thread_storage_sync.cc 29.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

/*!
 * \file thread_storage_sync.cc
 */
23
24
#include <tvm/ffi/function.h>
#include <tvm/ffi/reflection/registry.h>
25
26
27
28
29
30
31
32
#include <tvm/tir/analysis.h>
#include <tvm/tir/builtin.h>
#include <tvm/tir/expr.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>

#include <unordered_map>
#include <unordered_set>
33
#include <utility>
34

35
#include "../op/builtin.h"
36
#include "./common/thread_sync_types.h"
37
#include "./storage_access.h"
38
#include "arith/ir_mutator_with_analyzer.h"
39
40
41
42
43
44
45
#include "runtime/thread_storage_scope.h"
#include "tir/transforms/ir_utils.h"

namespace tvm {
namespace tl {

using namespace tir;
46
using arith::IRMutatorWithAnalyzer;
47
48
49
50

class TileLangThreadSyncPlanner : public TileLangStorageAccessVisitor {
public:
  explicit TileLangThreadSyncPlanner(StorageScope sync_scope)
51
      : sync_scope_(std::move(sync_scope)) {}
52
53
54
55
56
57
58
59
60
61
62
63
64
65

  // The syncs inserted before each statement
  std::unordered_set<const Object *> syncs_inserted_;

protected:
  bool Enabled(const VarNode *buf, const StorageScope &scope) const final {
    return in_device_env() && scope == sync_scope_;
  }
  // Plan the sync
  std::vector<AccessEntry> Summarize(std::vector<StmtEntry> seq,
                                     const ForNode *loop) final {
    // Redirect all "shared.dyn" buffer access to the same buffer var
    // so that the accesses can be planned together.
    Var shared_dyn_buf;
66
67
68
69
70
71
72
73
74
75
76
77
    for (StmtEntry &entry : seq) {
      for (AccessEntry &access : entry.access) {
        if (access.scope.rank == StorageRank::kShared &&
            access.scope.tag == ".dyn" && access.buffer.defined()) {
          if (!shared_dyn_buf.defined()) {
            shared_dyn_buf = access.buffer;
          } else {
            access.buffer = shared_dyn_buf;
          }
        }
      }
    }
78
79
80
81
82
83
84
85
86
87
88

    // Unsynced reads and writes
    std::vector<AccessEntry> reads;
    std::vector<AccessEntry> writes;
    // if it is a loop, rotate two times to consider effect of loop.
    // simulation based approach to find dependencies
    for (size_t i = 0; i < seq.size(); ++i) {
      const StmtEntry &s = seq[i];
      // check if sync before statement is needed.
      bool sync_before_stmt = (syncs_inserted_.count(s.stmt) != 0);
      // Apply the syncs added already.
89

90
91
92
93
      if (sync_before_stmt) {
        reads.clear();
        writes.clear();
      }
94

95
96
97
98
99
100
101
      for (const AccessEntry &acc : s.access) {
        if (acc.type == kRead) {
          if (FindConflict(writes, acc, false)) {
            sync_before_stmt = true;
            break;
          }
        } else if (acc.type == kWrite) {
102
103
          if (FindConflict(reads, acc, false) ||
              FindConflict(writes, acc, false)) {
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
            sync_before_stmt = true;
            break;
          }
        } else if (acc.type == kSync) {
          reads.clear();
          writes.clear();
        }
      }
      // If sync is inserted. remove the irrelevant things.
      if (sync_before_stmt) {
        reads.clear();
        writes.clear();
      }
      // Add the read/write of current statement
      for (const AccessEntry &acc : s.access) {
        if (acc.type == kRead) {
          reads.push_back(acc);
        } else if (acc.type == kWrite) {
          writes.push_back(acc);
        } else if (acc.type == kSync) {
          reads.clear();
          writes.clear();
        }
      }
128

