"docs/source/Tutorial/HowToUseSharedStorage.rst" did not exist on "eb65bc32e3e380fe49f9ef7f755b2ef3726c4d67"
loop_vectorization_utils.h 28 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership. The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

/*!
 * \file common.h
 * \brief Common utilities for TL transforms
 */

#include <tvm/tir/builtin.h>
#include <tvm/tir/op.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>
#include <tvm/tir/utils.h>

#include <queue>
32
#include <utility>
33
34
35
36

#include "../../op/parallel.h"
#include "../loop_partition.h"
#include "../loop_vectorize.h"
37
#include "arith/ir_mutator_with_analyzer.h"
38
39
40
41
42
43
44
45
46
47

namespace tvm {
namespace tl {

using namespace tir;

// Vectorize Part
// Use the same code as tir.transform.vectorize_loop
inline PrimExpr CreateNewLanes(bool is_scalable, int lanes_or_vscale_factor) {
  if (is_scalable) {
48
49
    return Mul(Call(DataType::Int(32), builtin::vscale(), {}),
               lanes_or_vscale_factor);
50
51
52
53
54
55
56
57
58
59
60
  } else {
    return lanes_or_vscale_factor;
  }
}

inline PrimExpr BroadcastTo(PrimExpr e, int lanes, bool is_scalable) {
  // Check if e is already in the expected form
  if (e.dtype().get_lanes_or_vscale_factor() == lanes &&
      e.dtype().is_scalable_vector() == is_scalable)
    return e;

61
  if (const BroadcastNode *op = e.as<BroadcastNode>()) {
62
63
64
65
66
67
68
69
70
    ICHECK(op->dtype.is_scalable_vector() == is_scalable)
        << "Can't broadcast between scalable and fixed length vectors.";
    int e_lanes = op->dtype.get_lanes_or_vscale_factor();

    if (lanes % e_lanes == 0) {
      return Broadcast(op->value, CreateNewLanes(is_scalable, lanes));
    }
  }

71
72
73
  ICHECK(e.dtype().is_scalar())
      << "Cannot broadcast lanes=" << e.dtype().get_lanes_or_vscale_factor()
      << " is_scalable=" << e.dtype().is_scalable_vector() << " to " << lanes;
74
75
76
77
78

  return Broadcast(e, CreateNewLanes(is_scalable, lanes));
}

// Rewrite vectorized allocation access
79
80
// This is necessary for making each vector component containing its own
// workspace. Originates from Halide's loop vectorizer
81
82
83
//
// s[i] = s[i * lanes + var]
//
84
85
// The same principle applies when using one thread to simulate multiple
// context.
86
87
//
class VecAllocAccess : public StmtExprMutator {
88
89
public:
  VecAllocAccess(const VarNode *buf, Var var, PrimExpr var_lanes)
90
      : buf_(buf), var_(std::move(var)), var_lanes_(std::move(var_lanes)) {}
91

92
  PrimExpr VisitExpr_(const BufferLoadNode *op) final {
93
94
95
96
    auto load = Downcast<BufferLoad>(StmtExprMutator::VisitExpr_(op));
    return UpdateBufferAccess(load);
  }

97
  Stmt VisitStmt_(const BufferStoreNode *op) final {
98
99
100
101
    auto store = Downcast<BufferStore>(StmtExprMutator::VisitStmt_(op));
    return UpdateBufferAccess(store);
  }

102
103
private:
  template <typename Node> Node UpdateBufferAccess(Node node) {
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    // Only update the buffer that's being replaced.
    if (node->buffer->data.get() != buf_) {
      return node;
    }

    // Find/make a Buffer object with the correct updated shape.
    Buffer buf;
    auto it = buffer_map_.find(node->buffer.get());
    if (it != buffer_map_.end()) {
      buf = it->second;
    } else {
      // Extend the least significant dimension by a factor of
      // var_lanes_.  Typically, this will be a 1-d index into a flat
      // memory space.
      Array<PrimExpr> shape = node->buffer->shape;
119
120
      shape.Set(shape.size() - 1,
                analyzer_.Simplify(shape[shape.size() - 1] * var_lanes_));
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

      // TODO(Lunderberg): Move this pass to be prior to
      // StorageFlatten/FlattenBuffer, implement by appending a
      // dimension to the buffer.  Since it is currently after the
      // flattening, the strides are not technically necessary, but
      // are updated for consistency.

