arg_binder.cc 27.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

/*!
 * \file arg_binder.cc
 * \brief Helper utility to match and bind arguments.
 */
#include "arg_binder.h"

#include <tvm/runtime/device_api.h>
#include <tvm/tir/builtin.h>
#include <tvm/tir/expr.h>
#include <tvm/tir/op.h>

#include <sstream>
32
#include <unordered_set>
33
34

#include "tir/transforms/ir_utils.h"
35
36
37
38
39
#include "tvm/arith/int_solver.h"
#include "tvm/ffi/cast.h"
#include "tvm/ffi/container/array.h"
#include "tvm/tir/stmt.h"
#include "tvm/tir/stmt_functor.h"
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

namespace tvm {
namespace tl {

using namespace tir;

void BinderAddAssert(arith::Analyzer *ana, PrimExpr cond,
                     const std::string &arg_name, std::vector<Stmt> *asserts) {
  PrimExpr scond = ana->Simplify(cond);
  if (is_zero(scond)) {
    LOG(FATAL) << "Bind have an unmet assertion: " << cond << ", "
               << " on argument " << arg_name;
  }
  if (!is_one(scond)) {
    std::ostringstream os;
    os << "Argument " << arg_name << " has an unsatisfied constraint: " << cond;
    asserts->emplace_back(AssertStmt(scond, StringImm(os.str()), Evaluate(0)));
  }
}

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
std::vector<Var> ArgBinder::getUndefVars(const std::vector<PrimExpr> &args) {
  std::unordered_set<const VarNode *> visit;
  std::vector<Var> res;
  for (const auto &arg : args) {
    PostOrderVisit(arg, [&](ObjectRef r) {
      if (auto var = r.as<VarNode>()) {
        if (!visit.count(var)) {
          visit.insert(var);
        }
        auto it = def_map_->find(var);
        if (it == def_map_->end()) {
          // res.push_back(var);
          res.push_back(ffi::GetRef<Var>(var));
        }
      }
    });
  }
  return res;
}

80
81
82
83
84
85
86
87
88
89
bool ArgBinder::BindNullable(const PrimExpr &arg, const PrimExpr &value,
                             const std::string &arg_name, bool with_lets,
                             const PrimExpr &nullable_guard) {
  // Currently only used in BindDLTensor, nullable_guard is already a defined
  // bool, so use it directly.
  auto MakeGuarded = [&](PrimExpr basic) -> PrimExpr {
    // is_null || basic
    return Or(nullable_guard, basic);
  };
  ICHECK_EQ(arg.dtype(), value.dtype()) << "arg " << arg << " value " << value;
90
91
92
93
94
95
96
97
98
99
100
  auto BindVar = [&](const VarNode *v, PrimExpr value) {
    auto v_arg = ffi::GetRef<Var>(v);
    defs_.emplace_back(v_arg);
    if (with_lets) {
      (*def_map_)[v] = value;
      init_nest_.emplace_back(LetStmt(v_arg, value, Evaluate(0)));
    } else {
      (*def_map_)[v] = value;
    }
  };
  // 1. simple binding var = value
101
102
103
  if (const VarNode *v = arg.as<VarNode>()) {
    auto it = def_map_->find(v);
    if (it == def_map_->end()) {
104
      BindVar(v, value);
105
106
107
108
109
110
111
112
      // First time binding: identical behavior as Bind_
      return true;
    } else {
      // Second or later binding: add is_null short-circuit
      PrimExpr cond = MakeGuarded(it->second == value);
      BinderAddAssert(&analyzer_, cond, arg_name, &asserts_);
    }
  } else {
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    // 2. complex binding expr = value
    //  get undefined variables
    auto undefs = ffi::Array<Var>(getUndefVars({arg}));
    if (!undefs.empty()) {
      // if value is not integer, such as float, we are unable to solve it
      if (!value.dtype().is_int() && !value.dtype().is_uint()) {
        LOG(FATAL) << "Unable to solve non-integer variables " << undefs
                   << " from equation `" << value << "`";
      }
      arith::IntConstraints constraints(undefs, {}, {arg == value});
      auto sol = arith::SolveLinearEquations(constraints);
      if (!sol->dst->variables.empty()) {
        LOG(FATAL) << "TVM is unable to solve variables " << undefs
                   << " from equation " << constraints;
      }
      for (const auto &v : undefs) {
        auto value_opt = sol->src_to_dst.Get(v);
        ICHECK(value_opt->defined())
            << "Unable to solve variable `" << v << "` from expression `"
            << (arg == value) << "`";
        auto value = ffi::GetRef<PrimExpr>(sol->src_to_dst.Get(v)->get());
        BindVar(v.as<VarNode>(), value);
      }
    }
    // we must add the assert again
    //    because the solved expression may contain floordiv (e.g. 3 * m == n
    //    ==>   m = n // 3) we re-compute the constraint to verify the solution
    //    is correct
141
142
143
144
145
146
    PrimExpr cond = MakeGuarded(arg == value);
    BinderAddAssert(&analyzer_, cond, arg_name, &asserts_);
  }
  return false;
}

