"docs/_removed/Tuner/GridsearchTuner.rst" did not exist on "39782f1209f0855f49318b9e0fa042fdcf45ba7f"
example_mha_bwd_bhsd.py 15.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
import torch
import torch.nn.functional as F
import tilelang
from tilelang.autotuner import *
import tilelang.language as T
import argparse


@tilelang.jit(
10
11
    out_idx=[3, 4],
    pass_configs={
12
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
13
14
    },
)
15
def flashattn_fwd(batch, heads, seq_len, dim, is_causal, block_M, block_N):
16
    scale = (1.0 / dim) ** 0.5 * 1.44269504  # log2(e)
17
    shape = [batch, heads, seq_len, dim]
18
19
    dtype = T.float16
    accum_dtype = T.float32
20
21
22

    @T.prim_func
    def flash_fwd(
23
24
25
26
27
        Q: T.Tensor(shape, dtype),  # type: ignore
        K: T.Tensor(shape, dtype),  # type: ignore
        V: T.Tensor(shape, dtype),  # type: ignore
        Output: T.Tensor(shape, dtype),  # type: ignore
        lse: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
    ):
        with T.Kernel(T.ceildiv(seq_len, block_M), heads, batch, threads=128) as (bx, by, bz):
            Q_shared = T.alloc_shared([block_M, dim], dtype)
            # Q_local = T.alloc_fragment([block_M, dim], dtype)
            K_shared = T.alloc_shared([block_N, dim], dtype)
            V_shared = T.alloc_shared([block_N, dim], dtype)
            acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
            acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
            acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
            scores_max = T.alloc_fragment([block_M], accum_dtype)
            scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
            scores_scale = T.alloc_fragment([block_M], accum_dtype)
            scores_sum = T.alloc_fragment([block_M], accum_dtype)
            logsum = T.alloc_fragment([block_M], accum_dtype)

            T.annotate_layout({Q_shared: tilelang.layout.make_swizzled_layout(Q_shared)})
44
            T.copy(Q[bz, by, bx * block_M : (bx + 1) * block_M, :], Q_shared)
45
46
47
48
49
50
            T.fill(acc_o, 0)
            T.fill(logsum, 0)
            T.fill(scores_max, -T.infinity(accum_dtype))
            # T.copy(Q_shared, Q_local)
            # for i, j in T.Parallel(block_M, dim):
            #     Q_local[i, j] *= scale
51
            loop_range = T.ceildiv((bx + 1) * block_M, block_N) if is_causal else T.ceildiv(seq_len, block_N)
52
            for k in T.Pipelined(loop_range, num_stages=1):
53
                T.copy(K[bz, by, k * block_N : (k + 1) * block_N, :], K_shared)
54
55
                if is_causal:
                    for i, j in T.Parallel(block_M, block_N):
56
                        acc_s[i, j] = T.if_then_else(bx * block_M + i >= k * block_N + j, 0, -T.infinity(acc_s.dtype))
57
                else:
58
                    for i, j in T.Parallel(block_M, block_N):
59
                        acc_s[i, j] = T.if_then_else(k * block_N + j >= seq_len, -T.infinity(acc_s.dtype), 0)
60
                T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
61
                T.copy(V[bz, by, k * block_N : (k + 1) * block_N, :], V_shared)
62
63
                T.copy(scores_max, scores_max_prev)
                T.reduce_max(acc_s, scores_max, dim=1, clear=False)
64
65
                for i in T.Parallel(block_M):
                    scores_max[i] = T.max(scores_max[i], scores_max_prev[i])
66
67
68
69
70
71
72
73
74
75
76
77
78
                for i in T.Parallel(block_M):
                    scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
                for i, j in T.Parallel(block_M, dim):
                    acc_o[i, j] *= scores_scale[i]
                for i, j in T.Parallel(block_M, block_N):
                    acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
                T.copy(acc_s, acc_s_cast)
                T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)
                T.reduce_sum(acc_s, scores_sum, dim=1)
                for i in T.Parallel(block_M):
                    logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
            for i, j in T.Parallel(block_M, dim):
                acc_o[i, j] /= logsum[i]
79
            T.copy(acc_o, Output[bz, by, bx * block_M : (bx + 1) * block_M, :])
80
81
            for i in T.Parallel(block_M):
                logsum[i] = T.log2(logsum[i]) + scores_max[i] * scale
82
            T.copy(logsum, lse[bz, by, bx * block_M : (bx + 1) * block_M])
83
84
85
86
87

    return flash_fwd


@tilelang.jit(
88
89
    out_idx=[2],
    pass_configs={
90
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
91
92
    },
)
93
def flashattn_bwd_preprocess(batch, heads, seq_len, dim):
94
95
    dtype = T.float16
    accum_dtype = T.float32
96
97
98
99
100
    shape = [batch, heads, seq_len, dim]
    blk = 32

