"driver/driver.cpp" did not exist on "33b5a8556b68c2cbeba555088b647310779d17e4"
example_convolution.py 6.44 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
import torch
import tilelang
from tilelang.autotuner import *
import tilelang.language as T
import itertools
import argparse
from functools import partial


def check_hopper():
11
12
13
14
15
16
    # if not torch.cuda.is_available():
    #     return None
    # props = torch.cuda.get_device_properties(0)
    # compute_capability = props.major, props.minor
    # return compute_capability == (9, 0)
    return False
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49


def get_configs():
    block_M = [64, 128, 256]
    block_N = [64, 128, 256]
    block_K = [32, 64]
    num_stages = [1, 2, 3, 4]
    threads = [128, 256]
    _configs = list(itertools.product(block_M, block_N, block_K, num_stages, threads))

    configs = [{
        'block_M': c[0],
        'block_N': c[1],
        'block_K': c[2],
        'num_stages': c[3],
        'threads': c[4]
    } for c in _configs]
    return configs


def convolution(N, C, H, W, F, K, S, D, P, tune=False):
    KH, KW = K, K
    OH = (H + 2 * P - D * (K - 1) - 1) // S + 1
    OW = (W + 2 * P - D * (K - 1) - 1) // S + 1

    dtype = "float16"
    accum_dtype = "float"
    is_hopper = check_hopper()

    def kernel_func(block_M, block_N, block_K, num_stages, threads):

        @T.prim_func
        def main(
50
51
52
                data: T.Tensor((N, H, W, C), dtype),
                kernel: T.Tensor((KH, KW, C, F), dtype),
                out: T.Tensor((N, OH, OW, F), dtype),
53
54
55
56
57
58
59
60
61
        ):
            with T.Kernel(
                    T.ceildiv(F, block_N), T.ceildiv(N * OH * OW, block_M),
                    threads=threads) as (bx, by):
                data_shared = T.alloc_shared((block_M, block_K), dtype)
                kernel_shared = T.alloc_shared((block_K, block_N), dtype)
                out_local = T.alloc_fragment((block_M, block_N), accum_dtype)
                out_shared = T.alloc_shared((block_M, block_N), dtype)

62
63
                kernel_flat = T.Tensor((KH * KW * C, F), dtype, kernel.data)
                out_flat = T.Tensor((N * OH * OW, F), dtype, out.data)
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

                T.annotate_layout({
                    out_shared: tilelang.layout.make_swizzled_layout(out_shared),
                    data_shared: tilelang.layout.make_swizzled_layout(data_shared),
                    kernel_shared: tilelang.layout.make_swizzled_layout(kernel_shared),
                })

                T.clear(out_local)
                for k_iter in T.Pipelined(T.ceildiv(KH * KW * C, block_K), num_stages=num_stages):
                    if is_hopper:
                        T.c2d_im2col(data, data_shared, by, k_iter, KH, S, D, P)
                    else:
                        for i, j in T.Parallel(block_M, block_K):
                            k = k_iter * block_K + j
                            m = by * block_M + i
                            access_h = m % (OH * OW) // OW * S + k // (KW * C) * D - P
                            access_w = m % OW * S + k // C % KW * D - P
                            in_bound = ((access_h >= 0) and (access_w >= 0) and (access_h < H) and
                                        (access_w < W))
                            data_shared[i, j] = T.if_then_else(
                                in_bound, data[m // (OH * OW), access_h, access_w, k % C], 0)
                    T.copy(kernel_flat[k_iter * block_K, bx * block_N], kernel_shared)
                    T.gemm(data_shared, kernel_shared, out_local)

                T.copy(out_local, out_shared)
                T.copy(out_shared, out_flat[by * block_M, bx * block_N])

        return main

    if tune:

        @autotune(
            configs=get_configs(),
            keys=["block_M", "block_N", "block_K", "num_stages", "threads"],
            warmup=10,
            rep=10)
100
        @jit(out_idx=[2], supply_type=tilelang.TensorSupplyType.Integer, ref_prog=None)
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
        def kernel(block_M=None, block_N=None, block_K=None, num_stages=None, threads=None):
            return kernel_func(block_M, block_N, block_K, num_stages, threads)

        return kernel()
    else:

        def kernel(block_M, block_N, block_K, num_stages, threads):
            return kernel_func(block_M, block_N, block_K, num_stages, threads)

        return kernel


def ref_program(A, B, stride, padding, dilation):
    A = A.permute(0, 3, 1, 2)  # N, H, W, C -> N, C, H, W
    B = B.permute(3, 2, 0, 1)  # H, W, C, F -> F, C, H, W
    C = torch.conv2d(A, B, stride=stride, padding=padding, dilation=dilation)
    C = C.permute(0, 2, 3, 1)  # N, C, H, W -> N, H, W, C
    return C


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--n', type=int, default=128, help='n')
    parser.add_argument('--c', type=int, default=128, help='c')
    parser.add_argument('--h', type=int, default=64, help='h')
    parser.add_argument('--w', type=int, default=64, help='w')
    parser.add_argument('--f', type=int, default=128, help='f')
    parser.add_argument('--k', type=int, default=3, help='k')
    parser.add_argument('--s', type=int, default=1, help='s')
    parser.add_argument('--d', type=int, default=1, help='d')
    parser.add_argument('--p', type=int, default=1, help='p')
    parser.add_argument('--tune', action='store_true', help='tune configs')
    args = parser.parse_args()
    N, C, H, W, F, K, S, D, P = args.n, args.c, args.h, args.w, args.f, args.k, args.s, args.d, args.p
    OH = (H + 2 * P - D * (K - 1) - 1) // S + 1
    OW = (W + 2 * P - D * (K - 1) - 1) // S + 1
    total_flops = 2 * N * C * OH * OW * F * K * K

    if (not args.tune):
        program = convolution(
            N, C, H, W, F, K, S, D, P, tune=args.tune)(
                block_M=256, block_N=128, block_K=64, num_stages=4, threads=256)
        ref_program = partial(ref_program, stride=S, padding=P, dilation=D)
144
145
146
        kernel = tilelang.compile(program, out_idx=[2])
        profiler = kernel.get_profiler(tilelang.TensorSupplyType.Normal)
        profiler.assert_allclose(ref_program, rtol=0.01, atol=0.01)
147
        print("All checks pass.")
148
        latency = profiler.do_bench(ref_program, warmup=500)
149
150
        print("Ref: {:.2f} ms".format(latency))
        print("Ref: {:.2f} TFlops".format(total_flops / latency * 1e-9))
151
        latency = profiler.do_bench(warmup=500)
152
153
154
155
156
157
158
159
        print("Tile-lang: {:.2f} ms".format(latency))
        print("Tile-lang: {:.2f} TFlops".format(total_flops / latency * 1e-9))
    else:
        best_latency, best_config, ref_latency = convolution(
            N, C, H, W, F, K, S, D, P, tune=args.tune)
        print(f"Best latency: {best_latency}")
        print(f"Best TFlops: {total_flops / best_latency * 1e-9}")
        print(f"Best config: {best_config}")