gemm_sm89.h 20.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
#pragma once

#include "common.h"
#include "cuda_fp8.h"
#include <cute/algorithm/clear.hpp>
#include <cute/arch/mma_sm80.hpp>
#include <cute/atom/mma_atom.hpp>
#include <cute/atom/mma_traits.hpp>
#include <cute/underscore.hpp>

namespace cute {

template <typename A_type, typename B_type, typename C_type, int num_warp_m,
14
          int num_warp_n, int N>
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
struct DispatchInstruction;

using _X = Underscore;

#if (defined(__CUDA_ARCH_LIST__) && (__CUDA_ARCH_LIST__ >= 890))

struct SM89_16x8x32_F32F8F8F32_E4M3_TN {
  using DRegisters = float[4];
  using ARegisters = uint32_t[4];
  using BRegisters = uint32_t[2];
  using CRegisters = float[4];

  CUTE_HOST_DEVICE static void fma(float &d0, float &d1, float &d2, float &d3,
                                   uint32_t const &a0, uint32_t const &a1,
                                   uint32_t const &a2, uint32_t const &a3,
                                   uint32_t const &b0, uint32_t const &b1,
                                   float const &c0, float const &c1,
                                   float const &c2, float const &c3) {
    asm volatile("mma.sync.aligned.m16n8k32.row.col.f32.e4m3.e4m3.f32 "
                 "{%0,  %1,  %2,  %3},"
                 "{%4,  %5,  %6,  %7},"
                 "{%8,  %9},"
                 "{%10, %11, %12, %13};\n"
                 : "=f"(d0), "=f"(d1), "=f"(d2), "=f"(d3)
                 : "r"(a0), "r"(a1), "r"(a2), "r"(a3), "r"(b0), "r"(b1),
                   "f"(c0), "f"(c1), "f"(c2), "f"(c3));
  }
};

struct SM89_16x8x32_F32F8F8F32_E5M2_TN {
  using DRegisters = float[4];
  using ARegisters = uint32_t[4];
  using BRegisters = uint32_t[2];
  using CRegisters = float[4];

  CUTE_HOST_DEVICE static void fma(float &d0, float &d1, float &d2, float &d3,
                                   uint32_t const &a0, uint32_t const &a1,
                                   uint32_t const &a2, uint32_t const &a3,
                                   uint32_t const &b0, uint32_t const &b1,
                                   float const &c0, float const &c1,
                                   float const &c2, float const &c3) {
    asm volatile("mma.sync.aligned.m16n8k32.row.col.f32.e5m2.e5m2.f32 "
                 "{%0,  %1,  %2,  %3},"
                 "{%4,  %5,  %6,  %7},"
                 "{%8,  %9},"
                 "{%10, %11, %12, %13};\n"
                 : "=f"(d0), "=f"(d1), "=f"(d2), "=f"(d3)
                 : "r"(a0), "r"(a1), "r"(a2), "r"(a3), "r"(b0), "r"(b1),
                   "f"(c0), "f"(c1), "f"(c2), "f"(c3));
  }
};

// (T32,V1) -> (M8,N8)
using SM80_8x4 = Layout<Shape<Shape<_4, _8>, _1>, Stride<Stride<_8, _1>, _0>>;
// (T32,V2) -> (M8,N8)
using SM80_8x8_Row =
    Layout<Shape<Shape<_4, _8>, _2>, Stride<Stride<_16, _1>, _8>>;
// (T32,V4) -> (M8,N16)
using SM80_8x16_Row =
    Layout<Shape<Shape<_4, _8>, _4>, Stride<Stride<_32, _1>, _8>>;
// (T32,V4) -> (M16,N8)
using SM80_16x8_Row = Layout<Shape<Shape<_4, _8>, Shape<_2, _2>>,
                             Stride<Stride<_32, _1>, Stride<_16, _8>>>;

template <> struct MMA_Traits<SM89_16x8x32_F32F8F8F32_E4M3_TN> {
  using ValTypeD = float;
  using ValTypeA = fp8_e4_t;
  using ValTypeB = fp8_e4_t;
  using ValTypeC = float;

