varlen_utils.py 4.69 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# ruff: noqa
import torch
from einops import rearrange, repeat
from bert_padding import pad_input, unpad_input


def generate_random_padding_mask(max_seqlen, batch_size, device, mode="random"):
    assert mode in ["full", "random", "third"]
    if mode == "full":
        lengths = torch.full((batch_size, 1), max_seqlen, device=device, dtype=torch.int32)
    elif mode == "random":
        lengths = torch.randint(
            max(1, max_seqlen - 20), max_seqlen + 1, (batch_size, 1), device=device)
    elif mode == "third":
        lengths = torch.randint(max_seqlen // 3, max_seqlen + 1, (batch_size, 1), device=device)
    padding_mask = (
        repeat(torch.arange(max_seqlen, device=device), "s -> b s", b=batch_size) < lengths)
    return padding_mask


def generate_qkv(q,
                 k,
                 v,
                 query_padding_mask=None,
                 key_padding_mask=None,
                 kvpacked=False,
                 qkvpacked=False):
    """
    Arguments:
        q: (batch_size, seqlen_q, nheads, d)
        k: (batch_size, seqlen_k, nheads_k, d)
        v: (batch_size, seqlen_k, nheads_k, d)
        query_padding_mask: (batch_size, seqlen), bool
        key_padding_mask: (batch_size, seqlen), bool
    """
    assert not (kvpacked and qkvpacked)
    batch_size, seqlen_q, nheads, d = q.shape
    _, seqlen_k, nheads_k, _ = k.shape

    if query_padding_mask is not None:
        q_unpad, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, query_padding_mask)
        output_pad_fn = lambda output_unpad: pad_input(output_unpad, indices_q, batch_size, seqlen_q
                                                      )
    else:
        q_unpad = rearrange(q, "b s h d -> (b s) h d")
        cu_seqlens_q = torch.arange(
            0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, device=q_unpad.device)
        max_seqlen_q = seqlen_q
        output_pad_fn = lambda output_unpad: rearrange(
            output_unpad, "(b s) h d -> b s h d", b=batch_size)

    if key_padding_mask is not None:
        k_unpad, indices_k, cu_seqlens_k, max_seqlen_k = unpad_input(k, key_padding_mask)
        v_unpad, _, _, _ = unpad_input(v, key_padding_mask)
    else:
        k_unpad = rearrange(k, "b s h d -> (b s) h d")
        v_unpad = rearrange(v, "b s h d -> (b s) h d")
        cu_seqlens_k = torch.arange(
            0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, device=k_unpad.device)
        max_seqlen_k = seqlen_k

    if qkvpacked:
        assert (query_padding_mask == key_padding_mask).all()
        assert nheads == nheads_k
        qkv_unpad = torch.stack([q_unpad, k_unpad, v_unpad], dim=1)
        qkv = torch.stack([q, k, v], dim=2)
        if query_padding_mask is not None:
            dqkv_pad_fn = lambda dqkv_unpad: pad_input(dqkv_unpad, indices_q, batch_size, seqlen_q)
        else:
            dqkv_pad_fn = lambda dqkv_unpad: rearrange(
                dqkv_unpad, "(b s) t h d -> b s t h d", b=batch_size)
        return (
            qkv_unpad.detach().requires_grad_(),
            cu_seqlens_q,
            max_seqlen_q,
            qkv.detach().requires_grad_(),
            output_pad_fn,
            dqkv_pad_fn,
        )
    elif kvpacked:
        kv_unpad = torch.stack([k_unpad, v_unpad], dim=1)
        kv = torch.stack([k, v], dim=2)
        dq_pad_fn = output_pad_fn
        if key_padding_mask is not None:
            dkv_pad_fn = lambda dkv_unpad: pad_input(dkv_unpad, indices_k, batch_size, seqlen_k)
        else:
            dkv_pad_fn = lambda dkv_unpad: rearrange(
                dkv_unpad, "(b s) t h d -> b s t h d", b=batch_size)
        return (
            q_unpad.detach().requires_grad_(),
            kv_unpad.detach().requires_grad_(),
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q.detach().requires_grad_(),
            kv.detach().requires_grad_(),
            output_pad_fn,
            dq_pad_fn,
            dkv_pad_fn,
        )
    else:
        dq_pad_fn = output_pad_fn
        if key_padding_mask is not None:
            dk_pad_fn = lambda dk_unpad: pad_input(dk_unpad, indices_k, batch_size, seqlen_k)
        else:
            dk_pad_fn = lambda dk_unpad: rearrange(dk_unpad, "(b s) h d -> b s h d", b=batch_size)
        return (
            q_unpad.detach().requires_grad_(),
            k_unpad.detach().requires_grad_(),
            v_unpad.detach().requires_grad_(),
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q.detach().requires_grad_(),
            k.detach().requires_grad_(),
            v.detach().requires_grad_(),
            output_pad_fn,
            dq_pad_fn,
            dk_pad_fn,
        )