example_mamba_chunk_state.py 7.94 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import argparse
import torch
import torch.nn.functional as F
import tilelang
from tilelang.autotuner import *
import tilelang.language as T
from einops import rearrange, repeat
import itertools


def chunk_state_triton(B, x, dt, dA_cumsum):
    from mamba_ssm.ops.triton.ssd_chunk_state import _chunk_state_fwd
    return _chunk_state_fwd(B, x, dt, dA_cumsum, states_in_fp32=False)


def ref_program(B, x, dt, dA_cumsum):
    """
    Argument:
        B: (batch, seqlen, ngroups, headdim)
        x: (batch, seqlen, nheads, headdim)
        dt: (batch, nheads, nchunks, chunk_size)
        dA_cumsum: (batch, nheads, nchunks, chunk_size)
    Return:
        states: (batch, nchunks, nheads, headdim, dstate)
    """
    # Check constraints.
    batch, seqlen, nheads, headdim = x.shape
    dstate = B.shape[-1]
    _, _, nchunks, chunk_size = dt.shape
    assert seqlen <= nchunks * chunk_size
    assert x.shape == (batch, seqlen, nheads, headdim)
    assert dt.shape == (batch, nheads, nchunks, chunk_size)
    ngroups = B.shape[2]
    assert nheads % ngroups == 0
    assert B.shape == (batch, seqlen, ngroups, dstate)
    B = repeat(B, "b l g d -> b l (g h) d", h=nheads // ngroups)
    assert dA_cumsum.shape == (batch, nheads, nchunks, chunk_size)
    if seqlen < nchunks * chunk_size:
        x = F.pad(x, (0, 0, 0, 0, 0, nchunks * chunk_size - seqlen))
        B = F.pad(B, (0, 0, 0, 0, 0, nchunks * chunk_size - seqlen))
    x = rearrange(x, "b (c l) h p -> b c l h p", l=chunk_size)
    B = rearrange(B, "b (c l) ... -> b c l ...", l=chunk_size)
    decay_states = torch.exp((dA_cumsum[:, :, :, -1:] - dA_cumsum))
    return torch.einsum("bclhn,bhcl,bhcl,bclhp->bchpn", B.to(x.dtype), decay_states.to(x.dtype),
                        dt.to(x.dtype), x)


def get_configs():
49
50
51
    iter_params = dict(
        block_M=[64, 128], block_N=[32, 64, 128], block_K=[32, 64], num_stages=[1, 2, 3, 4, 5])
    return [dict(zip(iter_params, values)) for values in itertools.product(*iter_params.values())]
52
53


54
@autotune(configs=get_configs(), warmup=10, rep=10)
55
@tilelang.jit(out_idx=[4])
56
57
58
59
60
61
62
63
64
65
66
67
def chunk_state_fwd(batch,
                    seqlen,
                    chunk_size,
                    ngroups,
                    nheads,
                    headdim,
                    dstate,
                    block_M=64,
                    block_N=64,
                    block_K=64,
                    num_stages=2,
                    threads=128):
68
69
70
71
72
    dtype = "float16"
    accum_dtype = "float"
    nchunks = T.ceildiv(seqlen, chunk_size)
    p = 1.44269504

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
    @T.prim_func
    def main(B: T.Tensor((batch, seqlen, ngroups, dstate), dtype), x: T.Tensor(
        (batch, seqlen, nheads, headdim), dtype), dt: T.Tensor(
            (batch, nheads, nchunks, chunk_size), dtype), dA_cumsum: T.Tensor(
                (batch, nheads, nchunks, chunk_size), dtype), Output: T.Tensor(
                    (batch, nchunks, nheads, headdim, dstate), dtype)):
        with T.Kernel(
                nheads,
                T.ceildiv(headdim, block_M) * T.ceildiv(dstate, block_N),
                batch * nchunks,
                threads=threads) as (bz, bx, by):
            x_shared = T.alloc_shared((block_K, block_M), dtype)
            x_local = T.alloc_fragment((block_K, block_M), dtype)
            xt_local = T.alloc_fragment((block_M, block_K), dtype)
            B_shared = T.alloc_shared((block_K, block_N), dtype)
            dt_shared = T.alloc_shared((block_K), dtype)
            dA_cumsum_shared = T.alloc_shared((block_K), dtype)
            acc_o = T.alloc_fragment((block_M, block_N), accum_dtype)
            acc_o_shared = T.alloc_shared((block_M, block_N), dtype)
            scale = T.alloc_fragment((block_K), accum_dtype)
            dA_cs_last = T.alloc_fragment((1), accum_dtype)
            dA_cumsum_local = T.alloc_fragment((block_K), accum_dtype)
            dt_local = T.alloc_fragment((block_K), accum_dtype)

            loop_range = T.ceildiv(chunk_size, block_K)

            batch_idx = by % batch
            chunk_idx = by // batch
            m_idx = bx // T.ceildiv(dstate, block_N)
            n_idx = bx % T.ceildiv(dstate, block_N)