      // Update strides if defined.
      Array<PrimExpr> strides;
      for (size_t i = 0; i < strides.size(); i++) {
        PrimExpr stride = strides[i];
        if (i != strides.size() - 1) {
          stride *= var_lanes_;
        }
        strides.push_back(analyzer_.Simplify(stride));
      }

      // Copy everything into the new buffer.
      buf = node->buffer;
      auto buf_writer = buf.CopyOnWrite();
      buf_writer->shape = shape;
      buf_writer->strides = strides;
      buffer_map_[buf.get()] = buf;
    }

    // Extend the last index by the number of lanes in the vectorized
    // variable.
    Array<PrimExpr> indices = node->indices;
149
150
151
    indices.Set(
        indices.size() - 1,
        analyzer_.Simplify(indices[indices.size() - 1] * var_lanes_ + var_));
152
153
154
155
156
157
158
159

    auto writer = node.CopyOnWrite();
    writer->buffer = buf;
    writer->indices = indices;
    return node;
  }

  // buffer var
160
  const VarNode *buf_;
161
  // Updated buffer objects.
162
  std::unordered_map<const BufferNode *, Buffer> buffer_map_;
163
164
165
166
167
168
169
170
171
172
173
  // variable to be replaced
  Var var_;
  // the lanes.
  PrimExpr var_lanes_;
  // Analyzer for simplifications
  arith::Analyzer analyzer_;
};

// We use ExprFunctor directly instead of StmtExprMutator
// This is because the transformation can change the dtype of the Expr
// The existing ExprMutator transformation rules may not be well defined.
174
175
176
class Vectorizer : public StmtMutator,
                   public ExprFunctor<PrimExpr(const PrimExpr &)> {
public:
177
178
179
  using ExprFunctor::VisitExpr;
  using StmtMutator::operator();

180
181
  Vectorizer(const Var &var, const PrimExpr &var_lanes)
      : var_(var), var_lanes_(var_lanes) {
182
183
184
    ramp_ = Ramp(IntImm(var->dtype, 0), IntImm(var->dtype, 1), var_lanes);
  }

185
  Stmt VisitStmt(const Stmt &stmt) final {
186
187
188
189
190
191
192
193
194
195
    ICHECK(!need_scalarize_);
    Stmt ret = StmtMutator::VisitStmt(stmt);
    if (need_scalarize_) {
      need_scalarize_ = false;
      return Scalarize(stmt);
    } else {
      return ret;
    }
  }

196
197
198
  PrimExpr VisitExpr(const PrimExpr &e) final {
    return ExprFunctor::VisitExpr(e);
  }
199

200
  PrimExpr VisitExpr_(const AddNode *op) final {
201
202
    return AddSubVec(
        op, [](PrimExpr a, PrimExpr b) { return std::move(a) + std::move(b); });
203
204
  }

205
  PrimExpr VisitExpr_(const SubNode *op) final {
206
207
    return AddSubVec(
        op, [](PrimExpr a, PrimExpr b) { return std::move(a) - std::move(b); });
208
209
  }

