"docs/source/NAS/ExecutionEngines.rst" did not exist on "01eb39e51650aaf584f1e8ca733c67619b70391b"
block_sparse_attn_triton.py 11 KB
Newer Older
1
2
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
3
# ruff: noqa: E712
4
5
6
7
8
9
10
import math
import torch

import triton
import triton.language as tl
import torch.nn.functional as F

11

12
13
14
15
16
17
18
19
def is_hip():
    return triton.runtime.driver.active.get_current_target().backend == "hip"


def get_sparse_attn_mask_from_topk(x, topk, use_dense_for_last_block=False):
    bsz, num_head, downsample_len, _ = x.shape
    # N_CTX = downsample_len * BLOCK
    sparse_index = torch.topk(x, topk, dim=-1).indices
20
21
22
23
    dense_mask = torch.full([bsz, num_head, downsample_len, downsample_len],
                            False,
                            dtype=torch.bool,
                            device=x.device)
24
25
    dense_mask.scatter_(-1, sparse_index, True)
    if use_dense_for_last_block:
26
        dense_mask[:, :, -2:, :] = True
27
    dense_mask.tril_()
28
    return dense_mask
29
30
31


def get_sparse_attn_mask_from_threshold(x, threshold, use_dense_for_last_block=False):
32
    dense_mask = x > threshold
33
    if use_dense_for_last_block:
34
        dense_mask[:, :, -2:, :] = True
35
    dense_mask.tril_()
36
    return dense_mask
37
38
39
40


@triton.jit
def _fwd_kernel_inner(
41
42
43
    acc,
    l_i,
    m_i,
44
45
46
    q,
    k_block_col_idx,
    block_mask_ptr,
47
48
49
50
51
52
53
    k_ptrs,
    v_ptrs,
    offs_m,
    offs_n,
    stride_kt,
    stride_vt,
    stride_bmask_n,
54
55
56
57
58
59
60
61
62
    sm_scale,
    seqlen_k,
    past_len,
    LAST_K_BLOCK: tl.constexpr,
    BLOCK_M: tl.constexpr,
    BLOCK_N: tl.constexpr,
):

    mask_val = tl.load(block_mask_ptr + k_block_col_idx * stride_bmask_n)
63
64
    # print

65
66
67
68
69
70
71
72
73
74
75
76
77
78
    if k_block_col_idx == 3:
        print("mask_val", mask_val)
    if mask_val == True:
        start_n = k_block_col_idx * BLOCK_N
        # -- compute qk ----

        k = tl.load(k_ptrs + start_n * stride_kt)

        qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
        qk += tl.dot(q, k)

        qk *= sm_scale

        # the following is needed only when LAST_K_BLOCK or BLOCK_M < BLOCK_N
79
80
81
        if LAST_K_BLOCK:
            qk += tl.where(offs_m[:, None] + past_len >= (start_n + offs_n[None, :]), 0,
                           float('-inf'))
82
83
84
85
86
87
88
89

        m_ij = tl.maximum(m_i, tl.max(qk, 1))
        qk -= m_ij[:, None]
        p = tl.exp(qk)
        l_ij = tl.sum(p, 1)
        alpha = tl.exp(m_i - m_ij)
        l_i = l_i * alpha + l_ij
        acc = acc * alpha[:, None]
90

91
92
93
94
95
96
97
98
99
100
101
102
103
        # update acc
        v = tl.load(v_ptrs + start_n * stride_vt)

        p = p.to(v.type.element_ty)

        acc += tl.dot(p, v)
        # update m_i and l_i
        m_i = m_ij
    return acc, l_i, m_i


@triton.jit
def _fwd_kernel(
104
105
106
107
    Q,
    K,
    V,
    sm_scale,
108
109
    block_mask_ptr,
    Out,
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    stride_qz,
    stride_qh,
    stride_qm,
    stride_qd,
    stride_kz,
    stride_kh,
    stride_kn,
    stride_kd,
    stride_vz,
    stride_vh,
    stride_vn,
    stride_vd,
    stride_bmz,
    stride_bmh,
    stride_bmm,
    stride_bmn,
    stride_oz,
    stride_oh,
    stride_om,
    stride_od,
    H,
    N_CTX,
132
    PAST_LEN,
133
    BLOCK_M: tl.constexpr,
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
    BLOCK_N: tl.constexpr,
    BLOCK_DMODEL: tl.constexpr,
):
    Q_LEN = N_CTX - PAST_LEN
    start_m = tl.program_id(0)
    off_hz = tl.program_id(1)
    off_h = off_hz % H
    off_z = off_hz // H
    Q += off_z * stride_qz + off_h * stride_qh
    K += off_z * stride_kz + off_h * stride_kh
    V += off_z * stride_vz + off_h * stride_vh
    block_mask_ptr += off_z * stride_bmz + off_h * stride_bmh