129
130
131
132
133
      if (sync_before_stmt) {
        insert_syncs(s.stmt);
      }
    }
    if (loop != nullptr) {
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
      // Check if the loop body contains any reads in the same sync scope.
      // If there are reads, we conservatively keep the sync within the loop
      // body to preserve per-iteration ordering when needed. If there are no
      // reads (e.g., only writes to shared.dyn), we can safely hoist the sync
      // to before the loop to avoid redundant barriers.
      bool has_read_in_scope = false;
      for (const StmtEntry &s : seq) {
        for (const AccessEntry &acc : s.access) {
          if (acc.type == kRead && acc.scope == sync_scope_) {
            has_read_in_scope = true;
            break;
          }
        }
        if (has_read_in_scope)
          break;
      }
      // If there is a loop-carried dependency, insert a single sync
      // before the loop rather than hoisting a sync into the loop body.
      // This reduces redundant per-iteration synchronizations for cases
      // where each iteration touches disjoint regions (e.g., stmatrix
      // writes to shared.dyn) and only a global ordering before/after the
      // loop is required.
156
157
158
159
160
161
      for (size_t i = 0; i < seq.size(); ++i) {
        const StmtEntry &s = seq[i];
        if (syncs_inserted_.count(s.stmt) != 0)
          break;
        if (reads.empty() && writes.empty())
          break;
162
        bool need_loop_sync = false;
163
164
165
        for (const AccessEntry &acc : s.access) {
          if (acc.type == kRead) {
            if (FindConflict(writes, acc, true)) {
166
              need_loop_sync = true;
167
168
169
              break;
            }
          } else if (acc.type == kWrite) {
170
171
172
            if (FindConflict(reads, acc, true) ||
                FindConflict(writes, acc, true)) {
              need_loop_sync = true;
173
174
175
176
177
178
179
              break;
            }
          } else if (acc.type == kSync) {
            reads.clear();
            writes.clear();
          }
        }
180
181
182
183
184
185
186
187
188
189
190
        if (need_loop_sync) {
          if (!has_read_in_scope) {
            // Mark the loop itself to receive a sync before it, instead of
            // inserting inside the loop body. This ensures a single sync is
            // emitted outside the loop and avoids per-iteration overhead.
            insert_syncs(loop);
          } else {
            // Fall back to inserting before the first conflicting statement
            // inside the loop to maintain correctness when reads are present.
            insert_syncs(s.stmt);
          }
191
192
193
194
          break;
        }
      }
    }
Gabriel Wu's avatar
Gabriel Wu committed
195
    // return the exposed entries, remove unnecessary ones.
196
197
198
199
200
    int sync_count = 0;
    // head are before first sync, tail are after last sync
    std::vector<AccessEntry> head, tail;
    AccessEntry esync;
    esync.threads = this->env_threads();
201
    esync.thread_range = this->ComputeThreadRange(esync.threads);
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
    esync.type = kSync;
    esync.scope = sync_scope_;

    for (const StmtEntry &s : seq) {
      if (syncs_inserted_.count(s.stmt)) {
        if (sync_count != 0) {
          tail.clear();
        } else {
          head.push_back(esync);
        }
        ++sync_count;
      }
      for (const AccessEntry &acc : s.access) {
        if (acc.type == kSync) {
          if (sync_count != 0) {
            tail.clear();
          } else {
            head.push_back(esync);
          }
          ++sync_count;
        } else {
          if (sync_count != 0) {
            tail.push_back(acc);
          } else {
            head.push_back(acc);
          }
        }
      }
    }
    head.insert(head.end(), tail.begin(), tail.end());
    if (loop != nullptr) {
      // clear double buffer flag after a loop is finished.
      for (AccessEntry &e : head) {
        e.double_buffer_write = false;
      }
    }
    return head;
  }

private:
  // find conflicting entry in vec.
  bool FindConflict(const std::vector<AccessEntry> &prev,
                    const AccessEntry &curr, bool loop_carry) {
    for (const AccessEntry &x : prev) {
      if (FindConflict(x, curr, loop_carry)) {
        return true;
      }
    }
    return false;
  }

  bool FindConflict(const AccessEntry &prev, const AccessEntry &curr,
                    bool loop_carry) {
255
256
257
258
259
260
261
262
    // Special case: ignore conflicts between async-copy writes (e.g., TMA
    // loads into shared memory). Multiple async writes do not require
    // interspersed barriers among themselves. We still respect conflicts with
    // reads to ensure visibility before consumption.
    if (prev.type == kWrite && curr.type == kWrite && prev.is_async_copy &&
        curr.is_async_copy) {
      return false;
    }
263
264
265
266
267
268
269
270
271
    // Access to different buffers does not conflict.
    if (!prev.buffer.same_as(curr.buffer)) {
      return false;
    }