210
  PrimExpr VisitExpr_(const MulNode *op) final {
211
212
213
214
215
216
217
218
219
220
    PrimExpr a = this->VisitExpr(op->a);
    PrimExpr b = this->VisitExpr(op->b);
    if (a.same_as(op->a) && b.same_as(op->b)) {
      return GetRef<PrimExpr>(op);
    } else {
      bool is_vec_a = a.dtype().is_scalable_or_fixed_length_vector();
      bool is_vec_b = b.dtype().is_scalable_or_fixed_length_vector();
      if (is_vec_a && is_vec_b) {
        // Let's not multiply scalable and fixed length vectors
        ICHECK(a.dtype().is_scalable_vector() == b.dtype().is_scalable_vector())
221
222
            << "Fixed length and scalable vectors can't be mixed in "
               "multiplication.";
223
224
      }
      if (is_vec_a || is_vec_b) {
225
226
        const RampNode *b_ramp = b.as<RampNode>();
        const RampNode *a_ramp = a.as<RampNode>();
227
228
229
230
231
232
233
234
235
236
237
        if (a_ramp && b.dtype().is_scalar() && analyzer_.CanProve(b > 0)) {
          PrimExpr lanes = a_ramp->lanes;
          return Ramp(a_ramp->base * b, a_ramp->stride * b, lanes);
        }
        if (b_ramp && a.dtype().is_scalar() && analyzer_.CanProve(a > 0)) {
          PrimExpr lanes = b_ramp->lanes;
          return Ramp(b_ramp->base * a, b_ramp->stride * a, lanes);
        }
        int a_lanes = a.dtype().get_lanes_or_vscale_factor();
        int b_lanes = b.dtype().get_lanes_or_vscale_factor();
        int max_lanes = std::max(a_lanes, b_lanes);
238
239
240
241
        bool is_scalable =
            a.dtype().is_scalable_vector() || b.dtype().is_scalable_vector();
        return Mul(BroadcastTo(a, max_lanes, is_scalable),
                   BroadcastTo(b, max_lanes, is_scalable));
242
243
244
245
      }
    }
    return BinaryVec<Mul>(op);
  }
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
  PrimExpr VisitExpr_(const DivNode *op) final { return BinaryVec<Div>(op); }
  PrimExpr VisitExpr_(const ModNode *op) final { return BinaryVec<Mod>(op); }
  PrimExpr VisitExpr_(const FloorDivNode *op) final {
    return BinaryVec<FloorDiv>(op);
  }
  PrimExpr VisitExpr_(const FloorModNode *op) final {
    return BinaryVec<FloorMod>(op);
  }
  PrimExpr VisitExpr_(const MinNode *op) final { return BinaryVec<Min>(op); }
  PrimExpr VisitExpr_(const MaxNode *op) final { return BinaryVec<Max>(op); }
  PrimExpr VisitExpr_(const EQNode *op) final { return BinaryVec<EQ>(op); }
  PrimExpr VisitExpr_(const NENode *op) final { return BinaryVec<NE>(op); }
  PrimExpr VisitExpr_(const LTNode *op) final { return BinaryVec<LT>(op); }
  PrimExpr VisitExpr_(const LENode *op) final { return BinaryVec<LE>(op); }
  PrimExpr VisitExpr_(const GTNode *op) final { return BinaryVec<GT>(op); }
  PrimExpr VisitExpr_(const GENode *op) final { return BinaryVec<GE>(op); }
  PrimExpr VisitExpr_(const AndNode *op) final { return BinaryVec<And>(op); }
  PrimExpr VisitExpr_(const OrNode *op) final { return BinaryVec<Or>(op); }

  PrimExpr VisitExpr_(const NotNode *op) final {
266
267
268
269
270
271
272
273
    PrimExpr a = this->VisitExpr(op->a);
    if (a.same_as(op->a)) {
      return GetRef<PrimExpr>(op);
    } else {
      return !(a);
    }
  }

274
  PrimExpr VisitExpr_(const RampNode *op) final {
275
276
277
278
279
280
281
282
283
    PrimExpr base = this->VisitExpr(op->base);
    PrimExpr stride = this->VisitExpr(op->stride);
    ICHECK(!base.dtype().is_scalable_vector())
        << "Creating scalable vectors from existing vectors is not supported.";
    ICHECK(!stride.dtype().is_scalable_vector())
        << "Ramp stride with scalable dtype is not supported";
    if (base.dtype().is_fixed_length_vector() && stride.dtype().is_scalar()) {
      ICHECK(op->lanes->IsInstance<IntImmNode>())
          << "Vectorizing over existing scalable vectors is not supported.";
284
      const RampNode *base_ramp = base.as<RampNode>();
285
      int op_lanes = static_cast<int>(Downcast<IntImm>(op->lanes)->value);
286
287
      int base_ramp_lanes =
          static_cast<int>(Downcast<IntImm>(base_ramp->lanes)->value);
288
      if (analyzer_.CanProve(base_ramp->stride ==
289
290
                             stride *
                                 make_const(stride.dtype(), base_ramp_lanes))) {
291
292
293
294
295
296
297
298
        return Ramp(base_ramp->base, stride, op_lanes * base_ramp_lanes);
      }
    }
    int lanes = std::max(base.dtype().lanes(), stride.dtype().lanes());
    base = BroadcastTo(base, lanes, false);
    stride = BroadcastTo(stride, lanes, false);
    Array<PrimExpr> elems;
    for (int i = 0; i < lanes; ++i) {
299
300
      elems.push_back(Ramp(Shuffle::ExtractElement(base, i),
                           Shuffle::ExtractElement(stride, i), op->lanes));
301
302
303
304
    }
    return Shuffle::Concat(elems);
  }