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
bool ArgBinder::Bind_(const PrimExpr &arg, const PrimExpr &value,
                      const std::string &arg_name, bool with_lets) {
  ICHECK_EQ(arg.dtype(), value.dtype()) << "arg " << arg << " value " << value;
  if (const VarNode *v = arg.as<VarNode>()) {
    auto it = def_map_->find(v);
    if (it == def_map_->end()) {
      Var v_arg = Downcast<Var>(arg);
      defs_.emplace_back(v_arg);
      if (with_lets) {
        (*def_map_)[v] = arg;
        init_nest_.emplace_back(LetStmt(v_arg, value, Evaluate(0)));
      } else {
        (*def_map_)[v] = value;
      }
      return true;
    } else {
      BinderAddAssert(&analyzer_, it->second == value, arg_name, &asserts_);
    }
  } else {
    BinderAddAssert(&analyzer_, arg == value, arg_name, &asserts_);
  }
  return false;
}

void ArgBinder::Bind(const PrimExpr &arg, const PrimExpr &value,
                     const std::string &arg_name, bool with_let) {
  Bind_(arg, value, arg_name, with_let);
}

176
177
void ArgBinder::BindArray(const ffi::Array<PrimExpr> &arg,
                          const ffi::Array<PrimExpr> &value,
178
179
180
181
182
183
184
185
186
187
188
189
190
191
                          const std::string &arg_name) {
  ICHECK_EQ(arg.size(), value.size())
      << "Argument " << arg_name << " array size mismatch";
  for (size_t i = 0; i < arg.size(); ++i) {
    std::ostringstream os;
    os << arg_name << "[" << i << "]";
    this->Bind(arg[i], value[i], os.str());
  }
}

void ArgBinder::BindBuffer(const Buffer &arg, const Buffer &value,
                           const std::string &arg_name, bool fuzzy_match) {
  ICHECK_EQ(arg.scope(), value.scope())
      << "Argument " << arg_name << " Buffer bind scope mismatch";
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
  // Relax dtype check to allow FP8 E4M3 variants to bind together.
  auto dtype_compatible = [](DataType expected, DataType provided) -> bool {
    if (expected == provided)
      return true;
    // If expected is float8_e4m3, allow float8_e4m3fn/float8_e4m3fnuz as well.
    if (expected.is_float8_e4m3()) {
      return provided.is_float8_e4m3() || provided.is_float8_e4m3fn() ||
             provided.is_float8_e4m3fnuz();
    }
    // If expected is float8_e5m2, allow float8_e5m2fnuz as well.
    if (expected.is_float8_e5m2()) {
      return provided.is_float8_e5m2() || provided.is_float8_e5m2fnuz();
    }
    // If expected is bool, allow binding from int8/uint8 with same lanes.
    if (expected.is_bool()) {
      bool is_i8 = provided.is_int() && provided.bits() == 8;
      bool is_u8 = provided.is_uint() && provided.bits() == 8;
      return (is_i8 || is_u8) && expected.lanes() == provided.lanes();
    }
    return false;
  };
  ICHECK(dtype_compatible(arg->dtype, value->dtype))
      << "Argument " << arg_name << " Buffer bind data type mismatch: expected "
      << arg->dtype << ", got " << value->dtype;
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
  if (value->data_alignment % arg->data_alignment != 0) {
    LOG(WARNING) << "Trying to bind buffer to another one with lower alignment "
                    "requirement "
                 << " required_alignment=" << arg->data_alignment
                 << ", provided_alignment=" << value->data_alignment;
  }