    @T.prim_func
    def flash_bwd_prep(
101
102
103
        O: T.Tensor(shape, dtype),  # type: ignore
        dO: T.Tensor(shape, dtype),  # type: ignore
        Delta: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
104
105
106
107
108
109
110
111
    ):
        with T.Kernel(heads, T.ceildiv(seq_len, blk), batch) as (bx, by, bz):
            o = T.alloc_fragment([blk, blk], dtype)
            do = T.alloc_fragment([blk, blk], dtype)
            acc = T.alloc_fragment([blk, blk], accum_dtype)
            delta = T.alloc_fragment([blk], accum_dtype)
            T.clear(acc)
            for k in range(T.ceildiv(dim, blk)):
112
113
                T.copy(O[bz, bx, by * blk : (by + 1) * blk, k * blk : (k + 1) * blk], o)
                T.copy(dO[bz, bx, by * blk : (by + 1) * blk, k * blk : (k + 1) * blk], do)
114
115
116
                for i, j in T.Parallel(blk, blk):
                    acc[i, j] += o[i, j] * do[i, j]
            T.reduce_sum(acc, delta, 1)
117
            T.copy(delta, Delta[bz, bx, by * blk : (by + 1) * blk])
118
119
120
121
122
123

    return flash_bwd_prep


def make_dq_layout(dQ):
    # atomicAdd can not be vectorized, so we need to reorder dq to match the 8x8 gemm fragment
124
    return T.Layout(dQ.shape, lambda b, h, l, d: [b, h, l // 8, d // 8, (d % 2), 4 * (l % 8) + (d % 8) // 2])
125
126
127


@tilelang.jit(
128
129
    out_idx=[1],
    pass_configs={
130
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
131
132
    },
)
133
def flashattn_bwd_postprocess(batch, heads, seq_len, dim):
134
135
    dtype = T.float16
    accum_dtype = T.float32
136
137
138
139
140
    shape = [batch, heads, seq_len, dim]
    blk = 64

    @T.prim_func
    def flash_bwd_post(
141
142
        dQ: T.Tensor(shape, accum_dtype),  # type: ignore
        dQ_out: T.Tensor(shape, dtype),  # type: ignore
143
144
145
146
    ):
        with T.Kernel(T.ceildiv(seq_len, blk), heads, batch, threads=128) as (bx, by, bz):
            T.annotate_layout({dQ: make_dq_layout(dQ)})
            T.copy(
147
148
                dQ[bz, by, bx * blk : (bx + 1) * blk, :],
                dQ_out[bz, by, bx * blk : (bx + 1) * blk, :],
149
150
151
152
153
            )

    return flash_bwd_post


154
155
156
157
158
@tilelang.jit(
    pass_configs={
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
    }
)
159
def flashattn_bwd(batch, heads, seq_len, dim, is_causal, block_M, block_N):
160
161
    sm_scale = (1.0 / dim) ** 0.5
    scale = (1.0 / dim) ** 0.5 * 1.44269504  # log2(e)
162
    shape = [batch, heads, seq_len, dim]
163
164
    dtype = T.float16
    accum_dtype = T.float32
165
166
167

    @T.prim_func
    def flash_bwd(
168
169
170
171
172
173
174
175
176
        Q: T.Tensor(shape, dtype),  # type: ignore
        K: T.Tensor(shape, dtype),  # type: ignore
        V: T.Tensor(shape, dtype),  # type: ignore
        dO: T.Tensor(shape, dtype),  # type: ignore
        lse: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
        Delta: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
        dQ: T.Tensor(shape, accum_dtype),  # type: ignore
        dK: T.Tensor(shape, dtype),  # type: ignore
        dV: T.Tensor(shape, dtype),  # type: ignore
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
    ):
        with T.Kernel(heads, T.ceildiv(seq_len, block_M), batch, threads=128) as (bx, by, bz):
            K_shared = T.alloc_shared([block_M, dim], dtype)
            dsT_shared = T.alloc_shared([block_M, block_N], dtype)
            # should not store K to local if dim is large
            # K_local = T.alloc_fragment([block_M, dim], dtype)
            # K_local_T = T.alloc_fragment([block_M, dim], dtype)
            # V_local = T.alloc_fragment([block_M, dim], dtype)
            q = T.alloc_shared([block_N, dim], dtype)
            V_shared = T.alloc_shared([block_M, dim], dtype)
            qkT = T.alloc_fragment([block_M, block_N], accum_dtype)
            dsT = T.alloc_fragment([block_M, block_N], accum_dtype)
            qkT_cast = T.alloc_fragment([block_M, block_N], dtype)
            dsT_cast = T.alloc_fragment([block_M, block_N], dtype)
            lse_shared = T.alloc_shared([block_N], accum_dtype)
            delta = T.alloc_shared([block_N], accum_dtype)
            do = T.alloc_shared([block_N, dim], dtype)
            dv = T.alloc_fragment([block_M, dim], accum_dtype)
            dk = T.alloc_fragment([block_M, dim], accum_dtype)
            dq = T.alloc_fragment([block_N, dim], accum_dtype)
            dv_shared = T.alloc_shared([block_M, dim], dtype)
            dk_shared = T.alloc_shared([block_M, dim], dtype)