305
  PrimExpr VisitExpr_(const BroadcastNode *op) final {
306
307
308
309
310
311
312
313
314
315
316
317
    PrimExpr value = this->VisitExpr(op->value);
    if (value.dtype().is_scalable_or_fixed_length_vector()) {
      need_scalarize_ = true;
      return GetRef<PrimExpr>(op);
    }
    if (value.same_as(op->value)) {
      return GetRef<PrimExpr>(op);
    } else {
      return Broadcast(op->value, op->lanes);
    }
  }

318
  PrimExpr VisitExpr_(const SelectNode *op) final {
319
320
321
    PrimExpr cond = this->VisitExpr(op->condition);
    PrimExpr t = this->VisitExpr(op->true_value);
    PrimExpr f = this->VisitExpr(op->false_value);
322
323
    if (cond.same_as(op->condition) && t.same_as(op->true_value) &&
        f.same_as(op->false_value)) {
324
325
326
327
328
329
      return GetRef<PrimExpr>(op);
    } else {
      int cond_lanes = cond.dtype().get_lanes_or_vscale_factor();
      int t_lanes = t.dtype().get_lanes_or_vscale_factor();
      int f_lanes = f.dtype().get_lanes_or_vscale_factor();
      int lanes = std::max(std::max(cond_lanes, t_lanes), f_lanes);
330
331
      bool is_scalable = cond.dtype().is_scalable_vector() ||
                         t.dtype().is_scalable_vector() ||
332
                         f.dtype().is_scalable_vector();
333
334
      return Select(BroadcastTo(cond, lanes, is_scalable),
                    BroadcastTo(t, lanes, is_scalable),
335
336
337
338
                    BroadcastTo(f, lanes, is_scalable));
    }
  }

339
  PrimExpr VisitExpr_(const CastNode *op) final {
340
341
342
343
344
    PrimExpr value = this->VisitExpr(op->value);
    if (value.same_as(op->value)) {
      return GetRef<PrimExpr>(op);
    } else {
      if (value.dtype().is_scalable_vector()) {
345
346
347
        return Cast(op->dtype.with_scalable_vscale_factor(
                        value.dtype().vscale_factor()),
                    value);
348
349
350
351
352
353
      } else {
        return Cast(op->dtype.with_lanes(value.dtype().lanes()), value);
      }
    }
  }

354
355
356
  PrimExpr VisitExpr_(const FloatImmNode *op) final {
    return GetRef<PrimExpr>(op);
  }
357

358
359
360
  PrimExpr VisitExpr_(const IntImmNode *op) final {
    return GetRef<PrimExpr>(op);
  }
361

362
363
364
  PrimExpr VisitExpr_(const StringImmNode *op) final {
    return GetRef<PrimExpr>(op);
  }
365
366

  // Variable
367
  PrimExpr VisitExpr_(const VarNode *op) final {
368
369
370
371
372
373
374
375
376
377
378
379
380
    Var var = GetRef<Var>(op);

