block_sparse_attn_tilelang.py 11.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import math
import torch

import tilelang
import tilelang.language as T
import torch.nn.functional as F


def get_sparse_attn_mask_from_topk(x, topk, use_dense_for_last_block=False):
    bsz, num_head, downsample_len, _ = x.shape
    # N_CTX = downsample_len * BLOCK
    sparse_index = torch.topk(x, topk, dim=-1).indices
    dense_mask = torch.full([bsz, num_head, downsample_len, downsample_len],
                            False,
                            dtype=torch.bool,
                            device=x.device)
    dense_mask.scatter_(-1, sparse_index, True)
    if use_dense_for_last_block:
        dense_mask[:, :, -2:, :] = True
    dense_mask.tril_()
    return dense_mask


def get_sparse_attn_mask_from_threshold(x, threshold, use_dense_for_last_block=False):
    dense_mask = x > threshold
    if use_dense_for_last_block:
        dense_mask[:, :, -2:, :] = True
    dense_mask.tril_()
    return dense_mask


def blocksparse_flashattn(batch, heads, seq_q, seq_kv, dim, downsample_len, is_causal):
    block_M = 64
    block_N = 64
    num_stages = 0
    threads = 128
    scale = (1.0 / dim)**0.5 * 1.44269504  # log2(e)
    q_shape = [batch, heads, seq_q, dim]
    kv_shape = [batch, heads, seq_kv, dim]
    block_mask_shape = [batch, heads, downsample_len, downsample_len]

    dtype = "float16"
    accum_dtype = "float"
    block_mask_dtype = "int8"

    def kernel_func(block_M, block_N, num_stages, threads):

        @T.macro
        def Softmax(
50
51
52
53
54
55
56
                acc_s: T.FragmentBuffer([block_M, block_N], accum_dtype),
                acc_s_cast: T.FragmentBuffer([block_M, block_N], dtype),
                scores_max: T.FragmentBuffer([block_M], accum_dtype),
                scores_max_prev: T.FragmentBuffer([block_M], accum_dtype),
                scores_scale: T.FragmentBuffer([block_M], accum_dtype),
                scores_sum: T.FragmentBuffer([block_M], accum_dtype),
                logsum: T.FragmentBuffer([block_M], accum_dtype),
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
        ):
            T.copy(scores_max, scores_max_prev)
            T.fill(scores_max, -T.infinity(accum_dtype))
            T.reduce_max(acc_s, scores_max, dim=1, clear=False)
            # To do causal softmax, we need to set the scores_max to 0 if it is -inf
            # This process is called Check_inf in FlashAttention3 code, and it only need to be done
            # in the first ceil_div(kBlockM, kBlockN) steps.
            # for i in T.Parallel(block_M):
            #     scores_max[i] = T.if_then_else(scores_max[i] == -T.infinity(accum_dtype), 0, scores_max[i])
            for i in T.Parallel(block_M):
                scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
            for i, j in T.Parallel(block_M, block_N):
                # Instead of computing exp(x - max), we compute exp2(x * log_2(e) -
                # max * log_2(e)) This allows the compiler to use the ffma
                # instruction instead of fadd and fmul separately.
                acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
            T.reduce_sum(acc_s, scores_sum, dim=1)
            for i in T.Parallel(block_M):
                logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
            T.copy(acc_s, acc_s_cast)

        @T.macro
        def Rescale(
80
81
                acc_o: T.FragmentBuffer([block_M, dim], accum_dtype),
                scores_scale: T.FragmentBuffer([block_M], accum_dtype),
82
83
84
85
86
87
        ):
            for i, j in T.Parallel(block_M, dim):
                acc_o[i, j] *= scores_scale[i]