    // Assumes no race between threads
    // Same index value means no conflicts
    // TODO(tqchen) more standard set based testing.
    bool has_same_index = true;
272
    bool range_is_equal = true;
273
274
    bool range_is_overlap = true;

275
276
277
278
279
    for (const auto &kv : prev.thread_range) {
      if (!StructuralEqual()(kv.second, curr.thread_range[kv.first])) {
        range_is_equal = false;
        break;
      }
280
281
    }

282
283
284
285
    if (prev.buffer_indices.size() != curr.buffer_indices.size()) {
      // They are not the same indices, should be conflict.
      return true;
    }
286
    if (prev.is_pointer_access || curr.is_pointer_access) {
287
288
289
290
291
292
293
294
295
      // For accesses created via tvm_access_ptr we may still be able to prove
      // disjointness using their byte ranges.  If both sides expose a touched
      // interval and we can show they don't overlap, skip the conflict.
      if (prev.is_pointer_access && curr.is_pointer_access &&
          PointerAccessIsDisjoint(prev, curr)) {
        return false;
      }
      // Otherwise fall back to the conservative answer: treat them as
      // overlapping.
296
297
      return true;
    }
298

299
    for (size_t i = 0; i < prev.buffer_indices.size(); i++) {
300
301
302
      auto prev_dtype = prev.dtype;
      auto curr_dtype = curr.dtype;

303
304
      const auto &prev_indice = prev.buffer_indices[i];
      const auto &curr_indice = curr.buffer_indices[i];
305

306
      if (!ExprDeepEqual()(prev_indice, curr_indice)) {
307
        PrimExpr prev_indice_bytes =
308
            analyzer_.Simplify(prev_indice * prev_dtype.bytes());
309
        PrimExpr curr_indice_bytes =
310
311
            analyzer_.Simplify(curr_indice * curr_dtype.bytes());

312
        has_same_index = false;
313
314
315
316
317

        // If both are const, we can check if they are disjoint
        // by checking if the bounds are disjoint
        // [1024, 2048], [2048, 3072] are disjoint
        // [1024, 2048], [1024, 1024] are not disjoint
318
319
        auto prev_bound = analyzer_.const_int_bound(prev_indice_bytes);
        auto curr_bound = analyzer_.const_int_bound(curr_indice_bytes);
320
        if (prev_bound.defined() && curr_bound.defined()) {
321
322
          if ((prev_bound->min_value) > (curr_bound->max_value) ||
              (curr_bound->min_value) > (prev_bound->max_value)) {
323
324
325
326
327
328
329
            range_is_overlap = false;
            break;
          }
        }

        // if we can prove prev_indice < curr_indice or prev_indice >
        // curr_indice, then they are not overlap
330
331
332
        auto prev_indices_dtype = prev_indice.dtype();
        auto curr_indices_dtype = curr_indice.dtype();
        if (prev_indices_dtype.lanes() != curr_indices_dtype.lanes()) {
333
334
335
336
          // can not support different lanes binary op like <, >, <=, >=
          // skip otherwise it will lead to error
          continue;
        }
337

338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
        // provably disjoint means no overlap, for example:
        // we can prove that tx - 128 < tx + 128, tx in [0, 128]
        // However, we should apply tx split because
        // tx < tx + 32 when tx in [0, 128] is not disjoint
        // because [0, 128] is not disjoint with [32, 160]
        // so we should split tx into tx0 and tx1.

        struct ThreadVarInfo {
          const char *name_prev;
          const char *name_curr;
          IterVar iv;
        } thread_vars[] = {
            {"tx1", "tx2", tx_},
            {"ty1", "ty2", ty_},
            {"tz1", "tz2", tz_},
        };

        for (const auto &info : thread_vars) {
          Var prev_var(info.name_prev, info.iv->var.dtype());
          Var curr_var(info.name_curr, info.iv->var.dtype());
          analyzer_.Bind(prev_var, info.iv->dom);
          analyzer_.Bind(curr_var, info.iv->dom);
          prev_indice_bytes =
              Substitute(prev_indice_bytes, {{info.iv->var, prev_var}});
          curr_indice_bytes =
              Substitute(curr_indice_bytes, {{info.iv->var, curr_var}});
        }