200
201
202
203
204
205
206
207
208
209
            T.annotate_layout(
                {
                    dQ: make_dq_layout(dQ),
                    K_shared: tilelang.layout.make_swizzled_layout(K_shared),
                    dv_shared: tilelang.layout.make_swizzled_layout(dv_shared),
                    dk_shared: tilelang.layout.make_swizzled_layout(dk_shared),
                }
            )
            T.copy(K[bz, bx, by * block_M : (by + 1) * block_M, :], K_shared)
            T.copy(V[bz, bx, by * block_M : (by + 1) * block_M, :], V_shared)
210
211
212
213
214
            T.clear(dv)
            T.clear(dk)
            loop_st = T.floordiv(by * block_M, block_N) if is_causal else 0
            loop_ed = T.ceildiv(seq_len, block_N)
            for k in T.Pipelined(loop_st, loop_ed, num_stages=2):
215
                T.copy(Q[bz, bx, k * block_N : (k + 1) * block_N, :], q)
216
217
                T.clear(qkT)
                T.gemm(K_shared, q, qkT, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
218
                T.copy(lse[bz, bx, k * block_N : (k + 1) * block_N], lse_shared)
219
220
221
222
                for i, j in T.Parallel(block_M, block_N):
                    qkT[i, j] = T.exp2(qkT[i, j] * scale - lse_shared[j])
                if is_causal:
                    for i, j in T.Parallel(block_M, block_N):
223
                        qkT[i, j] = T.if_then_else(by * block_M + i <= k * block_N + j, qkT[i, j], 0)
224
225
                # We don't need to handle OOB positions for non-causal cases,
                # since OOB values won't affect other positions here.
226
                T.copy(dO[bz, bx, k * block_N : (k + 1) * block_N, :], do)
227
228
229
230
231
                T.clear(dsT)
                T.gemm(V_shared, do, dsT, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
                T.copy(qkT, qkT_cast)
                T.gemm(qkT_cast, do, dv, policy=T.GemmWarpPolicy.FullRow)

232
                T.copy(Delta[bz, bx, k * block_N : (k + 1) * block_N], delta)
233
234
235
236
237
238
239
240
241

                for i, j in T.Parallel(block_M, block_N):
                    dsT_cast[i, j] = qkT[i, j] * (dsT[i, j] - delta[j]) * sm_scale
                T.gemm(dsT_cast, q, dk, policy=T.GemmWarpPolicy.FullRow)

                T.copy(dsT_cast, dsT_shared)
                T.clear(dq)
                T.gemm(dsT_shared, K_shared, dq, transpose_A=True)
                for i, j in T.Parallel(block_N, dim):
242
                    T.atomic_add(dQ[bz, bx, k * block_N + i, j], dq[i, j])
243
244
            T.copy(dv, dv_shared)
            T.copy(dk, dk_shared)
245
246
            T.copy(dv_shared, dV[bz, bx, by * block_M : (by + 1) * block_M, :])
            T.copy(dk_shared, dK[bz, bx, by * block_M : (by + 1) * block_M, :])
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

    return flash_bwd


class _attention(torch.autograd.Function):
    @staticmethod
    def forward(ctx, q, k, v, causal):
        BATCH, H, N_CTX, D_HEAD = q.shape
        block_M = 64
        block_N = 64 if D_HEAD <= 128 else 32
        o, lse = flashattn_fwd(BATCH, H, N_CTX, D_HEAD, causal, block_M, block_N)(q, k, v)
        ctx.save_for_backward(q, k, v, o, lse)
        ctx.causal = causal
        return o