        @T.prim_func
        def main(
88
89
90
91
92
                Q: T.Tensor(q_shape, dtype),
                K: T.Tensor(kv_shape, dtype),
                V: T.Tensor(kv_shape, dtype),
                BlockSparseMask: T.Tensor(block_mask_shape, block_mask_dtype),
                Output: T.Tensor(q_shape, dtype),
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
        ):
            with T.Kernel(T.ceildiv(seq_q, block_M), heads, batch, threads=threads) as (bx, by, bz):
                Q_shared = T.alloc_shared([block_M, dim], dtype)
                K_shared = T.alloc_shared([block_N, dim], dtype)
                V_shared = T.alloc_shared([block_N, dim], dtype)
                O_shared = T.alloc_shared([block_M, dim], dtype)
                acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
                acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
                acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
                scores_max = T.alloc_fragment([block_M], accum_dtype)
                scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
                scores_scale = T.alloc_fragment([block_M], accum_dtype)
                scores_sum = T.alloc_fragment([block_M], accum_dtype)
                logsum = T.alloc_fragment([block_M], accum_dtype)
                block_mask = T.alloc_local([downsample_len], block_mask_dtype)

                T.copy(Q[bz, by, bx * block_M:(bx + 1) * block_M, :], Q_shared)
                T.fill(acc_o, 0)
                T.fill(logsum, 0)
                T.fill(scores_max, -T.infinity(accum_dtype))

                for vj in T.serial(downsample_len):
                    block_mask[vj] = BlockSparseMask[bz, by, bx, vj]

                loop_range = T.ceildiv(seq_kv, block_N)

                for k in T.Pipelined(loop_range, num_stages=num_stages):
                    if block_mask[k] != 0:
                        T.copy(K[bz, by, k * block_N:(k + 1) * block_N, :], K_shared)
                        if is_causal:
                            past_len = seq_kv - seq_q
                            for i, j in T.Parallel(block_M, block_N):
                                acc_s[i, j] = T.if_then_else(
                                    bx * block_M + i + past_len >= k * block_N + j, 0,
                                    -T.infinity(acc_s.dtype))
                        else:
                            T.clear(acc_s)
                        T.gemm(
                            Q_shared,
                            K_shared,
                            acc_s,
                            transpose_B=True,
                            policy=T.GemmWarpPolicy.FullRow)

                        Softmax(acc_s, acc_s_cast, scores_max, scores_max_prev, scores_scale,
                                scores_sum, logsum)
                        Rescale(acc_o, scores_scale)
                        T.copy(V[bz, by, k * block_N:(k + 1) * block_N, :], V_shared)
                        T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)

                for i, j in T.Parallel(block_M, dim):
                    acc_o[i, j] /= logsum[i]

                T.copy(acc_o, O_shared)
                T.copy(O_shared, Output[bz, by, bx * block_M:(bx + 1) * block_M, :])

        return main

    return kernel_func(block_M, block_N, num_stages, threads)


def test_topk_sparse_attention():
    # Config
    BATCH, N_HEADS, SEQ_LEN, D_HEAD = 4, 2, 256, 64
    TOPK = 2  # Keep top 8 elements per row
    BLOCK = 64
    torch.manual_seed(0)

    # Create inputs
    q = torch.randn(BATCH, N_HEADS, SEQ_LEN, D_HEAD, device='cuda', dtype=torch.float16)
    k = torch.randn(BATCH, N_HEADS, SEQ_LEN, D_HEAD, device='cuda', dtype=torch.float16)
    v = torch.randn(BATCH, N_HEADS, SEQ_LEN, D_HEAD, device='cuda', dtype=torch.float16)

    sm_scale = 1.0 / (D_HEAD**0.5)

    # Create sparse mask (downsampled to block level)
    downsample_factor = BLOCK
    downsample_len = math.ceil(SEQ_LEN / downsample_factor)
    x_ds = torch.randn([BATCH, N_HEADS, downsample_len, downsample_len],
                       device='cuda',
                       dtype=torch.float16)
    x_ds[:, :, :, 0] = 100
    block_mask = get_sparse_attn_mask_from_topk(x_ds, topk=TOPK)

    # Run Triton kernel
    program = blocksparse_flashattn(
        BATCH, N_HEADS, SEQ_LEN, SEQ_LEN, D_HEAD, downsample_len, is_causal=True)
    kernel = tilelang.compile(program, out_idx=[4])
    print(kernel.get_kernel_source())
182
    tilelang_output = kernel(q, k, v, block_mask.to(torch.int8))
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

