block_sparse_attn_tilelang.py 9.25 KB
Newer Older
1
2
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
3
import math
4
import torch
5

6
7
import tilelang
import tilelang.language as T
8
import torch.nn.functional as F
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
def get_sparse_attn_mask_from_topk(x, topk, use_dense_for_last_block=False):
    bsz, num_head, downsample_len, _ = x.shape
    # N_CTX = downsample_len * BLOCK
    sparse_index = torch.topk(x, topk, dim=-1).indices
    dense_mask = torch.full([bsz, num_head, downsample_len, downsample_len], False, dtype=torch.bool, device=x.device)
    dense_mask.scatter_(-1, sparse_index, True)
    if use_dense_for_last_block:
        dense_mask[:, :,-2:,:] = True 
    dense_mask.tril_()
    return  dense_mask


def get_sparse_attn_mask_from_threshold(x, threshold, use_dense_for_last_block=False):
    dense_mask = x > threshold 
    if use_dense_for_last_block:
        dense_mask[:, :,-2:,:] = True 
    dense_mask.tril_()
    return  dense_mask


def blocksparse_flashattn(batch, heads, seq_len, dim, downsample_len, is_causal):
    block_M = 64
    block_N = 64
    num_stages = 0
    threads = 128
35
    scale = (1.0 / dim)**0.5 * 1.44269504  # log2(e)
36
37
38
    shape = [batch, heads, seq_len, dim]
    block_mask_shape = [batch, heads, downsample_len, downsample_len]

39
40
    dtype = "float16"
    accum_dtype = "float"
41
    block_mask_dtype = "int8"
42
43
44
45
46
47
48
49
50
51
52
53
54
55

    def kernel_func(block_M, block_N, num_stages, threads):

        @T.macro
        def MMA0(
            K: T.Buffer(shape, dtype),
            Q_shared: T.Buffer([block_M, dim], dtype),
            K_shared: T.Buffer([block_N, dim], dtype),
            acc_s: T.Buffer([block_M, block_N], accum_dtype),
            k: T.int32,
            bx: T.int32,
            by: T.int32,
            bz: T.int32,
        ):
56
            T.copy(K[bz, by, k * block_N:(k + 1) * block_N, :], K_shared)
57
            if is_causal:
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
                for i, j in T.Parallel(block_M, block_N):
                    acc_s[i, j] = T.if_then_else(bx * block_M + i >= k * block_N + j, 0,
                                                 -T.infinity(acc_s.dtype))
            else:
                T.clear(acc_s)
            T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)

        @T.macro
        def MMA1(
                V: T.Buffer(shape, dtype),
                V_shared: T.Buffer([block_M, dim], dtype),
                acc_s_cast: T.Buffer([block_M, block_N], dtype),
                acc_o: T.Buffer([block_M, dim], accum_dtype),
                k: T.int32,
                by: T.int32,
                bz: T.int32,
        ):
75
            T.copy(V[bz, by, k * block_N:(k + 1) * block_N, :], V_shared)
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
            T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)

        @T.macro
        def Softmax(
                acc_s: T.Buffer([block_M, block_N], accum_dtype),
                acc_s_cast: T.Buffer([block_M, block_N], dtype),
                scores_max: T.Buffer([block_M], accum_dtype),
                scores_max_prev: T.Buffer([block_M], accum_dtype),
                scores_scale: T.Buffer([block_M], accum_dtype),
                scores_sum: T.Buffer([block_M], accum_dtype),
                logsum: T.Buffer([block_M], accum_dtype),
        ):
            T.copy(scores_max, scores_max_prev)
            T.fill(scores_max, -T.infinity(accum_dtype))
            T.reduce_max(acc_s, scores_max, dim=1, clear=False)
            # To do causal softmax, we need to set the scores_max to 0 if it is -inf
            # This process is called Check_inf in FlashAttention3 code, and it only need to be done
            # in the first ceil_div(kBlockM, kBlockN) steps.
            # for i in T.Parallel(block_M):
            #     scores_max[i] = T.if_then_else(scores_max[i] == -T.infinity(accum_dtype), 0, scores_max[i])
            for i in T.Parallel(block_M):
                scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
            for i, j in T.Parallel(block_M, block_N):
                # Instead of computing exp(x - max), we compute exp2(x * log_2(e) -
                # max * log_2(e)) This allows the compiler to use the ffma
                # instruction instead of fadd and fmul separately.
                acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
            T.reduce_sum(acc_s, scores_sum, dim=1)
            for i in T.Parallel(block_M):
                logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
            T.copy(acc_s, acc_s_cast)

        @T.macro
        def Rescale(
                acc_o: T.Buffer([block_M, dim], accum_dtype),
                scores_scale: T.Buffer([block_M], accum_dtype),
        ):
            for i, j in T.Parallel(block_M, dim):
                acc_o[i, j] *= scores_scale[i]