366
        bool provably_disjoint =
367
            analyzer_.CanProve(prev_indice_bytes < curr_indice_bytes,
368
                               arith::ProofStrength::kSymbolicBound) ||
369
            analyzer_.CanProve(prev_indice_bytes > curr_indice_bytes,
370
371
372
373
374
375
                               arith::ProofStrength::kSymbolicBound);

        if (provably_disjoint) {
          range_is_overlap = false;
          break;
        }
376
377
      }

378
      if (!has_same_index) {
379
380
381
        break;
      }
    }
382
383

    if (has_same_index && range_is_equal) {
384
385
386
387
388
389
390
391
      return false;
    }

    // If this is a read into a double buffer that was previously
    // swapped out, then it doesn't conflict.
    if (prev.double_buffer_write && curr.type == kRead && !loop_carry) {
      return false;
    }
392

393
394
    // If nothing else allows sharing the same buffer, then they are
    // in conflict.
395
396
397
398
    // if range_is_overlap is true, then they are in conflict, we should return
    // true. if range_is_overlap is false, then they are not in conflict, we
    // should return false.
    return range_is_overlap;
399
400
  }

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
  bool PointerAccessIsDisjoint(const AccessEntry &lhs, const AccessEntry &rhs) {
    if (lhs.touched.size() != 1 || rhs.touched.size() != 1) {
      return false;
    }
    PrimExpr lhs_min = analyzer_.Simplify(lhs.touched[0].min());
    PrimExpr lhs_max = analyzer_.Simplify(lhs.touched[0].max());
    PrimExpr rhs_min = analyzer_.Simplify(rhs.touched[0].min());
    PrimExpr rhs_max = analyzer_.Simplify(rhs.touched[0].max());

    if (analyzer_.CanProve(lhs_max < rhs_min,
                           arith::ProofStrength::kSymbolicBound)) {
      return true;
    }
    if (analyzer_.CanProve(rhs_max < lhs_min,
                           arith::ProofStrength::kSymbolicBound)) {
      return true;
    }
    return false;
  }

421
  void VisitStmt_(const AttrStmtNode *op) final {
422
423
424
425
426
427
428
429
430
    if (op->attr_key == tvm::tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      if (iv->thread_tag == "threadIdx.x") {
        tx_ = iv;
      } else if (iv->thread_tag == "threadIdx.y") {
        ty_ = iv;
      } else if (iv->thread_tag == "threadIdx.z") {
        tz_ = iv;
      }
431
    }
432
    TileLangStorageAccessVisitor::VisitStmt_(op);
433
434
435
436
437
  }

  void insert_syncs(const Object *obj) {
    if (syncs_inserted_.count(obj))
      return;
438
    syncs_inserted_.insert(obj);
439
440
441
  }

private:
442
443
444
445
446
447
448
  // Member variables
  IterVar tx_ =
      IterVar(Range::FromMinExtent(0, 1), Var("tx"), IterVarType::kDataPar);
  IterVar ty_ =
      IterVar(Range::FromMinExtent(0, 1), Var("ty"), IterVarType::kDataPar);
  IterVar tz_ =
      IterVar(Range::FromMinExtent(0, 1), Var("tz"), IterVarType::kDataPar);
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
  // synchronization scope
  StorageScope sync_scope_;
};

// There are cases where necessary syncthreads is not inserted by
// ThreadSyncInserter. For example, syncthreads is needed after async_wait_queue
// in the second loop below, but since ThreadSyncInserter is not aware of the
// asynchronous semantics, it cannot tell that the syncthreads is needed there.
//
// // Pipeline prologue
// for i in range(125):
//    async_commit_queue(0):
//       async_scope:
//          shared[(i + 3) % 4] = ...
// ...
//
// // Pipeline Epilogue
// for i in range(3):
//    async_wait_queue(0, 2 - i):
//       local[...] = shared[(i + 125) % 4]