    # Compute reference
    # Expand block mask to full attention matrix
    full_mask = torch.kron(block_mask.float(), torch.ones(BLOCK, BLOCK, device='cuda'))
    full_mask = full_mask[..., :SEQ_LEN, :SEQ_LEN].bool()
    full_mask = full_mask & torch.tril(torch.ones_like(full_mask))  # Apply causal

    # PyTorch reference implementation
    attn = torch.einsum('bhsd,bhtd->bhst', q, k) * sm_scale
    attn = attn.masked_fill(~full_mask, float('-inf'))
    attn = F.softmax(attn, dim=-1)
    ref_output = torch.einsum('bhst,bhtd->bhsd', attn, v)

    print("ref_output", ref_output)
    print("tilelang_output", tilelang_output)

    # Verify accuracy
    assert torch.allclose(tilelang_output, ref_output, atol=1e-2, rtol=1e-2), \
        "TileLang output doesn't match reference"
    print("Pass topk sparse attention test with qlen == klen")


def test_topk_sparse_attention_qlen_lt_klen():
    # Config
    BATCH, N_HEADS = 1, 1
    Q_LEN, K_LEN, D_HEAD = 128, 256, 64  # qlen < klen; here, past_len = 256 - 128 = 128.
    TOPK = 1
    BLOCK = 64  # block size used in downsampling
    torch.manual_seed(0)

    # Create inputs.
    q = torch.randn(BATCH, N_HEADS, Q_LEN, D_HEAD, device='cuda', dtype=torch.float16)
    k = torch.randn(BATCH, N_HEADS, K_LEN, D_HEAD, device='cuda', dtype=torch.float16)
    v = torch.randn(BATCH, N_HEADS, K_LEN, D_HEAD, device='cuda', dtype=torch.float16)
    sm_scale = 1.0 / (D_HEAD**0.5)

    downsample_factor = BLOCK
    downsample_len = math.ceil(K_LEN / downsample_factor)  # number of blocks along one dimension
    x_ds = torch.randn(
        BATCH, N_HEADS, downsample_len, downsample_len, device='cuda', dtype=torch.float16)
    # Force the first column to be high so that the first block is always selected.
    x_ds[:, :, :, 0] = 100
    block_mask = get_sparse_attn_mask_from_topk(x_ds, topk=TOPK)

    program = blocksparse_flashattn(
        BATCH, N_HEADS, Q_LEN, K_LEN, D_HEAD, downsample_len, is_causal=True)
    print(program)
    kernel = tilelang.compile(program, out_idx=[4])
    print(kernel.get_kernel_source())
232
    tilelang_output = kernel(q, k, v, block_mask.to(torch.int8))
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

    past_len = K_LEN - Q_LEN

    attn = torch.einsum('bhsd,bhtd->bhst', q, k) * sm_scale

    full_mask_full = torch.kron(block_mask.float(), torch.ones(BLOCK, BLOCK, device='cuda')).bool()
    full_mask_full = full_mask_full[..., :K_LEN, :K_LEN]

    effective_mask = full_mask_full[..., past_len:K_LEN, :]  # shape: (B, H, Q_LEN, K_LEN)

    i_global = torch.arange(past_len, K_LEN, device=k.device).unsqueeze(1)  # shape: (Q_LEN, 1)
    j_global = torch.arange(K_LEN, device=k.device).unsqueeze(0)  # shape: (1, K_LEN)
    causal_mask = (j_global <= i_global)  # shape: (Q_LEN, K_LEN)

    final_mask = effective_mask & causal_mask  # shape: (B, H, Q_LEN, K_LEN)

    attn = attn.masked_fill(~final_mask, float('-inf'))
    attn = F.softmax(attn, dim=-1)
    ref_output = torch.einsum('bhst,bhtd->bhsd', attn, v)

    print("ref_output", ref_output)
    print("tilelang_output", tilelang_output)

    # Verify accuracy.
    torch.testing.assert_close(tilelang_output, ref_output, atol=1e-2, rtol=1e-2)

    print("Pass topk sparse attention test with qlen < klen")


if __name__ == "__main__":
263
    test_topk_sparse_attention()
264
    test_topk_sparse_attention_qlen_lt_klen()