barrier.h 4.85 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#pragma once

#include "common.h"
#include <cutlass/arch/barrier.h>

// Reuse cutlass advanced barrier abstraction
using Barrier = cutlass::arch::ClusterTransactionBarrier;

namespace tl {

TL_DEVICE void mbarrier_init(uint64_t &smem_barrier, uint32_t arrive_count) {
  uint32_t smem_int_ptr = smem_ptr_to_uint(&smem_barrier);
  asm volatile("mbarrier.init.shared.b64 [%1], %0;"
               :
               : "r"(arrive_count), "r"(smem_int_ptr));
}

TL_DEVICE uint32_t mbarrier_try_wait(uint64_t &smem_barrier, int phase_bit) {

  uint32_t smem_int_ptr = smem_ptr_to_uint(&smem_barrier);
  uint32_t waitComplete;

  asm volatile("{\n\t"
               ".reg .pred P1; \n\t"
               "mbarrier.try_wait.parity.shared.b64 P1, [%1], %2; \n\t"
               "selp.b32 %0, 1, 0, P1; \n\t"
               "}"
               : "=r"(waitComplete)
               : "r"(smem_int_ptr), "r"(phase_bit));

  return waitComplete;
}

TL_DEVICE void mbarrier_wait(uint64_t &smem_barrier, int phase_bit) {
  if (mbarrier_try_wait(smem_barrier, phase_bit) == 0) {
    uint32_t smem_int_ptr = smem_ptr_to_uint(&smem_barrier);
    // Arbitrarily large timer value after which try-wait expires and re-tries.
    uint32_t ticks = 0x989680;
    asm volatile("{\n\t"
                 ".reg .pred       P1; \n\t"
                 "LAB_WAIT: \n\t"
                 "mbarrier.try_wait.parity.shared.b64 P1, [%0], %1, %2; \n\t"
                 "@P1 bra DONE; \n\t"
                 "bra     LAB_WAIT; \n\t"
                 "DONE: \n\t"
                 "}"
                 :
                 : "r"(smem_int_ptr), "r"(phase_bit), "r"(ticks));
  }
}

TL_DEVICE void mbarrier_test_wait(uint64_t &smem_barrier, int phase_bit) {
  uint32_t smem_int_ptr = smem_ptr_to_uint(&smem_barrier);
  asm volatile(
      "{\n"
      ".reg .pred                P1;\n"
      "LAB_WAIT:\n"
      "mbarrier.test_wait.parity.shared::cta.b64 P1, [%0], %1;\n"
      "@P1                       bra.uni DONE;\n"
      "nanosleep.u32 5;\n" // wait a few nanoseconds on pre-Hopper architectures
                           // to save instruction issue slots
      "bra.uni                   LAB_WAIT;\n"
      "DONE:\n"
      "}\n" ::"r"(smem_int_ptr),
      "r"(phase_bit));
}

TL_DEVICE void mbarrier_arrive(uint64_t &smem_barrier) {
  uint32_t smem_int_ptr = smem_ptr_to_uint(&smem_barrier);
  asm volatile("mbarrier.arrive.shared.b64 _, [%0];" : : "r"(smem_int_ptr));
}

TL_DEVICE void mbarrier_arrive(uint64_t &smem_barrier, int cta_id,
                               uint32_t pred) {
  uint32_t smem_int_ptr = smem_ptr_to_uint(&smem_barrier);
  if (pred) {
    asm volatile("{\n\t"
                 ".reg .b32 remAddr32;\n\t"
                 "mapa.shared::cluster.u32  remAddr32, %0, %1;\n\t"
                 "mbarrier.arrive.shared::cluster.b64  _, [remAddr32];\n\t"
                 "}"
                 :
                 : "r"(smem_int_ptr), "r"(cta_id));
  }
}

TL_DEVICE void mbarrier_expect_tx(uint64_t &smem_barrier,
                                  uint32_t transaction_bytes) {
  uint32_t smem_int_ptr = smem_ptr_to_uint(&smem_barrier);
  asm volatile("mbarrier.expect_tx.shared.b64 [%1], %0;"
               :
               : "r"(transaction_bytes), "r"(smem_int_ptr));
}

TL_DEVICE void mbarrier_arrive_expect_tx(uint64_t &smem_barrier,
                                         uint32_t transaction_bytes) {
  uint32_t smem_int_ptr = smem_ptr_to_uint(&smem_barrier);
  asm volatile("mbarrier.arrive.expect_tx.shared.b64 _, [%1], %0;"
               :
               : "r"(transaction_bytes), "r"(smem_int_ptr));
}

template <typename BarrierType = uint64_t>
TL_DEVICE void mbarrier_cp_async_arrive(BarrierType &smem_mbar) {
  uint32_t smem_int_mbar;
  if constexpr (std::is_pointer_v<BarrierType>) {
    smem_int_mbar = smem_ptr_to_uint(reinterpret_cast<uint64_t *>(smem_mbar));
  } else {
    smem_int_mbar = smem_ptr_to_uint(reinterpret_cast<uint64_t *>(&smem_mbar));
  }
  asm volatile("cp.async.mbarrier.arrive.shared.b64 [%0];"
               :
               : "r"(smem_int_mbar));
}

TL_DEVICE void fence_proxy_async() {
  asm volatile("fence.proxy.async.shared::cta;" : :);
}

// Indicate arrival of warp issuing TMA_STORE
TL_DEVICE void tma_store_arrive() {
  asm volatile("cp.async.bulk.commit_group;");
}

template <int Count> TL_DEVICE void tma_store_wait() {
  asm volatile("cp.async.bulk.wait_group.read %0;" : : "n"(Count) : "memory");
}

TL_DEVICE void syncthreads_partial(uint64_t &smem_barrier) {
  uint32_t smem_int_ptr = smem_ptr_to_uint(&smem_barrier);
  uint64_t state = 0;
  asm volatile("{\n"
               ".reg .pred                P1;\n"
               "mbarrier.arrive.shared.b64 %1, [%0];\n"
               "LAB_WAIT:\n"
               "mbarrier.try_wait.shared.b64 P1, [%0], %1;\n"
               "@!P1                      bra.uni LAB_WAIT;\n"
               "}\n"
               :
               : "r"(smem_int_ptr), "l"(state));
}
} // namespace tl