    if (var.same_as(var_)) {
      return ramp_;
    }
    auto it = let_binding_.find(var);
    if (it != let_binding_.end()) {
      return it->second;
    } else {
      return std::move(var);
    }
  }
  // IfThenElse expr
381
  PrimExpr MutateIfThenElseExpr_(const CallNode *op) {
382
383
384
385
386
387
388
    PrimExpr cond = this->VisitExpr(op->args[0]);
    if (cond.dtype().is_scalable_or_fixed_length_vector()) {
      need_scalarize_ = true;
      return GetRef<PrimExpr>(op);
    }
    PrimExpr t = this->VisitExpr(op->args[1]);
    PrimExpr f = this->VisitExpr(op->args[2]);
389
390
    if (cond.same_as(op->args[0]) && t.same_as(op->args[1]) &&
        f.same_as(op->args[2])) {
391
392
393
394
395
      return GetRef<PrimExpr>(op);
    } else {
      int t_lanes = t.dtype().get_lanes_or_vscale_factor();
      int f_lanes = f.dtype().get_lanes_or_vscale_factor();
      int lanes = std::max(t_lanes, f_lanes);
396
397
      bool is_scalable =
          t.dtype().is_scalable_vector() || f.dtype().is_scalable_vector();
398
399
400
      t = BroadcastTo(t, lanes, is_scalable);
      f = BroadcastTo(f, lanes, is_scalable);
      if (is_scalable) {
401
402
        return Call(op->dtype.with_scalable_vscale_factor(lanes), op->op,
                    {cond, t, f});
403
404
405
406
407
408
      } else {
        return Call(op->dtype.with_lanes(lanes), op->op, {cond, t, f});
      }
    }
  }
  // Reinterpret expr
409
  PrimExpr MutateReinterpretExpr_(const CallNode *op) {
410
411
412
413
414
415
416
    ICHECK(op->op.same_as(builtin::reinterpret()));
    PrimExpr value = this->VisitExpr(op->args[0]);
    if (value.same_as(op->args[0])) {
      return GetRef<PrimExpr>(op);
    } else {
      int lanes = value.dtype().get_lanes_or_vscale_factor();
      if (value.dtype().is_scalable_vector()) {
417
418
        return Call(op->dtype.with_scalable_vscale_factor(lanes), op->op,
                    {value});
419
420
421
422
423
424
      } else {
        return Call(op->dtype.with_lanes(lanes), op->op, {value});
      }
    }
  }
  // Call
425
  PrimExpr VisitExpr_(const CallNode *op) final {
426
427
428
429
430
431
432
433
434
435
436
437
438
439
    if (op->op.same_as(builtin::if_then_else())) {
      return MutateIfThenElseExpr_(op);
    } else if (op->op.same_as(builtin::texture2d_load())) {
      int lane = 0;
      Array<PrimExpr> fcd = MutateArray({op->args.back()}, &lane);
      auto new_args = op->args;
      new_args.pop_back();
      new_args.push_back(fcd[0]);
      return Call(op->dtype.with_lanes(4), op->op, new_args);
    } else if (op->op.same_as(builtin::texture2d_store())) {
      int lane = 0;
      // Vectorize the value to store
      Array<PrimExpr> value{op->args.back()};
      Array<PrimExpr> mutated_value = MutateArray(value, &lane);
440
441
      Array<PrimExpr> new_args{op->args[0], op->args[1], op->args[2],
                               mutated_value[0]};
442
443
444
445
446
      return Call(op->dtype.with_lanes(lane), op->op, new_args);
    } else if (op->op.same_as(builtin::reinterpret())) {
      return MutateReinterpretExpr_(op);
    }
    auto optional_op = op->op.as<Op>();
447
448
    bool vectorizable = optional_op &&
                        op_vectorizable_.get(optional_op.value(), false) &&
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
                        !op->dtype.is_scalable_vector();

    if (!vectorizable) {
      // Cannot vectorize this op
      Array<PrimExpr> new_args;
      for (auto arg : op->args) {
        auto new_arg = this->VisitExpr(arg);
        if (new_arg.dtype().is_scalable_or_fixed_length_vector()) {
          need_scalarize_ = true;
          return GetRef<PrimExpr>(op);
        }
        new_args.push_back(new_arg);
      }
      if (op->args.same_as(new_args)) {
        return GetRef<PrimExpr>(op);
      } else {
        return Call(op->dtype, op->op, new_args);
      }
    } else {
      int lane = 0;
      Array<PrimExpr> new_args = MutateArray(op->args, &lane);
      // normal code path.
      if (op->args.same_as(new_args)) {
        return GetRef<PrimExpr>(op);
      } else {
        return Call(op->dtype.with_lanes(lane), op->op, new_args);
      }
    }
  }
  // BufferLoad
479
  PrimExpr VisitExpr_(const BufferLoadNode *op) final {
480
481
    auto load = GetRef<BufferLoad>(op);

482
483
484
    auto fmutate = [this](const PrimExpr &index) {
      return this->VisitExpr(index);
    };
485
486
487
488
489
490
491
492
493
494
    Array<PrimExpr> indices = op->indices.Map(fmutate);

    if (!indices.same_as(op->indices)) {
      auto writer = load.CopyOnWrite();
      writer->indices = indices;
    }