// This class adds syncthreads after all async_wait_queue. That includes
// syncthreads that can be inserted by ThreadSyncInserter as well, but
// ThreadSyncInserter will not insert duplicate syncthreads if it finds an
// existing one at the synchronization point.
class ThreadSyncAfterWaitQueueInserter : public StmtExprMutator {
public:
  explicit ThreadSyncAfterWaitQueueInserter(StorageScope sync_scope)
477
      : sync_scope_(std::move(sync_scope)) {}
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501

  Stmt VisitStmt_(const AttrStmtNode *op) final {
    if (op->attr_key == tvm::tir::attr::async_wait_queue_scope) {
      auto sync = Evaluate(Call(DataType::Int(32), builtin::tvm_storage_sync(),
                                {StringImm(sync_scope_.to_string())}));
      auto inner = op->body.as<AttrStmtNode>();
      ICHECK(inner &&
             inner->attr_key == tvm::tir::attr::async_wait_inflight_count);
      auto zero = make_zero(DataType::Int(32));
      auto new_body = SeqStmt({sync, inner->body});
      return AttrStmt(zero, tvm::tir::attr::async_wait_queue_scope, op->value,
                      AttrStmt(zero, tvm::tir::attr::async_wait_inflight_count,
                               inner->value, new_body));
    }
    return StmtExprMutator::VisitStmt_(op);
  }

private:
  StorageScope sync_scope_;
};

class ThreadSyncInserter : public StmtExprMutator {
public:
  ThreadSyncInserter(StorageScope sync_scope,
502
                     const std::unordered_set<const Object *> &syncs)
503
      : sync_scope_(std::move(sync_scope)), syncs_(syncs) {}
504
505

  Stmt VisitStmt(const Stmt &stmt) final {
506
    if (syncs_.empty())
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
      return stmt;
    if (syncs_.count(stmt.get())) {
      Stmt barrier;
      if (sync_scope_.rank == StorageRank::kGlobal) {
        barrier = MakeGlobalBarrier();
      } else {
        barrier = Evaluate(Call(DataType::Int(32), builtin::tvm_storage_sync(),
                                {StringImm(sync_scope_.to_string())}));
      }
      // Mutate after query, to avoid stmt change.
      auto ret = StmtExprMutator::VisitStmt(stmt);
      ret = SeqStmt({barrier, ret});
      return ret;
    } else {
      return StmtExprMutator::VisitStmt(stmt);
    }
  }
  PrimExpr VisitExpr_(const BufferLoadNode *op) final {
    if (sync_scope_.rank == StorageRank::kGlobal &&
        GetScope(op->buffer->data).rank == StorageRank::kGlobal) {
      ++rw_stats_[op->buffer->data].read_count;
    }
    return StmtExprMutator::VisitExpr_(op);
  }
  Stmt VisitStmt_(const BufferStoreNode *op) final {
    if (sync_scope_.rank == StorageRank::kGlobal &&
        GetScope(op->buffer->data).rank == StorageRank::kGlobal) {
      ++rw_stats_[op->buffer->data].write_count;
    }
    return StmtExprMutator::VisitStmt_(op);
  }
  Stmt VisitStmt_(const AttrStmtNode *op) final {
    if (op->attr_key == tvm::tir::attr::thread_extent) {
      bool temp = true;
      std::swap(temp, in_thread_env_);
      thread_extents_.push_back(op);
      Stmt ret = StmtExprMutator::VisitStmt_(op);
      thread_extents_.pop_back();
      std::swap(temp, in_thread_env_);
      // first thread scope.
      if (!in_thread_env_ && sync_scope_.rank == StorageRank::kGlobal) {
        ret = InitGlobalBarrier(ret.as<AttrStmtNode>());
        num_blocks_ = PrimExpr();
        is_lead_ = PrimExpr();
      }
      return ret;
    } else {
      return StmtExprMutator::VisitStmt_(op);
    }
  }