    @staticmethod
    def backward(ctx, do):
        q, k, v, o, lse = ctx.saved_tensors
        BATCH, H, N_CTX, D_HEAD = q.shape

        def maybe_contiguous(x):
            if x.stride(-1) != 1:
                return x.contiguous()
            return x

        do, q, k, v, o = [maybe_contiguous(x) for x in (do, q, k, v, o)]
        block_M = 64
        block_N = 64 if D_HEAD <= 64 else 32
        kernel_prep = flashattn_bwd_preprocess(BATCH, H, N_CTX, D_HEAD)
        kernel_post = flashattn_bwd_postprocess(BATCH, H, N_CTX, D_HEAD)
        delta = kernel_prep(o, do)
        kernel = flashattn_bwd(BATCH, H, N_CTX, D_HEAD, ctx.causal, block_M, block_N)
        shape = [BATCH, H, N_CTX, D_HEAD]
        dq = torch.zeros(shape, dtype=torch.float32, device=q.device)
        dk = torch.empty(shape, dtype=torch.float16, device=q.device)
        dv = torch.empty(shape, dtype=torch.float16, device=q.device)
        kernel(q, k, v, do, lse, delta, dq, dk, dv)
        dq = kernel_post(dq)
        return dq, dk, dv, None


attention = _attention.apply


def ref_program(Q, K, V, is_causal):
    dim = Q.size(-1)
293
    scores = torch.einsum("bhqd,bhkd->bhqk", Q, K)
294
295
296
297
298
    scores = scores / torch.sqrt(torch.tensor(dim, dtype=scores.dtype))
    if is_causal:
        seq_len = Q.size(2)
        mask = torch.tril(torch.ones(seq_len, seq_len, device=scores.device))
        mask = mask.unsqueeze(0).unsqueeze(0)
299
        scores = scores.masked_fill(mask == 0, float("-inf"))
300
    attention_weights = F.softmax(scores, dim=-1)
301
    output = torch.einsum("bhqk,bhkd->bhqd", attention_weights, V)
302
303
304
305
306
307
308
309
310
311
312
313
314
315
    return output


def main(
    BATCH: int = 8,
    H: int = 32,
    N_CTX: int = 1024,
    D_HEAD: int = 64,
    causal: bool = False,
):
    flops_per_matmul = 2.0 * BATCH * H * N_CTX * N_CTX * D_HEAD
    total_flops = 5 * flops_per_matmul
    if causal:
        total_flops *= 0.5
316
    Q = torch.empty(BATCH, H, N_CTX, D_HEAD, dtype=torch.half, device="cuda").normal_().requires_grad_()
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
    K = torch.empty_like(Q).normal_().requires_grad_()
    V = torch.empty_like(Q).normal_().requires_grad_()
    dO = torch.randn_like(Q)
    O = attention(Q, K, V, causal)
    O.backward(dO, retain_graph=True)
    dQ, Q.grad = Q.grad.clone(), None
    dK, K.grad = K.grad.clone(), None
    dV, V.grad = V.grad.clone(), None

    O_ref = ref_program(Q, K, V, causal)
    O_ref.backward(dO, retain_graph=True)
    dQ_ref, Q.grad = Q.grad.clone(), None
    dK_ref, K.grad = K.grad.clone(), None
    dV_ref, V.grad = V.grad.clone(), None

    assert torch.allclose(O, O_ref, rtol=1e-2, atol=1e-2)
    assert torch.allclose(dV, dV_ref, rtol=1e-2, atol=1e-2)
    assert torch.allclose(dK, dK_ref, rtol=1e-2, atol=1e-2)
    assert torch.allclose(dQ, dQ_ref, rtol=1e-2, atol=1e-2)

    print("All checks passed.✅")

    def run():
        O_ref.backward(dO, retain_graph=True)

    def run1():
        O.backward(dO, retain_graph=True)

    from tilelang.profiler import do_bench

    latency = do_bench(run, warmup=500)
    print("torch: {:.2f} ms".format(latency))
    print("torch: {:.2f} TFlops".format(total_flops / latency * 1e-9))
    latency = do_bench(run1, warmup=500)
    print("tilelang: {:.2f} ms".format(latency))
    print("tilelang: {:.2f} TFlops".format(total_flops / latency * 1e-9))


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
357
358
359
360
361
    parser.add_argument("--batch", type=int, default=8, help="Batch size")
    parser.add_argument("--h", type=int, default=32, help="Number of heads")
    parser.add_argument("--n_ctx", type=int, default=1024, help="Context size")
    parser.add_argument("--d_head", type=int, default=64, help="Head dimension")
    parser.add_argument("--causal", type=bool, default=False, help="Causal flag")
362
363
    args = parser.parse_args()
    main(args.batch, args.h, args.n_ctx, args.d_head, args.causal)