    return std::move(load);
  }
  // Let
495
  PrimExpr VisitExpr_(const LetNode *op) final {
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
    PrimExpr value = this->VisitExpr(op->value);
    // Weaker SSA condition
    // A single var can be binded in multiple lets
    // but they have to bind to the same value.
    // This is used to allow cases when we reuse a single let
    // expression to construct a nested expr.
    // (let x = 1 in x + 1) * (let x = 1 in x + 1)
    auto it = let_binding_.find(op->var);
    if (it != let_binding_.end()) {
      ICHECK(deep_equal_(it->second, value))
          << "Let cannot bind the same var to two different values";
    }
    if (value.dtype().get_lanes_or_vscale_factor() !=
        op->value.dtype().get_lanes_or_vscale_factor()) {
      Var new_var(op->var->name_hint, value.dtype());
      let_binding_[op->var] = new_var;
      return Let(new_var, value, this->VisitExpr(op->body));
    } else {
      let_binding_[op->var] = op->var;
      PrimExpr body = this->VisitExpr(op->body);
      if (value.same_as(op->value) && body.same_as(op->body)) {
        return GetRef<PrimExpr>(op);
      } else {
        return Let(op->var, value, body);
      }
    }
  }
  // BufferStore
524
  Stmt VisitStmt_(const BufferStoreNode *op) final {
525
526
    auto store = GetRef<BufferStore>(op);

527
528
529
    auto fmutate = [this](const PrimExpr &index) {
      return this->VisitExpr(index);
    };
530
531
532
533
534
535
    Array<PrimExpr> indices = op->indices.Map(fmutate);

    PrimExpr value = this->VisitExpr(op->value);

    if (!indices.same_as(op->indices) || !value.same_as(op->value)) {
      ICHECK(!op->buffer->dtype.is_scalable_vector())
536
537
          << "Vectorizing over scalable buffer elements is not supported in "
             "vectorizer.";
538
539
540
541
542
543
      // How many lanes of indexing are present in the index and
      // buffer element type, excluding the last index.
      int other_index_lanes = op->buffer->dtype.lanes();
      for (size_t i = 0; i < indices.size() - 1; i++) {
        other_index_lanes *= indices[i].dtype().lanes();
        // Only allow the last index to be scalable
544
545
        ICHECK(!indices[i].dtype().is_scalable_vector())
            << "Only the last index can be scalable.";
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
      }

      // The total number of lanes of indexing, including the last index.
      auto last_index_dtype = indices[indices.size() - 1].dtype();
      int lanes_in_last_index = last_index_dtype.get_lanes_or_vscale_factor();
      int index_lanes = other_index_lanes * lanes_in_last_index;

      // The total number of lanes in this store operation.  Either
      // the index or the value will be broadcast out to this number
      // of lanes, depending on which has more lanes.
      int value_dtype_lanes = value.dtype().get_lanes_or_vscale_factor();
      bool is_last_index_scalable = last_index_dtype.is_scalable_vector();
      int total_lanes = std::max(index_lanes, value_dtype_lanes);

      ICHECK_EQ(total_lanes % other_index_lanes, 0)
561
562
          << "When storing to buffer " << op->buffer->name
          << ", cannot produce " << total_lanes
563
564
565
566
567
          << " lanes of storage location by changing the last index.";
      int last_index_lanes = total_lanes / other_index_lanes;

      // Broadcast the last index such that the total number of index
      // lanes matches the desired number.
568
569
570
      indices.Set(indices.size() - 1,
                  BroadcastTo(indices[indices.size() - 1], last_index_lanes,
                              is_last_index_scalable));
571
572
573
574
575
576
577
578
579

      auto writer = store.CopyOnWrite();
      writer->indices = indices;
      writer->value = BroadcastTo(value, total_lanes, is_last_index_scalable);
    }