  if (value->elem_offset.defined()) {
    // bind pointer and offset.
    if (is_zero(arg->elem_offset)) {
      ICHECK(is_zero(value->elem_offset))
          << "Trying to bind a Buffer with offset into one without offset "
          << " required elem_offset=" << arg->elem_offset
          << ", provided elem_offset=" << value->elem_offset;
    }

    this->Bind(arg->data, value->data, arg_name + ".data");
    if (Bind_(arg->elem_offset, value->elem_offset, arg_name + ".elem_offset",
              false)) {
      if (arg->offset_factor > 1) {
        PrimExpr offset = value->elem_offset;
        PrimExpr factor = make_const(offset.dtype(), arg->offset_factor);
        PrimExpr zero = make_zero(offset.dtype());
        BinderAddAssert(&analyzer_, truncmod(offset, factor) == zero,
                        arg_name + ".elem_offset", &asserts_);
      }
    }
  }

  if (arg->shape.size() < value->shape.size()) {
    ICHECK(fuzzy_match) << "Argument " << arg_name << " size mismatch";
    size_t diff = value->shape.size() - arg->shape.size();
    for (size_t i = 0; i < diff; ++i) {
      ICHECK(is_one(analyzer_.Simplify(value->shape[i])))
          << "Argument " << arg_name << " shape mismatch" << arg->shape
          << " vs " << value->shape;
    }
    for (size_t i = 0; i < arg->shape.size(); ++i) {
      std::ostringstream os;
      os << arg_name << ".shape[" << i << "]";
      this->Bind(arg->shape[i], value->shape[i + diff], os.str());
    }
    if (!value->strides.empty()) {
      ICHECK_EQ(arg->strides.size(), arg->shape.size());
      ICHECK_EQ(value->strides.size(), value->shape.size());
      for (size_t i = 0; i < arg->strides.size(); ++i) {
        std::ostringstream os;
        os << arg_name << ".strides[" << i << "]";
        this->Bind(arg->strides[i], value->strides[i + diff], os.str());
      }
    }
  } else {
    this->BindArray(arg->shape, value->shape, arg_name + ".shape");
    this->BindArray(arg->strides, value->strides, arg_name + ".strides");
  }
}

inline PrimExpr TVMArrayGet(DataType t, Var arr,
                            builtin::TVMStructFieldKind kind) {
  return TVMStructGet(t, arr, 0, kind);
}

void ArgBinder::BindDLTensor(const Buffer &buffer, const PrimExpr &device_type,
                             const PrimExpr &device_id, const Var &handle,
                             const std::string &arg_name) {
  const DataType tvm_shape_type = DataType::ShapeIndex();
  const DataType tvm_ndim_type = DataType::Int(32);
  const Stmt nop = Evaluate(0);

285
286
287
288
289
290
291
292
293
  // Allow NULL DLTensor* for optional inputs.  When the handle is NULL,
  // avoid dereferencing it by using expression-level conditionals and
  // short-circuiting guards in asserts. Cache the null check in a Let-bound
  // boolean so codegen does not repeat `(handle == NULL)` everywhere.
  Var is_null_var(arg_name + "_is_null", DataType::Bool());
  init_nest_.emplace_back(
      LetStmt(is_null_var,
              Call(DataType::Bool(), builtin::isnullptr(), {handle}), nop));
  const PrimExpr &is_null = is_null_var;
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315