  using Shape_MNK = Shape<_16, _8, _32>;
  using ThrID = Layout<_32>;
  using ALayout = Layout<Shape<Shape<_4, _8>, Shape<_4, _2, _2>>,
                         Stride<Stride<_64, _1>, Stride<_16, _8, _256>>>;
  using BLayout = Layout<Shape<Shape<_4, _8>, Shape<_4, _2>>,
                         Stride<Stride<_32, _1>, Stride<_8, _128>>>;
  using CLayout = SM80_16x8_Row;
};

template <> struct MMA_Traits<SM89_16x8x32_F32F8F8F32_E5M2_TN> {
  using ValTypeD = float;
  using ValTypeA = fp8_e5_t;
  using ValTypeB = fp8_e5_t;
  using ValTypeC = float;

  using Shape_MNK = Shape<_16, _8, _32>;
  using ThrID = Layout<_32>;
  using ALayout = Layout<Shape<Shape<_4, _8>, Shape<_4, _2, _2>>,
                         Stride<Stride<_64, _1>, Stride<_16, _8, _256>>>;
  using BLayout = Layout<Shape<Shape<_4, _8>, Shape<_4, _2>>,
                         Stride<Stride<_32, _1>, Stride<_8, _128>>>;
  using CLayout = SM80_16x8_Row;
};

109
110
111
template <int num_warp_m, int num_warp_n, int N>
struct DispatchInstruction<fp8_e4_t, fp8_e4_t, float, num_warp_m, num_warp_n,
                           N> {
112
  using MMA = MMA_Atom<SM89_16x8x32_F32F8F8F32_E4M3_TN>;
113
  using MMA_Group = Tile<_X, Int<std::min(num_warp_n * 16, N)>, _X>;
114
};
115
116
117
template <int num_warp_m, int num_warp_n, int N>
struct DispatchInstruction<fp8_e5_t, fp8_e5_t, float, num_warp_m, num_warp_n,
                           N> {
118
  using MMA = MMA_Atom<SM89_16x8x32_F32F8F8F32_E5M2_TN>;
119
  using MMA_Group = Tile<_X, Int<std::min(num_warp_n * 16, N)>, _X>;
120
121
};

122
123
template <int num_warp_m, int num_warp_n, int N>
struct DispatchInstruction<half_t, half_t, half_t, num_warp_m, num_warp_n, N> {
124
  using MMA = MMA_Atom<SM80_16x8x16_F16F16F16F16_TN>;
125
  using MMA_Group = Tile<_X, Int<std::min(num_warp_n * 16, N)>, _X>;
126
};
127
128
template <int num_warp_m, int num_warp_n, int N>
struct DispatchInstruction<half_t, half_t, float, num_warp_m, num_warp_n, N> {
129
  using MMA = MMA_Atom<SM80_16x8x16_F32F16F16F32_TN>;
130
  using MMA_Group = Tile<_X, Int<std::min(num_warp_n * 16, N)>, _X>;
131
};
132
template <int num_warp_m, int num_warp_n, int N>
133
struct DispatchInstruction<bfloat16_t, bfloat16_t, float, num_warp_m,
134
                           num_warp_n, N> {
135
  using MMA = MMA_Atom<SM80_16x8x16_F32BF16BF16F32_TN>;
136
  using MMA_Group = Tile<_X, Int<std::min(num_warp_n * 16, N)>, _X>;
137
};
138
template <int num_warp_m, int num_warp_n, int N>
139
struct DispatchInstruction<tfloat32_t, tfloat32_t, float, num_warp_m,
140
                           num_warp_n, N> {
141
  using MMA = MMA_Atom<SM80_16x8x8_F32TF32TF32F32_TN>;
142
  using MMA_Group = Tile<_X, Int<std::min(num_warp_n * 16, N)>, _X>;
143
};
144
145
template <int num_warp_m, int num_warp_n, int N>
struct DispatchInstruction<int8_t, int8_t, int, num_warp_m, num_warp_n, N> {
146
  using MMA = MMA_Atom<SM80_16x8x32_S32S8S8S32_TN>;
147
  using MMA_Group = Tile<_X, Int<std::min(num_warp_n * 16, N)>, _X>;
148
};
149
150
template <int num_warp_m, int num_warp_n, int N>
struct DispatchInstruction<double, double, double, num_warp_m, num_warp_n, N> {
151
152
153
154
  using MMA = MMA_Atom<SM80_8x8x4_F64F64F64F64_TN>;
  using MMA_Group = Tile<Int<num_warp_m * 16>, Int<num_warp_n * 16>, _X>;
};
#elif (defined(__CUDA_ARCH_LIST__) && (__CUDA_ARCH_LIST__ >= 750))
155
156
template <int num_warp_m, int num_warp_n, int N>
struct DispatchInstruction<half_t, half_t, float, num_warp_m, num_warp_n, N> {
157
  using MMA = MMA_Atom<SM75_16x8x8_F32F16F16F32_TN>;
158
  using MMA_Group = Tile<_X, Int<std::min(num_warp_n * 16, N)>, _16>;
159
160
161
};
#endif