  PrimExpr VisitExpr_(const CallNode *op) final {
    if (op->op.same_as(builtin::tvm_access_ptr())) {
      PrimExpr expr = StmtExprMutator::VisitExpr_(op);
      op = expr.as<CallNode>();
      ICHECK_EQ(op->args.size(), 5U);
      Var buffer_var(Downcast<Var>(op->args[1]));
      const IntImmNode *flag = op->args[4].as<IntImmNode>();
      if ((flag->value & 1) && sync_scope_.rank == StorageRank::kGlobal &&
          GetScope(buffer_var).rank == StorageRank::kGlobal) {
        ++rw_stats_[buffer_var].read_count;
      }
      if (flag->value & 2 && sync_scope_.rank == StorageRank::kGlobal &&
          GetScope(buffer_var).rank == StorageRank::kGlobal) {
        ++rw_stats_[buffer_var].write_count;
      }
      return expr;
    } else if (op->op.same_as(builtin::address_of())) {
      PrimExpr expr = StmtExprMutator::VisitExpr_(op);
      op = expr.as<CallNode>();
      ICHECK_EQ(op->args.size(), 1U)
          << "address_of should only have one argument (Buffer)";

580
581
582
583
584
585
586
587
588
589
590
591
592
      if (auto load = op->args[0].as<BufferLoadNode>()) {
        Var buffer_var(Downcast<Var>(load->buffer->data));
        if (sync_scope_.rank == StorageRank::kGlobal &&
            GetScope(buffer_var).rank == StorageRank::kGlobal) {
          ++rw_stats_[buffer_var].read_count;
        }
        if (sync_scope_.rank == StorageRank::kGlobal &&
            GetScope(buffer_var).rank == StorageRank::kGlobal) {
          ++rw_stats_[buffer_var].write_count;
        }
        return expr;
      } else {
        return StmtExprMutator::VisitExpr_(op);
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
      }
    } else {
      return StmtExprMutator::VisitExpr_(op);
    }
  }

private:
  // RW statistics about data
  struct Entry {
    int read_count{0};
    int write_count{0};
  };

  // Get current storage scope.
  StorageScope GetScope(Var buffer_var) const {
608
    return StorageScope::Create(GetPtrStorageScope(std::move(buffer_var)));
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
  }

  // private functions.
  Stmt InitGlobalBarrier(const AttrStmtNode *op) {
    ICHECK(op != nullptr);
    Array<PrimExpr> pargs = {
        StringImm(runtime::symbol::tvm_prepare_global_barrier)};
    Stmt prep =
        Evaluate(Call(DataType::Int(32), builtin::tvm_call_packed(), pargs));
    Stmt body = op->body;
    for (const auto &kv : rw_stats_) {
      const auto &e = kv.second;
      if (e.read_count != 0 && e.write_count != 0) {
        body = AttrStmt(kv.first, tvm::tir::attr::volatile_scope, 1, body);
      }
    }
    rw_stats_.clear();
    Stmt kinit = Evaluate(
        Call(DataType::Int(32), builtin::tvm_global_barrier_kinit(), {}));
    body = SeqStmt({kinit, body});
    body = AttrStmt(op->node, op->attr_key, op->value, body);
    return SeqStmt({prep, body});
  }
  Stmt MakeGlobalBarrier() {
    ICHECK(sync_scope_.rank == StorageRank::kGlobal);
    if (!num_blocks_.defined()) {
      ICHECK(!is_lead_.defined());
      num_work_dim_ = thread_extents_.size();
      for (const AttrStmtNode *attr : thread_extents_) {
        IterVar iv = Downcast<IterVar>(attr->node);
        runtime::ThreadScope s = runtime::ThreadScope::Create(iv->thread_tag);
        if (s.rank == 0) {
          num_blocks_ =
              (num_blocks_.defined() ? attr->value * num_blocks_ : attr->value);
        } else if (s.rank == 1) {
          PrimExpr cond = iv->var == make_zero(iv->var.dtype());
          is_lead_ = is_lead_.defined() ? (is_lead_ && cond) : cond;
        }
      }
    } else {
      ICHECK_EQ(num_work_dim_, thread_extents_.size());
    }
    return Evaluate(
        Call(DataType::Int(32), builtin::tvm_storage_sync(),
             {StringImm(sync_scope_.to_string()), is_lead_, num_blocks_}));
  }
  // data structure.
  StorageScope sync_scope_;
  const std::unordered_set<const Object *> &syncs_;
658