  // dimension checks
  PrimExpr v_ndim = TVMArrayGet(tvm_ndim_type, handle, builtin::kArrNDim);

  // Helper functions for shape/stride name formatting
  auto shape_handle_name = [&]() { return arg_name + ".shape"; };
  auto stride_handle_name = [&]() { return arg_name + ".strides"; };
  auto array_element_name = [&](const std::string &arr_name, size_t k) {
    std::stringstream ss;
    ss << arr_name << '[' << k << ']';
    return ss.str();
  };
  auto shape_element_name = [&](size_t k) {
    return array_element_name(shape_handle_name(), k);
  };
  auto stride_element_name = [&](size_t k) {
    return array_element_name(stride_handle_name(), k);
  };

  PrimExpr a_ndim =
      make_const(tvm_ndim_type, static_cast<int64_t>(buffer->shape.size()));
  std::ostringstream ndim_err_msg;
316
317
  // Note: We cannot embed runtime values into the message string.
  // Keep message human-friendly without printing TIR exprs.
318
  ndim_err_msg << arg_name << ".ndim is expected to equal "
319
               << buffer->shape.size() << ", but got mismatched ndim";
320
  auto msg = StringImm(ndim_err_msg.str());
321
322
323
  // Only check ndim when handle is non-NULL (using short-circuit OR)
  v_ndim = tvm::if_then_else(Not(is_null), v_ndim, make_zero(tvm_ndim_type));
  init_nest_.emplace_back(AssertStmt(Or(is_null, a_ndim == v_ndim), msg, nop));
324
325
  // type checks
  std::ostringstream type_err_msg;
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
  // Avoid dumping TIR expressions in error text; just state mismatch.
  // Include expected dtype triplet for clarity.
  type_err_msg << arg_name << ".dtype is expected to be " << buffer->dtype
               << ", but got incompatible dtype";
  // Guard all dtype field loads by `is_null` using if_then_else
  PrimExpr v_type_code = tvm::if_then_else(
      Not(is_null),
      TVMArrayGet(DataType::UInt(8), handle, builtin::kArrTypeCode),
      IntImm(DataType::UInt(8), buffer->dtype.code()));
  PrimExpr v_type_bits = tvm::if_then_else(
      Not(is_null),
      TVMArrayGet(DataType::UInt(8), handle, builtin::kArrTypeBits),
      IntImm(DataType::UInt(8), buffer->dtype.bits()));
  PrimExpr v_type_lanes = tvm::if_then_else(
      Not(is_null),
      TVMArrayGet(DataType::UInt(16), handle, builtin::kArrTypeLanes),
      IntImm(DataType::UInt(16), buffer->dtype.lanes()));
  PrimExpr expect_code = IntImm(DataType::UInt(8), buffer->dtype.code());
  PrimExpr expect_bits = IntImm(DataType::UInt(8), buffer->dtype.bits());
  PrimExpr expect_lanes = IntImm(DataType::UInt(16), buffer->dtype.lanes());

  PrimExpr cond = (v_type_code == expect_code && v_type_bits == expect_bits &&
                   v_type_lanes == expect_lanes);