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
template <int N, int num_warp_n, bool transpose> struct SelectCopy {
  static constexpr int remainder = (N / num_warp_n) % 16;
  using type = std::conditional_t<
      remainder == 4 || remainder == 8 || remainder == 0,
      std::conditional_t<
          transpose,
          std::conditional_t<
              remainder == 4, SM75_U32x1_LDSM_N,
              std::conditional_t<remainder == 8, SM75_U32x2_LDSM_N,
                                 SM75_U32x4_LDSM_N>>,
          std::conditional_t<
              remainder == 4, SM75_U16x2_LDSM_T,
              std::conditional_t<remainder == 8, SM75_U16x4_LDSM_T,
                                 SM75_U16x8_LDSM_T>>>,
      DefaultCopy>;
};

179
180
template <int Bits, int N, int K, bool K_inner, int num_warp_n,
          typename Enable = void>
181
182
183
184
185
186
187
188
189
190
191
struct OperandTraits {
  // Primary template, use padded layout and default copy
  static constexpr int stride = K_inner ? K : N;
  static constexpr int padded =
      stride % (256 / Bits) == 0 ? stride + 128 / Bits : stride;
  using Layout = typename std::conditional<
      K_inner, Layout<Shape<Int<N>, Int<K>>, Shape<Int<padded>, _1>>,
      Layout<Shape<Int<N>, Int<K>>, Shape<_1, Int<padded>>>>::type;
  using Copy = DefaultCopy;
};

192
193
template <int N, int K, int num_warp_n>
struct OperandTraits<16, N, K, true, num_warp_n,
194
195
196
197
                     typename std::enable_if<K % 64 == 32>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 3, 3>{}, Layout<Shape<_8, _32>, Stride<_32, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
198
  using Copy = typename SelectCopy<N, num_warp_n, true>::type;
199
200
};

201
202
template <int N, int K, int num_warp_n>
struct OperandTraits<16, N, K, true, num_warp_n,
203
204
205
206
                     typename std::enable_if<K % 64 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<3, 3, 3>{}, Layout<Shape<_8, _64>, Stride<_64, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
207
  using Copy = typename SelectCopy<N, num_warp_n, true>::type;
208
209
};

210
211
template <int N, int K, int num_warp_n>
struct OperandTraits<16, N, K, false, num_warp_n,
212
213
214
215
216
                     typename std::enable_if<N % 64 == 32>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 3, 3>{}, Layout<Shape<_32, _8>, Stride<_1, _32>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{},
                                        Step<_2, _1>{}));
217
  using Copy = typename SelectCopy<N, num_warp_n, false>::type;
218
219
};

220
221
template <int N, int K, int num_warp_n>
struct OperandTraits<16, N, K, false, num_warp_n,
222
223
224
225
226
                     typename std::enable_if<N % 64 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<3, 3, 3>{}, Layout<Shape<_64, _8>, Stride<_1, _64>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{},
                                        Step<_2, _1>{}));
227
  using Copy = typename SelectCopy<N, num_warp_n, false>::type;
228
229
};