659
660
661
662
663
664
665
666
667
668
669
  // The read write statistics of storage
  std::unordered_map<Var, Entry, ObjectPtrHash, ObjectPtrEqual> rw_stats_;
  // The statistics for global barrier
  bool in_thread_env_{false};
  // memorized results
  std::vector<const AttrStmtNode *> thread_extents_;
  size_t num_work_dim_{0};
  PrimExpr num_blocks_;
  PrimExpr is_lead_;
};

670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
class ThreadPartialSyncRewriter : public IRMutatorWithAnalyzer {
public:
  static Stmt Rewrite(Stmt stmt) {
    arith::Analyzer analyzer;
    ThreadPartialSyncRewriter rewriter(&analyzer);
    return rewriter(std::move(stmt));
  }

private:
  explicit ThreadPartialSyncRewriter(arith::Analyzer *analyzer)
      : IRMutatorWithAnalyzer(analyzer) {}

  Stmt VisitStmt_(const EvaluateNode *op) final {
    const CallNode *call = nullptr;
    if (op->value->IsInstance<CallNode>()) {
685
      call = op->value.as<CallNode>();
686
687
      if (call->op.same_as(builtin::tvm_storage_sync())) {
        const auto &args = call->args;
688
        ICHECK(!args.empty());
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
        const auto *scope_node = args[0].as<StringImmNode>();
        ICHECK(scope_node != nullptr);
        const std::string &scope = scope_node->value;

        if (args.size() != 1 || (scope != "shared" && scope != "shared.dyn")) {
          return IRMutatorWithAnalyzer::VisitStmt_(op);
        }

        return ProcessSharedSync(call, scope);
      }
    }
    return IRMutatorWithAnalyzer::VisitStmt_(op);
  }

  Stmt ProcessSharedSync(const CallNode *op, const std::string &scope) {
    // Get thread bounds
    auto bound_tx = analyzer_->const_int_bound(tx_);
    auto bound_ty = analyzer_->const_int_bound(ty_);
    auto bound_tz = analyzer_->const_int_bound(tz_);

    // Check if all threads are participating (full extent)
    if (IsFullThreadExtent(tx_, bound_tx) &&
        IsFullThreadExtent(ty_, bound_ty) &&
        IsFullThreadExtent(tz_, bound_tz)) {
      return Evaluate(IRMutatorWithAnalyzer::VisitExpr_(op));
    }

    // Calculate thread extents
    auto extent_tx = CalculateThreadExtent(tx_, bound_tx);
    auto extent_ty = CalculateThreadExtent(ty_, bound_ty);
    auto extent_tz = CalculateThreadExtent(tz_, bound_tz);

    // Create or get barrier info
    ThreadBoundKey key{bound_tx->min_value, bound_tx->max_value,
                       bound_ty->min_value, bound_ty->max_value,
                       bound_tz->min_value, bound_tz->max_value};

    auto [barrier_id, thread_count] =
        GetOrCreateBarrier(key, extent_tx, extent_ty, extent_tz);
    if (thread_count % 32 != 0) {
      // TODO(lei): This is a workaround for the case where the thread count is
      // not a multiple of 32. we should enhance the pass to analysis index
      // instead of buffer expression etc.
      return Stmt();
    }

    // Create new sync call with barrier info
    Array<PrimExpr> new_args = {StringImm(scope),
                                IntImm(DataType::Int(32), barrier_id),
                                IntImm(DataType::Int(32), thread_count)};
    return Evaluate(Call(op->dtype, op->op, new_args));
  }

  std::pair<size_t, size_t> GetOrCreateBarrier(const ThreadBoundKey &key,
                                               size_t extent_tx,
                                               size_t extent_ty,
                                               size_t extent_tz) {
    if (barrier_id_map_.count(key)) {
      return {barrier_id_map_[key], thread_count_map_[key]};
    }

    size_t barrier_id =
        barrier_id_map_.size() +
        static_cast<size_t>(ReservedNamedBarriers::kFirstUsedBarrier);
    size_t thread_count = extent_tx * extent_ty * extent_tz;

    barrier_id_map_[key] = barrier_id;
    thread_count_map_[key] = thread_count;

    return {barrier_id, thread_count};
  }

  size_t CalculateThreadExtent(const IterVar &iv,
                               const arith::ConstIntBound &bound) {
    if (!analyzer_->const_int_bound.IsBound(iv->var)) {
      return 1;
    }
    return bound->max_value - bound->min_value + 1;
  }