    return std::move(store);
  }
  // For
580
  Stmt VisitStmt_(const ForNode *op) final {
581
582
583
584
585
586
587
588
589
590
591
592
593
    if (op->kind == ForKind::kVectorized) {
      LOG(WARNING) << "Detect vectorize inside vectorized loop, ignoring...";
    }
    ICHECK(is_zero(op->min));
    ICHECK(!op->extent.dtype().is_scalable_or_fixed_length_vector());
    PrimExpr extent = this->VisitExpr(op->extent);
    if (extent.dtype().is_scalable_or_fixed_length_vector()) {
      return Scalarize(GetRef<Stmt>(op));
    }
    Stmt body = this->VisitStmt(op->body);
    if (extent.same_as(op->extent) && body.same_as(op->body)) {
      return GetRef<Stmt>(op);
    } else {
594
595
      return For(op->loop_var, op->min, extent, op->kind, body,
                 op->thread_binding, op->annotations);
596
597
598
    }
  }
  // IfThenElse
599
  Stmt VisitStmt_(const IfThenElseNode *op) final {
600
601
602
603
604
605
    ICHECK(!op->condition.dtype().is_scalable_or_fixed_length_vector());
    PrimExpr condition = this->VisitExpr(op->condition);
    if (condition.dtype().is_scalable_or_fixed_length_vector()) {
      return Scalarize(GetRef<Stmt>(op));
    }
    Stmt then_case = this->VisitStmt(op->then_case);
606
    Optional<Stmt> else_case = std::nullopt;
607
608
609
610
611
612
613
614
615
616
617
    if (op->else_case) {
      else_case = this->VisitStmt(op->else_case.value());
    }
    if (condition.same_as(op->condition) && then_case.same_as(op->then_case) &&
        else_case.same_as(op->else_case)) {
      return GetRef<Stmt>(op);
    } else {
      return IfThenElse(condition, then_case, else_case);
    }
  }
  // While
618
  Stmt VisitStmt_(const WhileNode *op) final {
619
620
621
    LOG(FATAL) << "A while loop inside a vectorized loop not supported.";
  }
  // LetStmt
622
  Stmt VisitStmt_(const LetStmtNode *op) final {
623
    PrimExpr value = this->VisitExpr(op->value);
624
625
    ICHECK(!let_binding_.count(op->var))
        << "SSA violation, a single var is binded twice";
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
    let_binding_[op->var] = value;

    if (value.dtype().get_lanes_or_vscale_factor() !=
        op->value.dtype().get_lanes_or_vscale_factor()) {
      Var new_var(op->var->name_hint, value.dtype());
      let_binding_[op->var] = new_var;
      return LetStmt(new_var, value, this->VisitStmt(op->body));
    } else {
      let_binding_[op->var] = op->var;
      Stmt body = this->VisitStmt(op->body);
      if (value.same_as(op->value) && body.same_as(op->body)) {
        return GetRef<Stmt>(op);
      } else {
        return LetStmt(op->var, value, body);
      }
    }
  }
  // Allocate
644
  Stmt VisitStmt_(const AllocateNode *op) final {
645
646
647
    // Mutate the condition
    PrimExpr condition = this->VisitExpr(op->condition);
    if (condition.dtype().is_scalable_or_fixed_length_vector()) {
648
649
      LOG(WARNING) << "Cannot handle vector extent in alloc of "
                   << op->buffer_var->name_hint;
650
651
652
653
654
      return Scalarize(GetRef<Stmt>(op));
    }

    // Mutate the extents
    Array<PrimExpr> extents;
655
    for (const auto &extent : op->extents) {
656
657
      PrimExpr new_ext = this->VisitExpr(extent);
      if (new_ext.dtype().is_scalable_or_fixed_length_vector()) {
658
659
        LOG(WARNING) << "Cannot handle vector extent in alloc of "
                     << op->buffer_var->name_hint;
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
        return Scalarize(GetRef<Stmt>(op));
      }
      extents.push_back(new_ext);
    }

    // TODO(Lunderberg): Move this pass to be prior to
    // StorageFlatten/FlattenBuffer.  That will allow this pass to be
    // implemented as adding a new buffer dimension, which is later
    // flattened.

    // Extend the least significant dimension by a factor of
    // var_lanes_.  Typically, this will be a 1-d index into a flat
    // memory space.
    extents.Set(extents.size() - 1, extents[extents.size() - 1] * var_lanes_);

    // Rewrite access to the buffer in the body.
676
677
    Stmt body =
        VecAllocAccess(op->buffer_var.get(), var_, var_lanes_)(op->body);
678
679
680
681
682
683
684
685
686
687
688
    body = this->VisitStmt(body);
    return Allocate(op->buffer_var, op->dtype, extents, condition, body);
  }

  // scalarize the statement
  Stmt Scalarize(Stmt stmt) {
    Var idx(var_->name_hint + ".s", var_->dtype);
    stmt = Substitute(stmt, {{var_, idx}});
    return For(idx, IntImm(var_->dtype, 0), var_lanes_, ForKind::kSerial, stmt);
  }

