test_tilelang_gemm_mmac_intrinsic.py 8.68 KB
Newer Older
1
2
3
4
5
import torch
import tilelang.testing
from tilelang import tvm as tvm
from tvm import DataType
import tilelang.language as T
qisan's avatar
qisan committed
6

7
8
9
# from tilelang.intrinsics import make_mfma_swizzle_layout as make_swizzle_layout
from tilelang.intrinsics import get_swizzle_layout
from tilelang.intrinsics.mmac_macro_generator import (
qisan's avatar
qisan committed
10
11
    MatrixCoreIntrinEmitter,
)
12
13
14
15
16
from tilelang.transform import simplify_prim_func

tilelang.testing.set_random_seed(0)
tilelang.disable_cache()

17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
def make_swizzle_layout(shared_buf):
    dtype = shared_buf.dtype
    shape = shared_buf.shape

    can_swizzle = shape[-1] * DataType(dtype).bits == 512
    if not can_swizzle:
        return T.Layout(shape, lambda *args: args)

    def transform_func(i, j):
        new_warp_i, new_warp_j = get_swizzle_layout(i, j, shape[-1], dtype)
        return [new_warp_i, new_warp_j]

    return T.Layout(shape, transform_func)


@simplify_prim_func
def tl_matmul(
    M,
    N,
    K,
    in_dtype,
    out_dtype,
    accum_dtype,
    a_transposed=False,
    b_transposed=True,
    k_pack=1,
):
    assert in_dtype in [
        "float16",
        "bfloat16",
        "int8",
    ], "Currently only float16, bfloat16 and int8 are supported"
    assert out_dtype in [
        "float16",
        "float32",
        "int32",
    ], "Currently only float16, float32 and int32 are supported"

    micro_size_x = micro_size_y = micro_size_k = 16

    if in_dtype in {"float8_e4m3fnuz", "int8"}:
        micro_size_k = 32

    block_row_warps = 2
    block_col_warps = 2
    warp_row_tiles = 32
    warp_col_tiles = 32

    chunk = 32 * k_pack

    shared_scope = "shared"
69
    # cache_write_shared = False
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

    block_M = block_row_warps * warp_row_tiles
    block_N = block_col_warps * warp_col_tiles
    block_K = chunk

    A_shape = (K, M) if a_transposed else (M, K)
    B_shape = (N, K) if b_transposed else (K, N)
    A_shared_shape = (block_K, block_M) if a_transposed else (block_M, block_K)
    B_shared_shape = (block_N, block_K) if b_transposed else (block_K, block_N)
    C_shared_shape = (
        block_M // micro_size_x,
        block_N // micro_size_y,
        micro_size_x,
        micro_size_y,
    )

    warp_size = 64
    threads = warp_size * (block_row_warps * block_col_warps)
    local_size_a = (k_pack * micro_size_x * micro_size_k) // warp_size
    local_size_b = (k_pack * micro_size_y * micro_size_k) // warp_size
    local_size_c = (micro_size_x * micro_size_y) // warp_size
    warp_rows = warp_row_tiles // micro_size_x
    warp_cols = warp_col_tiles // micro_size_y

    # MMA Wrapper to Auto Generate Code for MMA
    mmac_emitter = MatrixCoreIntrinEmitter(
        a_dtype=in_dtype,
        b_dtype=in_dtype,
        accum_dtype=accum_dtype,
        a_transposed=a_transposed,
        b_transposed=b_transposed,
        block_row_warps=block_row_warps,
        block_col_warps=block_col_warps,
        warp_row_tiles=warp_row_tiles,
        warp_col_tiles=warp_col_tiles,
        chunk=chunk,
        k_pack=k_pack,
    )

    @T.prim_func
    def main(
qisan's avatar
qisan committed
111
112
113
        A: T.Tensor(A_shape, in_dtype),
        B: T.Tensor(B_shape, in_dtype),
        C: T.Tensor((M, N), out_dtype),
114
115
116
117
118
119
120
121
122
    ):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by):
            A_shared = T.alloc_shared(A_shared_shape, in_dtype, scope=shared_scope)
            B_shared = T.alloc_shared(B_shared_shape, in_dtype, scope=shared_scope)
            C_shared = T.alloc_shared(C_shared_shape, out_dtype, scope=shared_scope)
            A_local = T.alloc_local((warp_rows * local_size_a), in_dtype)
            B_local = T.alloc_local((warp_cols * local_size_b), in_dtype)
            C_local = T.alloc_local((warp_rows * warp_cols * local_size_c), accum_dtype)

qisan's avatar
qisan committed
123
124
125
126
127
128
            T.annotate_layout(
                {
                    A_shared: make_swizzle_layout(A_shared),
                    B_shared: make_swizzle_layout(B_shared),
                }
            )
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

            # Improve L2 Cache
            T.use_swizzle(panel_size=10)

            T.clear(C_local)

            for ko in T.Pipelined((K // block_K), num_stages=0):
                # Load A into shared memory
                if a_transposed:
                    T.copy(A[ko * block_K, by * block_M], A_shared)
                else:
                    T.copy(A[by * block_M, ko * block_K], A_shared)