  Stmt VisitStmt_(const AttrStmtNode *op) final {
    if (op->attr_key == tvm::tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
      if (iv->thread_tag == "threadIdx.x") {
        tx_ = iv;
      } else if (iv->thread_tag == "threadIdx.y") {
        ty_ = iv;
      } else if (iv->thread_tag == "threadIdx.z") {
        tz_ = iv;
      }
    }
    return IRMutatorWithAnalyzer::VisitStmt_(op);
  }

  bool IsFullThreadExtent(const IterVar &iv,
                          const arith::ConstIntBound &bound) {
    if (!analyzer_->const_int_bound.IsBound(iv->var)) {
      return true;
    }

    if (!iv->dom.defined()) {
      return true;
    }

    const auto *min_node = iv->dom->min.as<IntImmNode>();
    const auto *extent_node = iv->dom->extent.as<IntImmNode>();

    int64_t min = min_node->value;
    int64_t extent = extent_node->value;
    int64_t max = min + extent - 1;

    return min == bound->min_value && max == bound->max_value;
  }

  // Member variables
  IterVar tx_ =
      IterVar(Range::FromMinExtent(0, 1), Var("tx"), IterVarType::kDataPar);
  IterVar ty_ =
      IterVar(Range::FromMinExtent(0, 1), Var("ty"), IterVarType::kDataPar);
  IterVar tz_ =
      IterVar(Range::FromMinExtent(0, 1), Var("tz"), IterVarType::kDataPar);
  std::unordered_map<ThreadBoundKey, size_t> barrier_id_map_;
  std::unordered_map<ThreadBoundKey, size_t> thread_count_map_;
};

814
PrimFunc TileLangThreadSync(PrimFunc func, const std::string &storage_scope) {
815
  StorageScope sync_scope = StorageScope::Create(storage_scope);
816
817
  auto *n = func.CopyOnWrite();
  auto stmt = n->body;
818
  if (sync_scope.rank == StorageRank::kShared && sync_scope.tag.empty()) {
819
820
821
    stmt = ThreadSyncAfterWaitQueueInserter(sync_scope)(stmt);
  }
  TileLangThreadSyncPlanner planner(sync_scope);
822
823
824
  for (const auto &[_, buffer] : func->buffer_map) {
    planner.SetBufferDataToBuffer(buffer->data, buffer);
  }
825
  planner(stmt);
826

827
828
829
830
  stmt =
      ThreadSyncInserter(sync_scope, planner.syncs_inserted_)(std::move(stmt));
  n->body = ThreadPartialSyncRewriter::Rewrite(std::move(stmt));
  return func;
831
832
833
834
835
836
}

using namespace tir::transform;

namespace transform {

837
838
839
tvm::transform::Pass ThreadSync(const String &storage_scope) {
  auto pass_func = [storage_scope](PrimFunc f, const IRModule &m,
                                   const PassContext &ctx) {
840
    auto *n = f.CopyOnWrite();
841
842
843
844
845
846
    // Check if thread storage sync is disabled
    bool disable_syncthreads =
        ctx->GetConfig(kDisableThreadStorageSync, Bool(false)).value()->value;
    if (disable_syncthreads) {
      return f;
    }
847
848
    return tl::TileLangThreadSync(std::move(f), storage_scope);
    ;
849
850
851
852
  };
  return CreatePrimFuncPass(pass_func, 0, "tl.ThreadSync", {});
}

853
TVM_FFI_STATIC_INIT_BLOCK() {
854
855
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.transform.ThreadSync", ThreadSync);
856
}
857
858
859
860

} // namespace transform
} // namespace tl
} // namespace tvm