    # initialize offsets
    offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
    offs_n = tl.arange(0, BLOCK_N)
    offs_d = tl.arange(0, BLOCK_DMODEL)
    off_q = offs_m[:, None] * stride_qm + offs_d[None, :] * stride_qd
    # off_k = offs_n[:, None] * stride_kn + offs_d[None, :] * stride_kd
    off_k = offs_n[None, :] * stride_kn + offs_d[:, None] * stride_kd
    off_v = offs_n[:, None] * stride_vn + offs_d[None, :] * stride_vd
    # Initialize pointers to Q, K, V
    q_ptrs = Q + off_q
    k_ptrs = K + off_k
    v_ptrs = V + off_v
    mask_ptrs = block_mask_ptr + start_m * stride_bmm

    m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
    l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
    acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)

    q = tl.load(q_ptrs, mask=offs_m[:, None] < Q_LEN)

    k_block_start = 0
    k_block_end = tl.cdiv((start_m + 1) * BLOCK_M, BLOCK_N)

    # loop over k, v and update accumulator
    for col_idx in range(k_block_start, k_block_end):
        acc, l_i, m_i = _fwd_kernel_inner(
173
174
175
            acc,
            l_i,
            m_i,
176
177
178
            q,
            col_idx,
            mask_ptrs,
179
180
181
182
183
184
185
            k_ptrs,
            v_ptrs,
            offs_m,
            offs_n,
            stride_kn,
            stride_vn,
            stride_bmn,
186
187
188
189
190
191
192
193
194
195
196
            sm_scale,
            N_CTX,
            PAST_LEN,
            col_idx == k_block_end - 1,
            BLOCK_M,
            BLOCK_N,
        )

    m_i += tl.math.log(l_i)
    l_recip = 1 / l_i[:, None]
    acc = acc * l_recip
197
    acc = acc.to(Out.dtype.element_ty)
198

199
200
    off_o = off_z * stride_oz + off_h * stride_oh + offs_m[:, None] * stride_om + offs_d[
        None, :] * stride_od
201
202
203
204
    out_ptrs = Out + off_o
    tl.store(out_ptrs, acc, mask=offs_m[:, None] < N_CTX)


205
206
207
208
209
210
211
212
213
214
215
def _forward(ctx,
             q,
             k,
             v,
             block_sparse_mask,
             sm_scale,
             BLOCK_M=64,
             BLOCK_N=64,
             num_warps=None,
             num_stages=1,
             out=None):
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

    assert q.shape[-1] == k.shape[-1] == v.shape[-1]
    assert k.shape[2] == v.shape[2]
    o = out if out is not None else torch.empty_like(q).contiguous()
    grid = (triton.cdiv(q.shape[2], BLOCK_M), q.shape[0] * q.shape[1])

    assert q.shape[-1] in [64, 128]
    BLOCK_DMODEL = q.shape[-1]

    if is_hip():
        num_warps, num_stages = 8, 1
    else:
        num_warps, num_stages = 4, 2

    N_CTX = k.shape[2]
    PAST_LEN = N_CTX - q.shape[2]

    H = q.shape[1]

    _fwd_kernel[grid](
236
237
238
239
        q,
        k,
        v,
        sm_scale,
240
241
        block_sparse_mask,
        o,
242
243
244
245
        *q.stride(),
        *k.stride(),
        *v.stride(),
        *block_sparse_mask.stride(),
246
        *o.stride(),
247
248
        H,
        N_CTX,
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
        PAST_LEN,
        BLOCK_M,
        BLOCK_N,
        BLOCK_DMODEL,
        num_warps=num_warps,
        num_stages=num_stages,
    )

    return o


class _sparse_attention(torch.autograd.Function):

    @staticmethod
    def forward(ctx, q, k, v, block_sparse_dense, sm_scale):
        # shape constraints
        return _forward(ctx, q, k, v, block_sparse_dense, sm_scale)

    @staticmethod
    def backward(ctx, do):
        # No gradient propagation.
        raise NotImplementedError("It does not support gradient propagation yet")
        return None, None, None, None, None


274
block_sparse_triton_fn = _sparse_attention.apply
275
276
277
278
279
280
281
282
283
284
285
286
287


def test_topk_sparse_attention():
    # Config
    BATCH, N_HEADS, SEQ_LEN, D_HEAD = 1, 1, 256, 64
    TOPK = 2  # Keep top 8 elements per row
    BLOCK = 64
    torch.manual_seed(0)

    # Create inputs
    q = torch.randn(BATCH, N_HEADS, SEQ_LEN, D_HEAD, device='cuda', dtype=torch.bfloat16)
    k = torch.randn(BATCH, N_HEADS, SEQ_LEN, D_HEAD, device='cuda', dtype=torch.bfloat16)
    v = torch.randn(BATCH, N_HEADS, SEQ_LEN, D_HEAD, device='cuda', dtype=torch.bfloat16)
288
    sm_scale = 1.0 / (D_HEAD**0.5)
289
290
291
292
293

