test_tilelang_language_pipeline.py 6.6 KB
Newer Older
1
2
from tilelang import tvm as tvm
import tilelang.testing
3
import tilelang.language as T
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28


def matmul(
    M,
    N,
    K,
    block_M,
    block_N,
    block_K,
    trans_A,
    trans_B,
    in_dtype,
    out_dtype,
    accum_dtype,
    threads,
    order,
    stage,
):
    A_shape = (K, M) if trans_A else (M, K)
    B_shape = (N, K) if trans_B else (K, N)
    A_shared_shape = (block_K, block_M) if trans_A else (block_M, block_K)
    B_shared_shape = (block_N, block_K) if trans_B else (block_K, block_N)

    @T.prim_func
    def main(
29
30
31
        A: T.Tensor(A_shape, in_dtype),
        B: T.Tensor(B_shape, in_dtype),
        C: T.Tensor((M, N), out_dtype),
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
    ):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by):
            A_shared = T.alloc_shared(A_shared_shape, in_dtype)
            B_shared = T.alloc_shared(B_shared_shape, in_dtype)
            C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
            T.clear(C_local)
            for k in T.Pipelined(T.ceildiv(K, block_K), order=order, stage=stage):
                if trans_A:
                    T.copy(A[k * block_K, by * block_M], A_shared)
                else:
                    T.copy(A[by * block_M, k * block_K], A_shared)
                if trans_B:
                    T.copy(B[bx * block_N, k * block_K], B_shared)
                else:
                    T.copy(B[k * block_K, bx * block_N], B_shared)
                T.gemm(A_shared, B_shared, C_local, trans_A, trans_B)
            T.copy(C_local, C[by * block_M, bx * block_N])

    return main


def run_gemm(
    order,
    stage,
):
    M = 1024
    N = 1024
    K = 1024
    block_M = 128
    block_N = 128
    block_K = 32
    trans_A = False
    trans_B = False
65
66
67
    in_dtype = T.float16
    out_dtype = T.float16
    dtypeAccum = T.float32
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
    num_threads = 128
    program = matmul(
        M,
        N,
        K,
        block_M,
        block_N,
        block_K,
        trans_A,
        trans_B,
        in_dtype,
        out_dtype,
        dtypeAccum,
        num_threads,
        order,
        stage,
    )

    kernel = tilelang.compile(
        program,
        out_idx=[2],
        pass_configs={
            tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True,
            tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True,
92
93
        },
    )
94
95
96
97
98
99
100
101
102
    profiler = kernel.get_profiler()

    def ref_program(A, B):
        import torch

        if trans_A:
            A = A.T
        if trans_B:
            B = B.T
103
        if in_dtype == T.float32:
104
105
            # Convert float32 to tfloat32 because tfloat32 mma cannot truncate
            # float32 automatically, -0x1000 meas
106
107
            A = (A.view(torch.int32) - 0x1000).view(torch.float32)
            B = (B.view(torch.int32) - 0x1000).view(torch.float32)
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        C = torch.matmul(A.to(torch.float), B.to(torch.float))
        C = C.to(torch.__getattribute__(out_dtype))
        return C

    profiler.assert_allclose(ref_program, atol=1e-2, rtol=1e-2)


def test_pipeline_order_stage():
    run_gemm(order=[0, 1, 2], stage=[0, 0, 1])
    run_gemm(order=[0, 1, 2], stage=[0, 0, 2])
    run_gemm(order=[1, 2, 0], stage=[0, 0, 2])
    run_gemm(order=[1, 2, 0], stage=[0, 0, 1])


@tilelang.jit(
    out_idx=[-1],
    pass_configs={
        tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True,
        tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True,
127
128
    },
)
129
def blocksparse_matmul(M, N, K, block_M, block_N, block_K, num_stages, dtype=T.float16, accum_dtype=T.float32):
130
131
132
133
134
135
    block_mask_shape = (M // block_M, N // block_N, K // block_K)

    import tilelang.language as T

    @T.prim_func
    def block_sparse_matmul(
136
137
138
139
        A: T.Tensor((M, K), dtype),
        B: T.Tensor((K, N), dtype),
        BlockMask: T.Tensor(block_mask_shape, "bool"),
        C: T.Tensor((M, N), dtype),
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
    ):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=128) as (bx, by):
            A_shared = T.alloc_shared((block_M, block_K), dtype)
            B_shared = T.alloc_shared((block_K, block_N), dtype)
            C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
            block_mask = T.alloc_local((1,), "bool")
            C_shared = T.alloc_shared((block_M, block_N), dtype)

            T.clear(C_local)

            for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
                block_mask[0] = BlockMask[by, bx, k]
                if block_mask[0]:
                    T.copy(A[by * block_M, k * block_K], A_shared)
                    T.copy(B[k * block_K, bx * block_N], B_shared)
                    T.gemm(A_shared, B_shared, C_local)

            T.copy(C_local, C_shared)
            T.copy(C_shared, C[by * block_M, bx * block_N])

    return block_sparse_matmul


def run_blocksparse_matmul(num_stages):
    import torch

    M = 256
    N = 256
    K = 256
    block_M = 128
    block_N = 128
    block_K = 32
    sparsity = 0.5

    # Initialize input matrices A and B on the GPU with half precision
    a = torch.randn(M, K).cuda().half()
    b = torch.randn(K, N).cuda().half()

178
    kernel = blocksparse_matmul(M, N, K, block_M=block_M, block_N=block_N, block_K=block_K, num_stages=num_stages)
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
    print(kernel.get_kernel_source())
    # Create block mask with desired sparsity
    mask_shape = (M // block_M, N // block_N, K // block_K)
    block_mask = torch.rand(mask_shape).cuda() > sparsity

    # Run the compiled kernel (either tuned or default) with the inputs
    c = kernel(a, b, block_mask)

    def ref_program(A, B, BlockMask, block_M, block_N, block_K):
        ref_c = torch.zeros((M, N), dtype=torch.float16, device=A.device)
        for i in range(M // block_M):
            for j in range(N // block_N):
                accu = torch.zeros((block_M, block_N), dtype=torch.float32, device=A.device)
                for k in range(K // block_K):
                    if BlockMask[i, j, k]:
194
195
196
197
                        accu += A[i * block_M : (i + 1) * block_M, k * block_K : (k + 1) * block_K].to(torch.float32) @ B[
                            k * block_K : (k + 1) * block_K, j * block_N : (j + 1) * block_N
                        ].to(torch.float32)
                ref_c[i * block_M : (i + 1) * block_M, j * block_N : (j + 1) * block_N] = accu.to(torch.float16)
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
        return ref_c

    # Compute the reference result using the naive PyTorch implementation
    ref_c = ref_program(a, b, block_mask, block_M, block_N, block_K)

    torch.testing.assert_close(c, ref_c, rtol=1e-2, atol=1e-2)


def test_blocksparse_matmul():
    run_blocksparse_matmul(num_stages=1)
    run_blocksparse_matmul(num_stages=2)
    run_blocksparse_matmul(num_stages=3)


if __name__ == "__main__":
    tilelang.testing.main()