  // Allow float8_e4m3 to match float8_e4m3fn/float8_e4m3fnuz at runtime.
  if (buffer->dtype.is_float8_e4m3()) {
    PrimExpr code_e4m3 = IntImm(DataType::UInt(8), DataType::kFloat8_e4m3);
    PrimExpr code_e4m3fn = IntImm(DataType::UInt(8), DataType::kFloat8_e4m3fn);
    PrimExpr code_e4m3fnuz =
        IntImm(DataType::UInt(8), DataType::kFloat8_e4m3fnuz);
    PrimExpr code_match =
        (v_type_code == code_e4m3 || v_type_code == code_e4m3fn ||
         v_type_code == code_e4m3fnuz);
    cond = cond || (code_match && v_type_bits == expect_bits &&
                    v_type_lanes == expect_lanes);
  }
  // Allow float8_e5m2 to match float8_e5m2fnuz at runtime.
  if (buffer->dtype.is_float8_e5m2()) {
    PrimExpr code_e5m2 = IntImm(DataType::UInt(8), DataType::kFloat8_e5m2);
    PrimExpr code_e5m2fnuz =
        IntImm(DataType::UInt(8), DataType::kFloat8_e5m2fnuz);
    PrimExpr code_match =
        (v_type_code == code_e5m2 || v_type_code == code_e5m2fnuz);
    cond = cond || (code_match && v_type_bits == expect_bits &&
                    v_type_lanes == expect_lanes);
  }
  // Allow bool to match int8/uint8 at runtime, and also kDLBool(code=6).
  if (buffer->dtype.is_bool()) {
    PrimExpr code_int = IntImm(DataType::UInt(8), DataType::kInt);
    PrimExpr code_uint = IntImm(DataType::UInt(8), DataType::kUInt);
    PrimExpr code_kdlbool = IntImm(DataType::UInt(8), 6);
    PrimExpr bits8 = IntImm(DataType::UInt(8), 8);
    PrimExpr bits1 = IntImm(DataType::UInt(8), 1);
    PrimExpr lanes_ok = (v_type_lanes == expect_lanes);
    PrimExpr int8_ok =
        (v_type_code == code_int && v_type_bits == bits8 && lanes_ok);
    PrimExpr uint8_ok =
        (v_type_code == code_uint && v_type_bits == bits8 && lanes_ok);
    // Some frontends may tag bool tensors as kDLBool(code=6), commonly with
    // bits=8 or bits=1.
    PrimExpr kdlbool8_ok =
        (v_type_code == code_kdlbool && v_type_bits == bits8 && lanes_ok);
    PrimExpr kdlbool1_ok =
        (v_type_code == code_kdlbool && v_type_bits == bits1 && lanes_ok);
    // Also accept any dtype whose bitwidth=1, regardless of code, to be
    // defensive.
    PrimExpr bit1_ok = (v_type_bits == bits1 && lanes_ok);
    cond = cond || int8_ok || uint8_ok || kdlbool8_ok || kdlbool1_ok || bit1_ok;
  }
395
396
397
398
  if (!(buffer->dtype == DataType::Int(1) ||
        buffer->dtype == DataType::Int(4) ||
        buffer->dtype == DataType::UInt(4))) {
    auto type_msg = StringImm(type_err_msg.str());
399
400
    // Only check dtype when handle is non-NULL (short-circuit)
    asserts_.emplace_back(AssertStmt(Or(is_null, cond), type_msg, nop));
401
402
403
404
405
406
407
408
  }

  // shape field
  Buffer buf_shape =
      decl_buffer({IntImm(DataType::Int(32), buffer->shape.size())},
                  tvm_shape_type, shape_handle_name());
  Var v_shape(shape_handle_name(), DataType::Handle());
  def_handle_dtype_.Set(v_shape, make_const(tvm_shape_type, 0));
409
410
411
412
413
414
415
416
417
  // Use if_then_else for NULL guard on the shape pointer itself, avoiding
  // dereferencing TVMStructGet(handle, kArrShape) when handle is NULL.
  init_nest_.emplace_back(
      LetStmt(buf_shape->data,
              tvm::if_then_else(
                  Not(is_null),
                  TVMArrayGet(DataType::Handle(), handle, builtin::kArrShape),
                  make_zero(DataType::Handle())),
              nop));
418
  init_nest_.emplace_back(DeclBuffer(buf_shape, nop));
419

420
  for (size_t k = 0; k < buffer->shape.size(); ++k) {
421
422
    // These packed-bit dtype shapes were not bound in the original
    // implementation, so we just use them as is.
423
424
425
426
427
    if (buffer->dtype == DataType::Int(4) ||
        buffer->dtype == DataType::UInt(4) ||
        buffer->dtype == DataType::Int(1)) {
      break;
    }
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