689
private:
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
  // analyzer
  arith::Analyzer analyzer_;
  // deep equal
  ExprDeepEqual deep_equal_;
  // variable to be replaced
  Var var_;
  // the lanes.
  PrimExpr var_lanes_;
  // ramp representing the var.
  PrimExpr ramp_;
  // flag to mark requirement of scalarization.
  bool need_scalarize_{false};
  // Let binding
  std::unordered_map<Var, PrimExpr, ObjectPtrHash, ObjectPtrEqual> let_binding_;
  // vectorizable property
705
706
  OpAttrMap<TVectorizable> op_vectorizable_ =
      Op::GetAttrMap<TVectorizable>("TVectorizable");
707
708
709

  // mutate array, with given lane requirement
  // when finished, p_lane updates the lane requirement.
710
  Array<PrimExpr> MutateArray(Array<PrimExpr> arr, int *p_lanes) {
711
    if (arr.empty())
712
713
      return arr;
    int &lanes = *p_lanes;
714
715
716
717
718
    bool changed = false;
    std::vector<PrimExpr> new_arr(arr.size());
    for (size_t i = 0; i < arr.size(); i++) {
      PrimExpr old_elem = arr[i];
      PrimExpr new_elem = this->VisitExpr(old_elem);
719
720
      if (!new_elem.same_as(old_elem))
        changed = true;
721
722
723
724
725
726
727
728
729
730
      new_arr[i] = new_elem;
      lanes = std::max(lanes, new_elem.dtype().lanes());
    }

    for (size_t i = 0; i < arr.size(); ++i) {
      if (new_arr[i].dtype().lanes() != lanes) {
        new_arr[i] = BroadcastTo(new_arr[i], lanes, false);
        changed = true;
      }
    }
731
732
    if (!changed)
      return arr;
733
734
    return Array<PrimExpr>(new_arr);
  }
735
736
737
  template <typename TOp, typename T> PrimExpr BinaryVec(const T *op) {
    static_assert(std::is_same<typename TOp::ContainerType, T>::value,
                  "constraint");
738
739
740
741
742
743
744
745
    PrimExpr a = this->VisitExpr(op->a);
    PrimExpr b = this->VisitExpr(op->b);
    if (a.same_as(op->a) && b.same_as(op->b)) {
      return GetRef<PrimExpr>(op);
    } else {
      int a_lanes = a.dtype().get_lanes_or_vscale_factor();
      int b_lanes = b.dtype().get_lanes_or_vscale_factor();
      int lanes = std::max(a_lanes, b_lanes);
746
747
748
749
      bool is_scalable =
          a.dtype().is_scalable_vector() || b.dtype().is_scalable_vector();
      return TOp(BroadcastTo(a, lanes, is_scalable),
                 BroadcastTo(b, lanes, is_scalable));
750
751
752
    }
  }
  template <typename T, typename FCompute>
753
  PrimExpr AddSubVec(const T *op, FCompute fcompute) {
754
755
756
757
758
759
760
761
762
    PrimExpr a = this->VisitExpr(op->a);
    PrimExpr b = this->VisitExpr(op->b);
    if (a.same_as(op->a) && b.same_as(op->b)) {
      return GetRef<PrimExpr>(op);
    } else {
      int a_lanes = a.dtype().get_lanes_or_vscale_factor();
      int b_lanes = b.dtype().get_lanes_or_vscale_factor();
      int lanes = std::max(a_lanes, b_lanes);
      if (lanes != 1) {
763
764
        const RampNode *b_ramp = b.as<RampNode>();
        const RampNode *a_ramp = a.as<RampNode>();
765
        if (a.dtype().is_scalar() && b_ramp) {
766
767
768
769
          return Ramp(
              fcompute(a, b_ramp->base),
              fcompute(make_zero(b_ramp->stride.dtype()), b_ramp->stride),
              b_ramp->lanes);
770
771
772
773
774
        }
        if (b.dtype().is_scalar() && a_ramp) {
          return Ramp(fcompute(a_ramp->base, b), a_ramp->stride, a_ramp->lanes);
        }
      }
775
776
777
778
      bool is_scalable =
          a.dtype().is_scalable_vector() || b.dtype().is_scalable_vector();
      return fcompute(BroadcastTo(a, lanes, is_scalable),
                      BroadcastTo(b, lanes, is_scalable));
779
780
781
782
    }
  }
};

783
784
} // namespace tl
} // namespace tvm