(M, N, device="cuda", dtype=getattr(torch, dtype))
    b = kernel(a)
    torch.testing.assert_close(b, a, rtol=1e-2, atol=1e-2)


def test_tilelang_copy_buffer_load_with_parallel():
    run_tilelang_copy_buffer_load_with_parallel(M=1024, N=1024, block_M=128, block_N=128)


146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
def run_tilelang_copy_fp8_e8m0(M=1024, N=1024, block_M=128, block_N=128, src_dtype="float8_e8m0fnu", dst_dtype="float8_e8m0fnu"):
    program = tilelang_copy(M, N, block_M, block_N, src_dtype=src_dtype, dst_dtype=dst_dtype)
    kernel = tilelang.compile(
        program,
        out_idx=[1],
    )
    source = kernel.get_kernel_source()
    assert "fp8_e8_t" in source
    dummy_input = torch.randint(0, 100, (M, N), device="cuda", dtype=torch.int8).view(torch.float8_e8m0fnu)
    output = kernel(dummy_input)
    assert output is not None


@tilelang.testing.requires_cuda
@tilelang.testing.requires_cuda_compute_version_ge(10, 0)
def test_tilelang_copy_fp8_e8m0():
    run_tilelang_copy_fp8_e8m0(src_dtype="float8_e8m0fnu", dst_dtype="float8_e8m0fnu")


def run_tilelang_copy_fp4(M=1024, N=1024, block_M=128, block_N=128, src_dtype="float4_e2m1fn", dst_dtype="float4_e2m1fn"):
    program = tilelang_copy(M, N, block_M, block_N, src_dtype=src_dtype, dst_dtype=dst_dtype)
    kernel = tilelang.compile(
        program,
        out_idx=[1],
    )
    source = kernel.get_kernel_source()
    assert "fp4_e2_t" in source
    # For FP4, use same shape as kernel expects, since int8 is used as storage type
    dummy_input = torch.randint(0, 100, (M, N), device="cuda", dtype=torch.int8)
    output = kernel(dummy_input)
    assert output is not None


@tilelang.testing.requires_cuda
@tilelang.testing.requires_cuda_compute_version_ge(10, 0)
def test_tilelang_copy_fp4():
    run_tilelang_copy_fp4(src_dtype="float4_e2m1fn", dst_dtype="float4_e2m1fn")
    run_tilelang_copy_fp4(src_dtype="float4_e2m1fn", dst_dtype="float16")
    run_tilelang_copy_fp4(src_dtype="float4_e2m1fn", dst_dtype="bfloat16")


187
188
if __name__ == "__main__":
    tilelang.testing.main()