example_mha_sink_bwd_bhsd.py 21.7 KB
Newer Older
1
2
3
4
5
6
7
# Adapted from tilelang/examples/flash_attention/example_mha_bwd_bhsd.py

import torch
import tilelang
from tilelang.profiler import do_bench
import tilelang.language as T
import argparse
8
from typing import Optional
9
10
11
12
13
14


def get_bwd_configs():
    sm_major, sm_minor = torch.cuda.get_device_capability()
    sm_version = sm_major * 10 + sm_minor
    if sm_version == 80:
15
        return 64, 32, 1, 128
16
    elif sm_version == 90:
17
        return 128, 32, 2, 256
18
19
20
21
22
    else:
        raise ValueError(f"Unsupported SM version: {sm_version}")


@tilelang.jit(
23
    out_idx=[3, 4], pass_configs={
24
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
25
    })
26
27
28
29
30
31
def flashattn_fwd(
        batch,
        heads,
        seq_len,
        dim,
        window_size=None,  # None for full attention,
32
        sm_scale=None,
33
34
35
        block_M=64,
        block_N=64,
        num_stages=1,
36
37
        threads=128,
        dtype: str = "float16"):
38
39
40
41

    if window_size is not None:
        assert window_size % block_N == 0, "window_size must be divisible by block_N"

42
43
44
45
    if sm_scale is None:
        sm_scale = (1.0 / dim)**0.5
    scale = sm_scale * 1.44269504  # log2(e)

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    shape = [batch, heads, seq_len, dim]
    accum_dtype = "float"

    @T.prim_func
    def flash_fwd(
            Q: T.Tensor(shape, dtype),  # type: ignore
            K: T.Tensor(shape, dtype),  # type: ignore
            V: T.Tensor(shape, dtype),  # type: ignore
            Output: T.Tensor(shape, dtype),  # type: ignore
            lse: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
            Sinks: T.Tensor([heads], dtype),  # type: ignore
    ):
        with T.Kernel(T.ceildiv(seq_len, block_M), heads, batch, threads=threads) as (bx, by, bz):
            Q_shared = T.alloc_shared([block_M, dim], dtype)
            K_shared = T.alloc_shared([block_N, dim], dtype)
            V_shared = T.alloc_shared([block_N, dim], dtype)
            acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
            acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
            acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
            scores_max = T.alloc_fragment([block_M], accum_dtype)
            scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
            scores_scale = T.alloc_fragment([block_M], accum_dtype)
            scores_sum = T.alloc_fragment([block_M], accum_dtype)
            logsum = T.alloc_fragment([block_M], accum_dtype)
            sinks = T.alloc_fragment([heads], dtype)

            T.annotate_layout({Q_shared: tilelang.layout.make_swizzled_layout(Q_shared)})
            T.copy(Q[bz, by, bx * block_M:(bx + 1) * block_M, :], Q_shared)
            T.fill(acc_o, 0)
            T.fill(logsum, 0)
            T.fill(scores_max, -T.infinity(accum_dtype))
            for i in T.Parallel(block_M):
                sinks[i] = Sinks[by]
79

80
            end = T.min(T.ceildiv(seq_len, block_N), T.ceildiv((bx + 1) * block_M, block_N))
81
82
            start = T.max(0,
                          (bx * block_M - window_size) // block_N) if window_size is not None else 0
83

84
            for k in T.Pipelined(start, end, num_stages=num_stages):
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
                T.copy(K[bz, by, k * block_N:(k + 1) * block_N, :], K_shared)
                for i, j in T.Parallel(block_M, block_N):
                    q_idx = bx * block_M + i
                    k_idx = k * block_N + j
                    if window_size is not None:
                        acc_s[i, j] = T.if_then_else(q_idx >= k_idx and q_idx < k_idx + window_size,
                                                     0, -T.infinity(acc_s.dtype))
                    else:
                        acc_s[i, j] = T.if_then_else(q_idx >= k_idx, 0, -T.infinity(acc_s.dtype))
                T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)

                T.copy(V[bz, by, k * block_N:(k + 1) * block_N, :], V_shared)
                T.copy(scores_max, scores_max_prev)
                T.reduce_max(acc_s, scores_max, dim=1, clear=False)
                # To do causal softmax, we need to set the scores_max to 0 if it is -inf
                # This process is called Check_inf in FlashAttention3 code, and it only need to be done
                # NOTE(wt): check_inf is necessary for sliding window attention.
                for i in T.Parallel(block_M):
                    if window_size is not None:
                        scores_max[i] = T.if_then_else(scores_max[i] == -T.infinity(accum_dtype), 0,
                                                       scores_max[i])
                    scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)

                for i, j in T.Parallel(block_M, dim):
                    acc_o[i, j] *= scores_scale[i]

                for i, j in T.Parallel(block_M, block_N):
                    acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)

