example_chunk_o.py 7.59 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
# Reference: fla/ops/common/chunk_o.py

import tilelang
import tilelang.language as T
import sys  # noqa: F401

# Add your fla repository path to sys.path
# Currently we use the fla repository from the flash-linear-attention project at commit id f03cb3ae
# sys.path.insert(0, "/home/tzj/flash-linear-attention")
try:
    import fla
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
    print(fla.__file__)
    from fla.ops.common.chunk_o import chunk_fwd_o
except ImportError:
    print("fla not found, using tilelang implementation")
    fla = None

import torch

torch.random.manual_seed(1)


def prepare_input(
    B,
    S,
    H,
    DK,
    DV,
    chunk_size,
    input_dtype,
    output_dtype,
    accum_dtype,
    gate_dtype,
):
    BS = chunk_size
    Q = torch.randn(B, S, H, DK, dtype=input_dtype).cuda()
    K = torch.randn(B, S, H, DK, dtype=input_dtype).cuda()
    V = torch.randn(B, S, H, DV, dtype=input_dtype).cuda()
    HIDDEN = torch.randn(B, S // BS, H, DK, DV, dtype=input_dtype).cuda()
    G = torch.randn(B, S, H, dtype=gate_dtype).cuda()
    return Q, K, V, HIDDEN, G


def prepare_output(
    B,
    S,
    H,
    DK,
    DV,
    chunk_size,
    output_dtype,
):
    O = torch.empty(B, S, H, DV, dtype=output_dtype).cuda()
    return O


@tilelang.jit(out_idx=[-1])
def tilelang_chunk_fwd_o(
    # task config
    B,
    S,
    H,
    DK,
    DV,
    input_dtype,
    output_dtype,
    accum_dtype,
    gate_dtype,
    chunk_size,
    scale,
    use_g,
    # kernel config
    block_S=64,
    block_DK=64,
    block_DV=64,
    threads=256,
    num_stages=0,
):
    assert chunk_size == block_S, "chunk_size must be equal to block_S"
    BS = chunk_size
    Q_shape = (B, S, H, DK)
    K_shape = (B, S, H, DK)
    V_shape = (B, S, H, DV)
    H_shape = (B, S // BS, H, DK, DV)
    G_shape = (B, S, H)
    O_shape = (B, S, H, DV)

    @T.prim_func
    def kernel(
91
92
93
94
95
96
        Q: T.Tensor(Q_shape, dtype=input_dtype),
        K: T.Tensor(K_shape, dtype=input_dtype),
        V: T.Tensor(V_shape, dtype=input_dtype),
        HIDDEN: T.Tensor(H_shape, dtype=input_dtype),
        G: T.Tensor(G_shape, dtype=gate_dtype),
        O: T.Tensor(O_shape, dtype=output_dtype),
97
    ):
98
        with T.Kernel(T.ceildiv(DV, block_DV), T.ceildiv(S, block_S), B * H, threads=threads) as (bv, bs, bbh):
99
100
101
102
103
104
105
106
107
108
109
110
            bb, bh = bbh // H, bbh % H
            Q_shared = T.alloc_shared((block_S, block_DK), dtype=input_dtype)
            K_shared = T.alloc_shared((block_S, block_DK), dtype=input_dtype)
            V_shared = T.alloc_shared((block_S, block_DV), dtype=input_dtype)
            H_shared = T.alloc_shared((block_DK, block_DV), dtype=input_dtype)
            A_shared = T.alloc_shared((block_S, block_S), dtype=input_dtype)
            O_shared = T.alloc_shared((block_S, block_DV), dtype=output_dtype)
            A_fragment = T.alloc_fragment((block_S, block_S), dtype=accum_dtype)
            O_fragment = T.alloc_fragment((block_S, block_DV), dtype=accum_dtype)
            G_shared = T.alloc_shared((block_S,), dtype=gate_dtype, scope="shared")
            G_diff_local = T.alloc_fragment((block_S, block_S), dtype=gate_dtype)

111
112
113
114
115
116
117
118
119
120
            T.annotate_layout(
                {
                    Q_shared: tilelang.layout.make_swizzled_layout(Q_shared),
                    K_shared: tilelang.layout.make_swizzled_layout(K_shared),
                    V_shared: tilelang.layout.make_swizzled_layout(V_shared),
                    H_shared: tilelang.layout.make_swizzled_layout(H_shared),
                    A_shared: tilelang.layout.make_swizzled_layout(A_shared),
                    O_shared: tilelang.layout.make_swizzled_layout(O_shared),
                }
            )
121
122
123