    // The "real" runtime shape value read from DLTensor
    PrimExpr raw_shape_val =
        cast(buffer->shape[k].dtype(),
             BufferLoad(buf_shape,
                        {IntImm(DataType::Int(32), static_cast<int>(k))}));

    // Bind to the value of the symbolic dimension (e.g., m) in TIR, with an
    // is_null guard:
    //   handle is NULL → use 0, placeholder but no dereference
    //   handle non-NULL → actually read from DLTensor's shape array
    PrimExpr bound_shape_val = tvm::if_then_else(
        is_null, make_zero(buffer->shape[k].dtype()), raw_shape_val);

    // When first encountering a Var (e.g., m), this will generate:
    //   Let(m, bound_shape_val, ...)
    // Constant dimensions will only generate consistency assertions.
    BindNullable(buffer->shape[k], bound_shape_val, shape_element_name(k), true,
                 is_null);

    // Keep an explicit "consistency check": when non-NULL, the symbolic
    // dimension must equal the DLTensor's shape.
    Stmt shape_check = AssertStmt(
        Or(is_null, buffer->shape[k] == raw_shape_val),
        StringImm(shape_element_name(k) + " mismatch with DLTensor shape"),
        Evaluate(0));
    asserts_.emplace_back(shape_check);
455
  }
456

457
458
459
460
461
  // strides field
  Buffer buf_strides =
      decl_buffer({IntImm(DataType::Int(32), buffer->strides.size())},
                  tvm_shape_type, arg_name + ".strides");
  def_handle_dtype_.Set(buf_strides->data, tir::TypeAnnotation(tvm_shape_type));
462
463
464
465
466
467
468
  init_nest_.emplace_back(
      LetStmt(buf_strides->data,
              tvm::if_then_else(
                  Not(is_null),
                  TVMArrayGet(DataType::Handle(), handle, builtin::kArrStrides),
                  make_zero(DataType::Handle())),
              nop));
469
470
471
  init_nest_.emplace_back(DeclBuffer(buf_strides, nop));
  PrimExpr v_strides_is_null =
      Call(DataType::Bool(1), builtin::isnullptr(), {buf_strides->data});
472

473
474
475
476
  if (buffer->strides.empty()) {
    // Assert the buffer is compact
    DataType stype = buffer->DefaultIndexType();
    PrimExpr expect_stride = make_const(stype, 1);
477
    ffi::Array<PrimExpr> conds;
478
479
    for (size_t i = buffer->shape.size(); i != 0; --i) {
      size_t k = i - 1;
480
481
482
      PrimExpr svalue = cast(
          stype, BufferLoad(buf_strides,
                            {IntImm(DataType::Int(32), static_cast<int>(k))}));
483
484
485
486
      conds.push_back(buffer->shape[k] == 1 || expect_stride == svalue);
      expect_stride = expect_stride * buffer->shape[k];
    }
    std::ostringstream stride_err_msg;
487
488
489
    stride_err_msg
        << stride_handle_name()
        << ": expected to be compact array, but got non-compact strides";
490
491
492
493
494
495
496
    if (!conds.empty()) {
      auto stride_msg = StringImm(stride_err_msg.str());
      Stmt check =
          AssertStmt(foldl([](PrimExpr a, PrimExpr b,
                              Span span) { return logical_and(a, b, span); },
                           const_true(1), conds),
                     stride_msg, Evaluate(0));
497
      // Only check when strides array is actually present at runtime
498
499
500
501
502
503
504
505
506
507
      check = IfThenElse(Not(v_strides_is_null), check);
      asserts_.emplace_back(SeqStmt({check, Evaluate(0)}));
    }
  } else if (buffer->buffer_type == kAutoBroadcast) {
    PrimExpr stride_from_shape = make_const(buffer->DefaultIndexType(), 1);
    for (size_t i = buffer->shape.size(); i != 0; --i) {
      size_t k = i - 1;
      DataType stride_dtype = buffer->strides[k].dtype();
      PrimExpr explicit_stride =
          cast(stride_dtype,
508
509
               BufferLoad(buf_strides,
                          {IntImm(DataType::Int(32), static_cast<int>(k))}));
510
      PrimExpr stride_from_shape_cast = cast(stride_dtype, stride_from_shape);
511
512