                # Load B into shared memory
                if b_transposed:
                    T.copy(B[bx * block_N, ko * block_K], B_shared)
                else:
                    T.copy(B[ko * block_K, bx * block_N], B_shared)

                for ki in T.serial(0, (block_K // (k_pack * micro_size_k))):
                    # Load A into fragment
                    mmac_emitter.ldmatrix_a(
                        A_local,
                        A_shared,
                        ki,
                    )

                    # Load B into fragment
                    mmac_emitter.ldmatrix_b(
                        B_local,
                        B_shared,
                        ki,
                    )

                    # Perform Matrix Multiplication
                    mmac_emitter.mmac(A_local, B_local, C_local)

            # Perform STMatrix
            mmac_emitter.stmatrix(
                C_local,
                C_shared,
            )

            # Store shared into global
            for i, j in T.Parallel(block_M, block_N):
                C[by * block_M + i, bx * block_N + j] = C_shared[
                    j // micro_size_y,
176
                    i // micro_size_x,
177
178
179
180
181
182
183
                    i % micro_size_x,
                    j % micro_size_y,
                ]

    return main


qisan's avatar
qisan committed
184
185
def assert_tl_matmul_correctness(M, N, K, in_dtype, out_dtype, accum_dtype="float32", a_transposed=False, b_transposed=True, k_pack=1):
    matmul = tl_matmul(M, N, K, in_dtype, out_dtype, accum_dtype, a_transposed, b_transposed, k_pack)
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    print(matmul)
    kernel = tilelang.compile(matmul)
    src_code = kernel.get_kernel_source()
    # src_code is the generated cuda source
    assert src_code is not None
    A_shape = (K, M) if a_transposed else (M, K)
    B_shape = (N, K) if b_transposed else (K, N)
    if in_dtype == "int8":
        A = torch.randint(-128, 127, A_shape, device="cuda", dtype=torch.int8)
        B = torch.randint(-128, 127, B_shape, device="cuda", dtype=torch.int8)
    else:
        A = torch.rand(A_shape, device="cuda", dtype=getattr(torch, in_dtype))
        B = torch.rand(B_shape, device="cuda", dtype=getattr(torch, in_dtype))
    C = torch.zeros(M, N, device="cuda", dtype=getattr(torch, out_dtype))

    kernel(A, B, C)
    print(kernel.get_kernel_source())

    profiler = kernel.get_profiler()

    latency = profiler.do_bench()

    # Ensure that the latency is not None
    assert latency is not None

    if a_transposed and b_transposed:
        # Get Reference Result
qisan's avatar
qisan committed
213
        ref_c = torch.matmul(A.T.to(torch.float32), B.T.to(torch.float32)).to(getattr(torch, out_dtype))
214
215
    elif a_transposed and not b_transposed:
        # Get Reference Result
qisan's avatar
qisan committed
216
        ref_c = torch.matmul(A.Tto(torch.float32), B.to(torch.float32)).to(getattr(torch, out_dtype))
217
218
    elif not a_transposed and b_transposed:
        # Get Reference Result
qisan's avatar
qisan committed
219
        ref_c = torch.matmul(A.to(torch.float32), B.T.to(torch.float32)).to(getattr(torch, out_dtype))
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    else:
        # Get Reference Result
        ref_c = torch.matmul(A.to(torch.float32), B.to(torch.float32)).to(getattr(torch, out_dtype))

    print(C)
    print(ref_c)
    torch.testing.assert_close(C, ref_c, rtol=1e-2, atol=1e-2)


@tilelang.testing.requires_rocm
def test_assert_tl_matmul():
    assert_tl_matmul_correctness(128, 128, 128, "float16", "float16")
    assert_tl_matmul_correctness(128, 256, 256, "float16", "float32")
    assert_tl_matmul_correctness(128, 256, 256, "float16", "float32", k_pack=2)
    assert_tl_matmul_correctness(128, 128, 128, "int8", "int32", accum_dtype="int32")
    assert_tl_matmul_correctness(128, 256, 256, "int8", "int32", accum_dtype="int32")
    assert_tl_matmul_correctness(128, 256, 256, "int8", "int32", accum_dtype="int32", k_pack=2)
qisan's avatar
qisan committed
237
238
    assert_tl_matmul_correctness(128, 256, 256, "int8", "int32", b_transposed=False, accum_dtype="int32")
    assert_tl_matmul_correctness(128, 256, 256, "int8", "int32", b_transposed=False, accum_dtype="int32", k_pack=2)
239
240
241
242
243
244
245
246
247
248
    # assert_tl_matmul_correctness(128, 128, 128, "float8_e4m3fnuz", "float16")
    # assert_tl_matmul_correctness(128, 256, 256, "float8_e4m3fnuz", "float32")
    # assert_tl_matmul_correctness(128, 256, 256, "float8_e4m3fnuz", "float32", k_pack=2)
    # assert_tl_matmul_correctness(128, 256, 256, "float8_e4m3fnuz", "float32", b_transposed=False)
    # assert_tl_matmul_correctness(
    #     128, 256, 256, "float8_e4m3fnuz", "float32", b_transposed=False, k_pack=2)


if __name__ == "__main__":
    tilelang.testing.main()