            T.clear(A_fragment)
            T.clear(O_fragment)
124
            T.disable_warp_group_reg_alloc()
125
            for i_k in T.Pipelined(T.ceildiv(DK, block_DK), num_stages=num_stages):
126
127
128
                T.copy(Q[bb, bs * block_S : (bs + 1) * block_S, bh, i_k * block_DK : (i_k + 1) * block_DK], Q_shared)
                T.copy(K[bb, bs * block_S : (bs + 1) * block_S, bh, i_k * block_DK : (i_k + 1) * block_DK], K_shared)
                T.copy(HIDDEN[bb, bs, bh, i_k * block_DK : (i_k + 1) * block_DK, bv * block_DV : (bv + 1) * block_DV], H_shared)
129
130
131
132
133
134
135
136
137
138
139
140
141
142
                T.gemm(Q_shared, H_shared, O_fragment)
                T.gemm(Q_shared, K_shared, A_fragment, transpose_B=True)

            if use_g:
                for i_s in T.Parallel(block_S):
                    G_shared[i_s] = G[bb, bs * block_S + i_s, bh]
                # T.copy(G[bb, bs * block_S:(bs + 1) * block_S, bh], G_shared)
                for i_s, i_v in T.Parallel(block_S, block_DV):
                    O_fragment[i_s, i_v] = O_fragment[i_s, i_v] * T.exp(G_shared[i_s])
                for i_s1, i_s2 in T.Parallel(block_S, block_S):
                    G_diff_local[i_s1, i_s2] = G_shared[i_s1] - G_shared[i_s2]
                for i_s1, i_s2 in T.Parallel(block_S, block_S):
                    with T.If(G_diff_local[i_s1, i_s2] <= 0):
                        with T.Then():
143
                            A_fragment[i_s1, i_s2] = A_fragment[i_s1, i_s2] * T.exp(G_diff_local[i_s1, i_s2])
144
145
146
147
148
149
150
151
                        with T.Else():
                            A_fragment[i_s1, i_s2] = 0

            for i_s1, i_s2 in T.Parallel(block_S, block_S):
                with T.If(i_s1 < i_s2):  # noqa: SIM117
                    with T.Then():
                        A_fragment[i_s1, i_s2] = 0

152
            T.copy(V[bb, bs * block_S : (bs + 1) * block_S, bh, bv * block_DV : (bv + 1) * block_DV], V_shared)
153
154
155
156
157
158
159
            T.copy(A_fragment, A_shared)
            T.gemm(A_shared, V_shared, O_fragment)

            for i_s, i_v in T.Parallel(block_S, block_DV):
                O_fragment[i_s, i_v] = O_fragment[i_s, i_v] * scale

            T.copy(O_fragment, O_shared)
160
            T.copy(O_shared, O[bb, bs * block_S : (bs + 1) * block_S, bh, bv * block_DV : (bv + 1) * block_DV])
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

    return kernel


def run_test(
    B,
    S,
    H,
    DK,
    DV,
    chunk_size,
    input_dtype,
    output_dtype,
    accum_dtype,
    gate_dtype,
    use_g,
    block_DK,
    block_DV,
    threads,
    num_stages,
):
    input_dtype_torch = getattr(torch, input_dtype)
    output_dtype_torch = getattr(torch, output_dtype)
    accum_dtype_torch = getattr(torch, accum_dtype)
    gate_dtype_torch = getattr(torch, gate_dtype)
186
187
188
    Q, K, V, HIDDEN, G = prepare_input(
        B, S, H, DK, DV, chunk_size, input_dtype_torch, output_dtype_torch, accum_dtype_torch, gate_dtype_torch
    )
189
190
191
192
193
194
195
    scale = 1.0 / DK**0.5

    O_ref = prepare_output(B, S, H, DK, DV, chunk_size, output_dtype_torch)
    O_ref = chunk_fwd_o(Q, K, V, HIDDEN, G, scale, chunk_size=chunk_size)

    block_S = chunk_size
    O_tilelang = prepare_output(B, S, H, DK, DV, chunk_size, output_dtype_torch)
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    kernel = tilelang_chunk_fwd_o(
        B,
        S,
        H,
        DK,
        DV,
        input_dtype,
        output_dtype,
        accum_dtype,
        gate_dtype,
        chunk_size,
        scale,
        use_g,
        block_S,
        block_DK,
        block_DV,
        threads,
        num_stages,
    )
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
    O_tilelang = kernel(Q, K, V, HIDDEN, G)

    try:
        torch.testing.assert_close(O_tilelang, O_ref, rtol=1e-2, atol=1e-2)
        print("tilelang chunk fwd o passed √")
    except Exception as e:
        print("tilelang chunk fwd o failed ✗")
        print(e)


def main():
    run_test(
        B=1,
        S=32768,
        H=32,
        DK=128,
        DV=128,
        chunk_size=64,
233
234
235
236
        input_dtype=T.bfloat16,
        output_dtype=T.bfloat16,
        accum_dtype=T.float32,
        gate_dtype=T.float32,
237
238
239
240
241
242
243
244
245
246
        use_g=True,
        block_DK=128,
        block_DV=128,
        threads=128,
        num_stages=1,
    )


if __name__ == "__main__":
    main()