    # Create sparse mask (downsampled to block level)
    downsample_factor = BLOCK
    downsample_len = math.ceil(SEQ_LEN / downsample_factor)
    print("downsample_len", downsample_len)
294
295
296
297
298

    x_ds = torch.randn([BATCH, N_HEADS, downsample_len, downsample_len],
                       device='cuda',
                       dtype=torch.bfloat16)
    x_ds[:, :, :, 0] = 100
299
    print("x_ds.shape", x_ds.shape)
300
    block_mask = get_sparse_attn_mask_from_topk(x_ds, topk=TOPK)
301
302
303
304
    # print("block_mask", block_mask)
    print("block_mask.shape", block_mask.shape)

    # Run Triton kernel
305
    triton_output = block_sparse_triton_fn(q, k, v, block_mask, sm_scale)
306
307
308

    # Compute reference
    # Expand block mask to full attention matrix
309
    full_mask = torch.kron(block_mask.float(), torch.ones(BLOCK, BLOCK, device='cuda'))
310
311
    full_mask = full_mask[..., :SEQ_LEN, :SEQ_LEN].bool()
    full_mask = full_mask & torch.tril(torch.ones_like(full_mask))  # Apply causal
312

313
314
315
316
317
    # PyTorch reference implementation
    attn = torch.einsum('bhsd,bhtd->bhst', q, k) * sm_scale
    attn = attn.masked_fill(~full_mask, float('-inf'))
    attn = F.softmax(attn, dim=-1)
    ref_output = torch.einsum('bhst,bhtd->bhsd', attn, v)
318

319
320
321
322
323
324
325
326
327
    # print("ref_output", ref_output)
    # print("triton_output", triton_output)

    # Verify accuracy
    assert torch.allclose(triton_output, ref_output, atol=1e-2, rtol=1e-2), \
        "Triton output doesn't match reference"
    print("Pass topk sparse attention test with qlen == klen")


328
329
330
331
332
333
def test_topk_sparse_attention_qlt_kl():
    BATCH, N_HEADS = 2, 4
    Q_LEN, K_LEN, D_HEAD = 128, 256, 64  # qlen < klen; here, past_len = 256 - 128 = 128.
    TOPK = 1
    BLOCK = 64  # block size used in downsampling
    torch.manual_seed(0)
334

335
336
337
338
339
340
    # Create inputs.
    q = torch.randn(BATCH, N_HEADS, Q_LEN, D_HEAD, device='cuda', dtype=torch.bfloat16)
    k = torch.randn(BATCH, N_HEADS, K_LEN, D_HEAD, device='cuda', dtype=torch.bfloat16)
    v = torch.randn(BATCH, N_HEADS, K_LEN, D_HEAD, device='cuda', dtype=torch.bfloat16)
    # softmax scale
    sm_scale = 1.0 / (D_HEAD**0.5)
341

342
343
344
345
346
347
348
349
350
351
352
353
354
    downsample_factor = BLOCK
    print("downsample_factor", downsample_factor)
    downsample_len = math.ceil(K_LEN / downsample_factor)  # number of blocks along one dimension
    print("downsample_len", downsample_len)
    x_ds = torch.randn(
        BATCH, N_HEADS, downsample_len, downsample_len, device='cuda', dtype=torch.bfloat16)
    # Force the first column to be high so that the first block is always selected.
    x_ds[:, :, :, 0] = 100
    block_mask = get_sparse_attn_mask_from_topk(x_ds, topk=TOPK)
    print("block_mask", block_mask)
    print("block_mask.shape", block_mask.shape)
    # Run Triton kernel.
    triton_output = block_sparse_triton_fn(q, k, v, block_mask, sm_scale)
355

356
    past_len = K_LEN - Q_LEN
357

358
    attn = torch.einsum('bhsd,bhtd->bhst', q, k) * sm_scale
359

360
361
    full_mask_full = torch.kron(block_mask.float(), torch.ones(BLOCK, BLOCK, device='cuda')).bool()
    full_mask_full = full_mask_full[..., :K_LEN, :K_LEN]
362

363
    effective_mask = full_mask_full[..., past_len:K_LEN, :]  # shape: (B, H, Q_LEN, K_LEN)
364

365
366
367
    i_global = torch.arange(past_len, K_LEN, device=k.device).unsqueeze(1)  # shape: (Q_LEN, 1)
    j_global = torch.arange(K_LEN, device=k.device).unsqueeze(0)  # shape: (1, K_LEN)
    causal_mask = (j_global <= i_global)  # shape: (Q_LEN, K_LEN)
368

369
    final_mask = effective_mask & causal_mask  # shape: (B, H, Q_LEN, K_LEN)
370

371
372
373
    attn = attn.masked_fill(~final_mask, float('-inf'))
    attn = F.softmax(attn, dim=-1)
    ref_output = torch.einsum('bhst,bhtd->bhsd', attn, v)
374

375
376
377
    # Verify accuracy.
    assert torch.allclose(triton_output, ref_output, atol=1e-2, rtol=1e-2), \
        "Triton output doesn't match reference when qlen < klen"
378

379
    print("Pass topk sparse attention test with qlen < klen")
380
381
382
383


if __name__ == "__main__":
    test_topk_sparse_attention()
384
    test_topk_sparse_attention_qlt_kl()