230
231
template <int N, int K, int num_warp_n>
struct OperandTraits<32, N, K, true, num_warp_n,
232
233
234
235
                     typename std::enable_if<K % 32 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<3, 2, 3>{}, Layout<Shape<_8, _32>, Stride<_32, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
236
  using Copy = typename SelectCopy<N, num_warp_n, true>::type;
237
238
};

239
240
template <int N, int K, int num_warp_n>
struct OperandTraits<32, N, K, true, num_warp_n,
241
242
243
244
                     typename std::enable_if<K % 32 == 16>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 2, 3>{}, Layout<Shape<_8, _16>, Stride<_16, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
245
  using Copy = typename SelectCopy<N, num_warp_n, true>::type;
246
247
};

248
249
template <int N, int K, int num_warp_n>
struct OperandTraits<32, N, K, false, num_warp_n,
250
251
252
253
254
255
256
257
                     typename std::enable_if<N % 32 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<3, 2, 3>{}, Layout<Shape<_32, _8>, Stride<_1, _32>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{},
                                        Step<_2, _1>{}));
  using Copy = UniversalCopy<tfloat32_t>;
};

258
259
template <int N, int K, int num_warp_n>
struct OperandTraits<32, N, K, false, num_warp_n,
260
261
262
263
264
265
266
267
                     typename std::enable_if<N % 32 == 16>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 2, 3>{}, Layout<Shape<_16, _8>, Stride<_1, _16>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{},
                                        Step<_2, _1>{}));
  using Copy = UniversalCopy<tfloat32_t>;
};

268
269
template <int N, int K, int num_warp_n>
struct OperandTraits<8, N, K, true, num_warp_n,
270
271
272
273
                     typename std::enable_if<K % 128 == 64>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 4, 3>{}, Layout<Shape<_8, _64>, Stride<_64, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
274
  using Copy = typename SelectCopy<N, num_warp_n, true>::type;
275
276
};

277
278
template <int N, int K, int num_warp_n>
struct OperandTraits<8, N, K, true, num_warp_n,
279
280
281
282
                     typename std::enable_if<K % 128 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<3, 4, 3>{}, Layout<Shape<_8, _128>, Stride<_128, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
283
  using Copy = typename SelectCopy<N, num_warp_n, true>::type;
284
285
};

286
287
template <int N, int K, int num_warp_n>
struct OperandTraits<64, N, K, true, num_warp_n,
288
289
290
291
292
293
294
                     typename std::enable_if<K % 16 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 0, 4>{}, Layout<Shape<_4, _16>, Stride<_16, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
  using Copy = DefaultCopy;
};

295
296
template <int N, int K, int num_warp_n>
struct OperandTraits<64, N, K, false, num_warp_n,
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
                     typename std::enable_if<N % 16 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 2, 2>{}, Layout<Shape<_16, _4>, Stride<_1, _16>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{},
                                        Step<_2, _1>{}));
  using Copy = DefaultCopy;
};

template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
          bool trans_B, bool clear_accum, typename A_type_raw,
          typename B_type_raw, typename C_type_raw>
class GemmTensorOp {
public:
  using A_type =
      typename std::conditional<std::is_same<A_type_raw, float>::value,
                                tfloat32_t, A_type_raw>::type;
  using B_type =
      typename std::conditional<std::is_same<B_type_raw, float>::value,
                                tfloat32_t, A_type_raw>::type;
  using C_type = C_type_raw;
  using Instruction =
318
      DispatchInstruction<A_type, B_type, C_type, num_warp_m, num_warp_n, N>;
319
320

  using OperandATraits =
321
      OperandTraits<sizeof_bits<A_type>::value, M, K, !trans_A, num_warp_m>;
322
  using OperandBTraits =
323
324
      OperandTraits<sizeof_bits<B_type>::value, N, K, trans_B, num_warp_n>;