      PrimExpr core_value = tvm::if_then_else(
513
          v_strides_is_null, stride_from_shape_cast, explicit_stride);
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
      core_value = tvm::if_then_else(buffer->shape[k] == 1,
                                     make_zero(stride_dtype), core_value);

      // Bind like shape: define var when needed, and only assert when non-NULL
      PrimExpr bound_stride_val =
          tvm::if_then_else(is_null, make_zero(stride_dtype), core_value);
      BindNullable(buffer->strides[k], bound_stride_val, stride_element_name(k),
                   true, is_null);

      Stmt stride_check = AssertStmt(
          Or(is_null, buffer->strides[k] == core_value),
          StringImm(stride_element_name(k) + " mismatch with DLTensor strides"),
          Evaluate(0));
      asserts_.emplace_back(stride_check);

529
530
531
532
533
534
535
      PrimExpr shape_extent = cast(stride_dtype, buffer->shape[k]);
      stride_from_shape =
          analyzer_.Simplify(stride_from_shape_cast * shape_extent);
    }
  } else {
    PrimExpr stride_from_shape = make_const(buffer->DefaultIndexType(), 1);

536
    for (int k = static_cast<int>(buffer->strides.size()) - 1; k >= 0; --k) {
537
538
539
540
541
542
543
544
      DataType stride_dtype = buffer->strides[k].dtype();
      PrimExpr explicit_stride =
          cast(stride_dtype,
               BufferLoad(buf_strides, {IntImm(DataType::Int(32), k)}));
      PrimExpr shape_stride = cast(
          stride_dtype, BufferLoad(buf_shape, {IntImm(DataType::Int(32), k)}));
      PrimExpr stride_from_shape_cast = cast(stride_dtype, stride_from_shape);

545
546
547
548
549
550
551
552
553
554
555
556
557
      PrimExpr core_value = tvm::if_then_else(
          v_strides_is_null, stride_from_shape_cast, explicit_stride);

      PrimExpr bound_stride_val =
          tvm::if_then_else(is_null, make_zero(stride_dtype), core_value);
      BindNullable(buffer->strides[k], bound_stride_val, stride_element_name(k),
                   true, is_null);

      Stmt stride_check = AssertStmt(
          Or(is_null, buffer->strides[k] == core_value),
          StringImm(stride_element_name(k) + " mismatch with DLTensor strides"),
          Evaluate(0));
      asserts_.emplace_back(stride_check);
558
559
560
561
562

      stride_from_shape =
          analyzer_.Simplify(stride_from_shape_cast * shape_stride);
    }
  }
563

564
565
566
567
  // Byte_offset field.
  int data_bytes = GetVectorBytes(buffer->dtype);

  if (const auto *const_offset = buffer->elem_offset.as<IntImmNode>()) {
568
569
570
571
572
573
574
575
576
577
578
579
    // Constant elem_offset: only need consistency check, no need for additional
    // Var binding.
    PrimExpr actual_byte_offset = tvm::if_then_else(
        Not(is_null),
        TVMArrayGet(DataType::UInt(64), handle, builtin::kArrByteOffset),
        make_const(DataType::UInt(64), 0));
    PrimExpr expect_byte_offset =
        make_const(DataType::UInt(64), const_offset->value * data_bytes);
    Stmt byte_off_check =
        AssertStmt(Or(is_null, expect_byte_offset == actual_byte_offset),
                   StringImm(arg_name + ".byte_offset mismatch"), nop);
    asserts_.emplace_back(byte_off_check);
580
  } else {
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
    PrimExpr actual_byte_offset = tvm::if_then_else(
        Not(is_null),
        TVMArrayGet(DataType::UInt(64), handle, builtin::kArrByteOffset),
        make_const(DataType::UInt(64), 0));
    PrimExpr expect_elem_off =
        cast(buffer->elem_offset.dtype(),
             (actual_byte_offset / make_const(DataType::UInt(64), data_bytes)));

