loop_partition.cc 5.15 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership. The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

/*!
 * \file loop_partition.cc
 * \brief Partition parallel loops onto threads
 */

#include "loop_partition.h"

#include <tvm/tir/stmt_functor.h>

namespace tvm {
namespace tl {

using namespace tir;

class BufferIndiceSimplify : public StmtExprMutator {
 public:
  BufferIndiceSimplify(arith::Analyzer* analyzer) : analyzer_(analyzer) {}

 private:
  PrimExpr VisitExpr_(const BufferLoadNode* node) final {
    auto visited = StmtExprMutator::VisitExpr_(node);
    auto n = visited.as<BufferLoad>().value();
    auto nptr = n.CopyOnWrite();
    nptr->indices = nptr->indices.Map([&](const auto& e) { return analyzer_->Simplify(e); });
    return n;
  }
  Stmt VisitStmt_(const BufferStoreNode* node) final {
    auto visited = StmtExprMutator::VisitStmt_(node);
    auto n = visited.as<BufferStore>().value();
    auto nptr = n.CopyOnWrite();
    nptr->indices = nptr->indices.Map([&](const auto& e) { return analyzer_->Simplify(e); });
    return n;
  }
  arith::Analyzer* analyzer_;
};

// Rewrite the parallel loop into a common loop, which is mapped to threads
For PartitionLoop(For op, Var thread_var, arith::Analyzer* analyzer, Fragment loop_layout) {
  ICHECK(loop_layout.defined());
  ICHECK(thread_var.defined());
  int old_loop_depth = loop_layout->InputDim();
  int new_loop_depth = loop_layout->OutputDim();

  // Create the new loop iter var
  Array<Var> vars;
  for (int i = 0; i < new_loop_depth; i++) {
    Var var = Var(std::string{char('i' + i)});
    vars.push_back(var);
  }
  vars.push_back(thread_var);
  // create the substitute map, and the loop body
  Map<Var, PrimExpr> vmap;
  Stmt body = op;
  auto inv_loop = loop_layout->Inverse();
  auto indices = inv_loop->Forward(vars.Map([](const Var& v) { return PrimExpr(v); }));
  for (int i = 0; i < old_loop_depth; i++) {
    ICHECK(body.as<For>().defined());
    For loop = body.as<For>().value();
    vmap.Set(loop->loop_var, indices[i]);
    body = loop->body;
  }

  // substitute and re-construct the serial loop
  body = Substitute(body, vmap);
  for (int i = new_loop_depth - 1; i >= 0; i--) {
    body =
        For(vars[i], make_zero(vars[i]->dtype), inv_loop->InputShape()[i], ForKind::kSerial, body);
    analyzer->Bind(vars[i], Range(0, inv_loop->InputShape()[i]));
  }

  body = BufferIndiceSimplify(analyzer)(body);

  auto for_node = LoopPragmaUnroll(Downcast<For>(body));

  return for_node;
}

class LoopPramaUnroller : public StmtExprMutator {
 public:
  LoopPramaUnroller() = default;

 private:
  Stmt VisitStmt_(const ForNode* node) final {
    if (node->kind == ForKind::kSerial) {
      For new_for = GetRef<For>(node);
      auto for_ptr = new_for.CopyOnWrite();
      for_ptr->annotations.Set(tir::attr::pragma_unroll_explicit, Bool(false));
      for_ptr->kind = ForKind::kUnrolled;
      return new_for;
    }
    return StmtExprMutator::VisitStmt_(node);
  }
};

class LoopPartitioner : public StmtExprVisitor {
 public:
  LoopPartitioner() = default;

  Fragment Partition(For op, int num_thread, int vectorize_size) {
    this->VisitStmt(op);
    int loop_size_full = 1;
    PrimExpr flattened = 0;
    for (size_t i = 0; i < loop_vars_.size(); i++) {
      auto ext_ptr = as_const_int(loop_vars_[i]->dom->extent);
      ICHECK(ext_ptr);
      int extent = *ext_ptr;
      loop_size_full *= extent;
      flattened = flattened * extent + loop_vars_[i]->var;
    }
    ICHECK(loop_size_full % vectorize_size == 0);
    PrimExpr access_idx = FloorDiv(flattened, vectorize_size);
    PrimExpr thd = FloorMod(access_idx, num_thread);
    PrimExpr idx =
        FloorDiv(access_idx, num_thread) * vectorize_size + FloorMod(flattened, vectorize_size);
    return Fragment(loop_vars_, {idx}, {thd}, {});
  }

 private:
  void VisitStmt_(const ForNode* node) final {
    if (node->kind == ForKind::kParallel) {
      body_ = node->body;
      loop_vars_.push_back(IterVar(Range::FromMinExtent(node->min, node->extent), node->loop_var,
                                   IterVarType::kDataPar));
    }
    StmtExprVisitor::VisitStmt_(node);
  }

  Stmt body_;
  PrimExpr flattened = 0;
  Array<IterVar> loop_vars_;
};

Fragment PlanLoopPartition(For op, size_t num_thread, int vectorize_size) {
  LoopPartitioner partitioner;
  return partitioner.Partition(op, num_thread, vectorize_size);
}

For LoopPragmaUnroll(For stmt) {
  LoopPramaUnroller unroller;
  For unrolled = Downcast<For>(unroller(stmt));
  return unrolled;
}

}  // namespace tl
}  // namespace tvm