325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
  using SmemLayoutA = typename OperandATraits::Layout;
  using SmemLayoutB = typename OperandBTraits::Layout;
  using SmemCopyA = Copy_Atom<typename OperandATraits::Copy, A_type>;
  using SmemCopyB = Copy_Atom<typename OperandBTraits::Copy, B_type>;

  using TileMma = TiledMMA<typename Instruction::MMA,
                           Layout<Shape<Int<num_warp_m>, Int<num_warp_n>, _1>>,
                           typename Instruction::MMA_Group>;

  template <class... Args>
  static CUTE_DEVICE auto remove_swizzle(Layout<Args...> const &layout) {
    return layout;
  }
  // In fp16, when layout is KxN and n_warp is 1 and N % 64 == 0
  // the original layout fail to compile, currently using this as a workaround
  template <class... Args>
  static CUTE_DEVICE auto
  remove_swizzle(ComposedLayout<Args...> const &layout) {
    if constexpr (sizeof(A_type) == 2)
      return layout.layout_b();
    else
      return layout;
  }

  static CUTE_DEVICE void body(A_type_raw *pA, B_type_raw *pB, C_type_raw *pC) {
    const int tid = threadIdx.x;
    Tensor sA = make_tensor(make_smem_ptr(reinterpret_cast<A_type *>(pA)),
                            SmemLayoutA{});
    Tensor sB = make_tensor(make_smem_ptr(reinterpret_cast<B_type *>(pB)),
                            SmemLayoutB{});
    TileMma tiled_mma;
    auto thr_mma = tiled_mma.get_thread_slice(tid);
    auto tiled_copy_A = make_tiled_copy_A(SmemCopyA{}, tiled_mma);
    auto tiled_copy_B = make_tiled_copy_B(SmemCopyB{}, tiled_mma);
    auto thr_copy_A = tiled_copy_A.get_thread_slice(tid);
    auto thr_copy_B = tiled_copy_B.get_thread_slice(tid);

    Tensor tCrA = thr_mma.partition_fragment_A(sA);
    Tensor tCrB = thr_mma.partition_fragment_B(sB);
    Tensor tCsA = thr_copy_A.partition_S(sA);
    Tensor tCsB = thr_copy_B.partition_S(sB);

    Tensor tCrA_copy_view = thr_copy_A.retile_D(tCrA);
    Tensor tCrB_copy_view = thr_copy_B.retile_D(tCrB);

    Tensor acc =
        make_tensor(make_rmem_ptr(reinterpret_cast<C_type *>(pC)),
                    partition_shape_C(tiled_mma, Shape<Int<M>, Int<N>>{}));

    if constexpr (clear_accum) {
      clear(acc);
    }
    // when layout is KxN and n_warp is 1, there seem to be a bug, use this as a
    // workaround
    auto tCrA_view = make_tensor(tCrA.data(), remove_swizzle(tCrA.layout()));
    auto tCrB_view = make_tensor(tCrB.data(), remove_swizzle(tCrB.layout()));
    CUTE_UNROLL
    for (int k = 0; k < size<2>(tCrA); ++k) {
      copy(tiled_copy_A, tCsA(_, _, k), tCrA_copy_view(_, _, k));
      copy(tiled_copy_B, tCsB(_, _, k), tCrB_copy_view(_, _, k));
      gemm(tiled_mma, tCrA_view(_, _, k), tCrB_view(_, _, k), acc);
    }
  }

  static CUTE_DEVICE void body_rs(A_type_raw *pA, B_type_raw *pB,
                                  C_type_raw *pC) {
    const int tid = threadIdx.x;
    Tensor sB = make_tensor(make_smem_ptr(reinterpret_cast<B_type *>(pB)),
                            SmemLayoutB{});
    TileMma tiled_mma;
    auto thr_mma = tiled_mma.get_thread_slice(tid);
    auto tiled_copy_B = make_tiled_copy_B(SmemCopyB{}, tiled_mma);
    auto thr_copy_B = tiled_copy_B.get_thread_slice(tid);

    Tensor tCrB = thr_mma.partition_fragment_B(sB);
    Tensor tCsB = thr_copy_B.partition_S(sB);

    Tensor tCrB_copy_view = thr_copy_B.retile_D(tCrB);