        @T.prim_func
        def main(
                Q: T.Buffer(shape, dtype),
                K: T.Buffer(shape, dtype),
                V: T.Buffer(shape, dtype),
121
                BlockSparseMask: T.Buffer(block_mask_shape, block_mask_dtype),
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
                Output: T.Buffer(shape, dtype),
        ):
            with T.Kernel(
                    T.ceildiv(seq_len, block_M), heads, batch, threads=threads) as (bx, by, bz):
                Q_shared = T.alloc_shared([block_M, dim], dtype)
                K_shared = T.alloc_shared([block_N, dim], dtype)
                V_shared = T.alloc_shared([block_N, dim], dtype)
                O_shared = T.alloc_shared([block_M, dim], dtype)
                acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
                acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
                acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
                scores_max = T.alloc_fragment([block_M], accum_dtype)
                scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
                scores_scale = T.alloc_fragment([block_M], accum_dtype)
                scores_sum = T.alloc_fragment([block_M], accum_dtype)
                logsum = T.alloc_fragment([block_M], accum_dtype)
138
139
140
                block_mask = T.alloc_local([downsample_len], block_mask_dtype)
                
                T.copy(Q[bz, by, bx * block_M:(bx + 1) * block_M, :], Q_shared)
141
142
143
144
                T.fill(acc_o, 0)
                T.fill(logsum, 0)
                T.fill(scores_max, -T.infinity(accum_dtype))

145
146
147
                for vj in T.serial(downsample_len):
                    block_mask[vj] = BlockSparseMask[bz, by, bx, vj]

148
149
                loop_range = (
                    T.min(T.ceildiv(seq_len, block_N), T.ceildiv(
150
                        (bx + 1) * block_M, block_N)) if is_causal else T.ceildiv(seq_len, block_N))
151
152

                for k in T.Pipelined(loop_range, num_stages=num_stages):
153
154
155
156
157
158
                    if block_mask[k] != 0:
                        MMA0(K, Q_shared, K_shared, acc_s, k, bx, by, bz)
                        Softmax(acc_s, acc_s_cast, scores_max, scores_max_prev, scores_scale,
                                scores_sum, logsum)
                        Rescale(acc_o, scores_scale)
                        MMA1(V, V_shared, acc_s_cast, acc_o, k, by, bz)
159
160
161
                for i, j in T.Parallel(block_M, dim):
                    acc_o[i, j] /= logsum[i]
                T.copy(acc_o, O_shared)
162
                T.copy(O_shared, Output[bz, by, bx * block_M:(bx + 1) * block_M, :])
163
164
165

        return main

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    return kernel_func(block_M, block_N, num_stages, threads)

def test_topk_sparse_attention():
    # Config
    BATCH, N_HEADS, SEQ_LEN, D_HEAD = 1, 1, 256, 64
    TOPK = 2  # Keep top 8 elements per row
    BLOCK = 64
    torch.manual_seed(0)

    # Create inputs
    q = torch.randn(BATCH, N_HEADS, SEQ_LEN, D_HEAD, device='cuda', dtype=torch.float16)
    k = torch.randn(BATCH, N_HEADS, SEQ_LEN, D_HEAD, device='cuda', dtype=torch.float16)
    v = torch.randn(BATCH, N_HEADS, SEQ_LEN, D_HEAD, device='cuda', dtype=torch.float16)

    sm_scale = 1.0 / (D_HEAD ** 0.5)

    # Create sparse mask (downsampled to block level)
    downsample_factor = BLOCK
    downsample_len = math.ceil(SEQ_LEN / downsample_factor)
    x_ds = torch.randn([BATCH, N_HEADS, downsample_len, downsample_len], device='cuda', dtype=torch.bfloat16)
    x_ds[:,:,:,0] = 100
    block_mask = get_sparse_attn_mask_from_topk(x_ds, topk=TOPK)

    # Run Triton kernel
    program = blocksparse_flashattn(BATCH, N_HEADS, SEQ_LEN, D_HEAD, downsample_len, is_causal=True)
    kernel = tilelang.compile(program, out_idx=[4])
    print(kernel.get_kernel_source())
    tilelang_output = kernel(q, k, v, block_mask)

    # Compute reference
    # Expand block mask to full attention matrix
    full_mask = torch.kron(block_mask.float(), 
                         torch.ones(BLOCK, BLOCK, device='cuda'))
    full_mask = full_mask[..., :SEQ_LEN, :SEQ_LEN].bool()
    full_mask = full_mask & torch.tril(torch.ones_like(full_mask))  # Apply causal
    
    # PyTorch reference implementation
    attn = torch.einsum('bhsd,bhtd->bhst', q, k) * sm_scale
    attn = attn.masked_fill(~full_mask, float('-inf'))
    attn = F.softmax(attn, dim=-1)
    ref_output = torch.einsum('bhst,bhtd->bhsd', attn, v)
    
    print("ref_output", ref_output)
    print("tilelang_output", tilelang_output)


    # Verify accuracy
    assert torch.allclose(tilelang_output, ref_output, atol=1e-2, rtol=1e-2), \
        "TileLang output doesn't match reference"
    print("Pass topk sparse attention test with qlen == klen")
216
217

if __name__ == "__main__":
218
    test_topk_sparse_attention()