            T.annotate_layout({
                x_shared: tilelang.layout.make_swizzled_layout(x_shared),
                acc_o_shared: tilelang.layout.make_swizzled_layout(acc_o_shared)
            })

            dA_cs_last[0] = dA_cumsum[batch_idx, bz, chunk_idx, chunk_size - 1]
            T.clear(acc_o)
            for k in T.Pipelined(loop_range, num_stages=num_stages):
112
                T.copy(
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
                    x[batch_idx, chunk_idx * chunk_size + k * block_K:chunk_idx * chunk_size +
                      (k + 1) * block_K, bz, m_idx * block_M:(m_idx + 1) * block_M], x_shared)
                T.copy(dA_cumsum[batch_idx, bz, chunk_idx, k * block_K:(k + 1) * block_K],
                       dA_cumsum_shared)
                T.copy(dt[batch_idx, bz, chunk_idx, k * block_K:(k + 1) * block_K], dt_shared)
                T.copy(dA_cumsum_shared, dA_cumsum_local)
                T.copy(dt_shared, dt_local)
                for i in T.Parallel(block_K):
                    scale[i] = T.exp2(dA_cs_last[0] * p - dA_cumsum_local[i] * p) * dt_local[i]
                T.copy(x_shared, x_local)
                for i, j in T.Parallel(block_M, block_K):
                    xt_local[i, j] = x_local[j, i] * scale[j]
                T.copy(
                    B[batch_idx, chunk_idx * chunk_size + k * block_K:chunk_idx * chunk_size +
                      (k + 1) * block_K, bz // (nheads // ngroups),
                      n_idx * block_N:(n_idx + 1) * block_N], B_shared)
                T.gemm(xt_local, B_shared, acc_o)
            T.copy(acc_o, acc_o_shared)
            T.copy(
                acc_o_shared,
                Output[batch_idx, chunk_idx, bz, m_idx * block_M:(m_idx + 1) * block_M,
                       n_idx * block_N:(n_idx + 1) * block_N])
135

136
    return main
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch', type=int, default=8, help='batch size')
    parser.add_argument('--heads', type=int, default=80, help='heads')
    parser.add_argument('--groups', type=int, default=1, help='groups')
    parser.add_argument('--seq_len', type=int, default=4096, help='sequence length')
    parser.add_argument('--chunk_size', type=int, default=256, help='chunk size')
    parser.add_argument('--dim', type=int, default=64, help='dim')
    parser.add_argument('--dstate', type=int, default=128, help='dstate')
    parser.add_argument('--tune', action='store_true', help='tune configs')
    args = parser.parse_args()
    batch, heads, groups, seq_len, chunk_size, dim, dstate = args.batch, args.heads, args.groups, args.seq_len, args.chunk_size, args.dim, args.dstate
    total_flops = 2 * batch * seq_len * heads * dim * dstate

    if (not args.tune):
154
        kernel = chunk_state_fwd(
155
156
157
158
159
160
161
162
163
164
165
166
            batch,
            seq_len,
            chunk_size,
            groups,
            heads,
            dim,
            dstate,
            block_M=64,
            block_N=128,
            block_K=64,
            num_stages=4,
            threads=128)
167
168
        profiler = kernel.get_profiler(tilelang.TensorSupplyType.Normal)
        profiler.assert_allclose(ref_program, rtol=0.01, atol=0.01)
169
        print("All checks pass.")
170
        latency = profiler.do_bench(ref_program, warmup=500)
171
172
        print("Ref: {:.2f} ms".format(latency))
        print("Ref: {:.2f} TFlops".format(total_flops / latency * 1e-9))
173
        latency = profiler.do_bench(warmup=500)
174
175
176
        print("Tile-lang: {:.2f} ms".format(latency))
        print("Tile-lang: {:.2f} TFlops".format(total_flops / latency * 1e-9))
    else:
177
        best_result = chunk_state_fwd(batch, seq_len, chunk_size, groups, heads, dim, dstate)
178
179
180
        best_latency = best_result.latency
        best_config = best_result.config
        ref_latency = best_result.ref_latency
181
182
183
        print(f"Best latency: {best_latency}")
        print(f"Best TFlops: {total_flops / best_latency * 1e-9}")
        print(f"Best config: {best_config}")