    Tensor acc =
        make_tensor(make_rmem_ptr(reinterpret_cast<C_type *>(pC)),
                    partition_shape_C(tiled_mma, Shape<Int<M>, Int<N>>{}));
    Tensor tCrA =
        make_tensor(make_rmem_ptr(reinterpret_cast<A_type *>(pA)),
                    partition_shape_A(tiled_mma, Shape<Int<M>, Int<K>>{}));

    if constexpr (clear_accum) {
      clear(acc);
    }
    auto tCrB_view = make_tensor(tCrB.data(), remove_swizzle(tCrB.layout()));
    copy(tiled_copy_B, tCsB(_, _, 0), tCrB_copy_view(_, _, 0));
    CUTE_UNROLL
    for (int k = 0; k < size<2>(tCrA); ++k) {
      if (k < size<2>(tCrA) - 1) {
        copy(tiled_copy_B, tCsB(_, _, k + 1), tCrB_copy_view(_, _, k + 1));
      }
      gemm(tiled_mma, tCrA(_, _, k), tCrB_view(_, _, k), acc);
    }
  }

  static CUTE_DEVICE void body_sr(A_type_raw *pA, B_type_raw *pB,
                                  C_type_raw *pC) {
    const int tid = threadIdx.x;
    Tensor sA = make_tensor(make_smem_ptr(reinterpret_cast<A_type *>(pA)),
                            SmemLayoutA{});
    TileMma tiled_mma;
    auto thr_mma = tiled_mma.get_thread_slice(tid);
    auto tiled_copy_A = make_tiled_copy_A(SmemCopyA{}, tiled_mma);
    auto thr_copy_A = tiled_copy_A.get_thread_slice(tid);

    Tensor tCrA = thr_mma.partition_fragment_A(sA);
    Tensor tCsA = thr_copy_A.partition_S(sA);

    Tensor tCrA_copy_view = thr_copy_A.retile_D(tCrA);

    Tensor acc =
        make_tensor(make_rmem_ptr(reinterpret_cast<C_type *>(pC)),
                    partition_shape_C(tiled_mma, Shape<Int<M>, Int<N>>{}));
    Tensor tCrB =
        make_tensor(make_rmem_ptr(reinterpret_cast<B_type *>(pB)),
                    partition_shape_B(tiled_mma, Shape<Int<N>, Int<K>>{}));

    if constexpr (clear_accum) {
      clear(acc);
    }
    auto tCrA_view = make_tensor(tCrA.data(), remove_swizzle(tCrA.layout()));
    copy(tiled_copy_A, tCsA(_, _, 0), tCrA_copy_view(_, _, 0));
    CUTE_UNROLL
    for (int k = 0; k < size<2>(tCrA); ++k) {
      if (k < size<2>(tCrA) - 1) {
        copy(tiled_copy_A, tCsA(_, _, k + 1), tCrA_copy_view(_, _, k + 1));
      }
      gemm(tiled_mma, tCrA_view(_, _, k), tCrB(_, _, k), acc);
    }
  }
};

} // namespace cute

namespace tl {

template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
          bool trans_B, bool clear_accum, typename A_type, typename B_type,
          typename C_type>
CUTLASS_DEVICE void gemm_ss(A_type *pA, B_type *pB, C_type *accum) {
  using MMA = cute::GemmTensorOp<M, N, K, num_warp_m, num_warp_n, trans_A,
                                 trans_B, clear_accum, A_type, B_type, C_type>;
  MMA::body(pA, pB, accum);
}

template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
          bool trans_B, bool clear_accum, typename A_type, typename B_type,
          typename C_type>
CUTLASS_DEVICE void gemm_rs(A_type *pA, B_type *pB, C_type *accum) {
  using MMA = cute::GemmTensorOp<M, N, K, num_warp_m, num_warp_n, trans_A,
                                 trans_B, clear_accum, A_type, B_type, C_type>;
  MMA::body_rs(pA, pB, accum);
}

template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
          bool trans_B, bool clear_accum, typename A_type, typename B_type,
          typename C_type>
CUTLASS_DEVICE void gemm_sr(A_type *pA, B_type *pB, C_type *accum) {
  using MMA = cute::GemmTensorOp<M, N, K, num_warp_m, num_warp_n, trans_A,
                                 trans_B, clear_accum, A_type, B_type, C_type>;
  MMA::body_sr(pA, pB, accum);
}

} // namespace tl