    // Like shape/stride, do NULL-safe binding for elem_offset:
    //   handle is NULL → 0
    //   handle non-NULL → actual_byte_offset / data_bytes
    PrimExpr bound_elem_off = tvm::if_then_else(
        is_null, make_zero(buffer->elem_offset.dtype()), expect_elem_off);
    BindNullable(buffer->elem_offset, bound_elem_off, arg_name + ".elem_offset",
                 true, is_null);

    // Strict consistency check for non-NULL case
    Stmt elem_off_check =
        AssertStmt(Or(is_null, buffer->elem_offset == expect_elem_off),
                   StringImm(arg_name + ".elem_offset mismatch"), nop);
    asserts_.emplace_back(elem_off_check);

    if (buffer->offset_factor > 1) {
      PrimExpr offset = buffer->elem_offset;
      PrimExpr factor = make_const(offset.dtype(), buffer->offset_factor);
      PrimExpr zero = make_zero(offset.dtype());
      Stmt off_factor_check =
          AssertStmt(Or(is_null, truncmod(offset, factor) == zero),
                     StringImm(arg_name + ".elem_offset factor mismatch"), nop);
      asserts_.emplace_back(off_factor_check);
611
612
    }
  }
613

614
  // device info.
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
  // Define device_id from handle when available (so later passes can use it)
  PrimExpr actual_dev_type = tvm::if_then_else(
      Not(is_null),
      TVMArrayGet(DataType::Int(32), handle, builtin::kArrDeviceType),
      make_zero(DataType::Int(32)));
  PrimExpr actual_dev_id = tvm::if_then_else(
      Not(is_null),
      TVMArrayGet(DataType::Int(32), handle, builtin::kArrDeviceId),
      make_zero(DataType::Int(32)));
  // Bind device_id to a safe expression (0 when NULL handle)
  BindNullable(device_id, actual_dev_id, arg_name + ".device_id", true,
               is_null);
  // Check device_type consistency (device_id equality is implicitly ensured by
  // binding above)
  init_nest_.emplace_back(
      AssertStmt(Or(is_null, device_type == actual_dev_type),
                 StringImm(arg_name + ".device_type mismatch"), nop));
632
633
634
635

  // Data field.  Because the validation of the data field may depend
  // on a dynamic size defined by the other DLTensor* parameters, this
  // field must be generated last.
636
637
  // Bind data pointer using expression-level guard to avoid deref on NULL.
  {
638
    Var vptr(buffer->data);
639
640
641
642
643
    PrimExpr data_ptr = tvm::if_then_else(
        Not(is_null),
        TVMArrayGet(DataType::Handle(), handle, builtin::kArrData),
        make_zero(DataType::Handle()));
    BindNullable(buffer->data, data_ptr, arg_name + ".data", true, is_null);
644
645

    // Check if the data pointer is NULL.  This check is skipped for
646
    // size-0 arrays and also skipped when handle itself is NULL.
647
648
    auto alloc_size = [&]() -> PrimExpr {
      PrimExpr product = IntImm(buffer->DefaultIndexType(), 1);
649
      for (const auto &dim : buffer->shape)
650
651
652
653
        product *= dim;
      return product;
    }();
    asserts_.emplace_back(AssertStmt(
654
655
656
657
        Or(is_null, (alloc_size == 0) ||
                        !Call(DataType::Bool(), builtin::isnullptr(), {vptr})),
        StringImm(arg_name +
                  " is expected to have non-NULL data pointer, but got NULL"),
658
659
660
661
662
663
        nop));

    // mark alignment of external bufs
    init_nest_.emplace_back(
        AttrStmt(vptr, tir::attr::storage_alignment,
                 IntImm(DataType::Int(32), buffer->data_alignment), nop));
664
665

    def_handle_dtype_.Set(vptr, tir::TypeAnnotation(buffer->dtype));
666
667
668
669
670
  }
}

} // namespace tl
} // namespace tvm