                T.copy(acc_s, acc_s_cast)
                T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)

                T.reduce_sum(acc_s, scores_sum, dim=1)
                for i in T.Parallel(block_M):
                    logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]

            for i in T.Parallel(block_M):
                logsum[i] += T.exp2(sinks[i] * 1.44269504 -
                                    scores_max[i] * scale)  # The only change for attention sink
            for i, j in T.Parallel(block_M, dim):
                acc_o[i, j] /= logsum[i]
            T.copy(acc_o, Output[bz, by, bx * block_M:(bx + 1) * block_M, :])
            for i in T.Parallel(block_M):
                logsum[i] = T.log2(logsum[i]) + scores_max[i] * scale
            T.copy(logsum, lse[bz, by, bx * block_M:(bx + 1) * block_M])

    return flash_fwd


@tilelang.jit(
135
    out_idx=[2], pass_configs={
136
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
137
    })
138
def flashattn_bwd_preprocess(batch, heads, seq_len, dim, dtype: str = "float16"):
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
    accum_dtype = "float"
    shape = [batch, heads, seq_len, dim]
    blk = 32

    @T.prim_func
    def flash_bwd_prep(
            O: T.Tensor(shape, dtype),  # type: ignore
            dO: T.Tensor(shape, dtype),  # type: ignore
            Delta: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
    ):
        with T.Kernel(heads, T.ceildiv(seq_len, blk), batch) as (bx, by, bz):
            o = T.alloc_fragment([blk, blk], dtype)
            do = T.alloc_fragment([blk, blk], dtype)
            acc = T.alloc_fragment([blk, blk], accum_dtype)
            delta = T.alloc_fragment([blk], accum_dtype)
            T.clear(acc)
            for k in range(T.ceildiv(dim, blk)):
                T.copy(O[bz, bx, by * blk:(by + 1) * blk, k * blk:(k + 1) * blk], o)
                T.copy(dO[bz, bx, by * blk:(by + 1) * blk, k * blk:(k + 1) * blk], do)
                for i, j in T.Parallel(blk, blk):
                    acc[i, j] += o[i, j] * do[i, j]
            T.reduce_sum(acc, delta, 1)
            T.copy(delta, Delta[bz, bx, by * blk:(by + 1) * blk])

    return flash_bwd_prep


def make_dq_layout(dQ):
    # atomicAdd can not be vectorized, so we need to reorder dq to match the 8x8 gemm fragment
    return T.Layout(dQ.shape,
                    lambda b, h, l, d: [b, h, l // 8, d // 8, (d % 2), 4 * (l % 8) + (d % 8) // 2])


@tilelang.jit(
173
    out_idx=[1], pass_configs={
174
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
175
    })
176
def flashattn_bwd_postprocess(batch, heads, seq_len, dim, dtype: str = "float16"):
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
    accum_dtype = "float"
    shape = [batch, heads, seq_len, dim]
    blk = 64

    @T.prim_func
    def flash_bwd_post(
            dQ: T.Tensor(shape, accum_dtype),  # type: ignore
            dQ_out: T.Tensor(shape, dtype),  # type: ignore
    ):
        with T.Kernel(T.ceildiv(seq_len, blk), heads, batch, threads=128) as (bx, by, bz):
            T.annotate_layout({dQ: make_dq_layout(dQ)})
            T.copy(
                dQ[bz, by, bx * blk:(bx + 1) * blk, :],
                dQ_out[bz, by, bx * blk:(bx + 1) * blk, :],
            )

    return flash_bwd_post


196
197
198
@tilelang.jit(pass_configs={
    tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
})
199
def flashattn_bwd(
200
201
202
203
204
205
206
    batch,
    heads,
    seq_len,
    dim,
    window_size=None,  # None for full attention
    sm_scale=None,
    dtype: str = "float16",
207
208
209
210
):

    block_M, block_N, num_stages, threads = get_bwd_configs()

211
212
    if sm_scale is None:
        sm_scale = (1.0 / dim)**0.5
213
    scale = sm_scale * 1.44269504  # log2(e)
214

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
    shape = [batch, heads, seq_len, dim]
    accum_dtype = "float"

    if window_size is not None:
        assert window_size % block_N == 0, "window_size must be divisible by block_N"

    @T.prim_func
    def flash_bwd(
            Q: T.Tensor(shape, dtype),  # type: ignore
            K: T.Tensor(shape, dtype),  # type: ignore
            V: T.Tensor(shape, dtype),  # type: ignore
            dO: T.Tensor(shape, dtype),  # type: ignore
            lse: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
            Delta: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
            dQ: T.Tensor(shape, accum_dtype),  # type: ignore
            dK: T.Tensor(shape, dtype),  # type: ignore
            dV: T.Tensor(shape, dtype),  # type: ignore
    ):
        with T.Kernel(heads, T.ceildiv(seq_len, block_M), batch, threads=threads) as (bx, by, bz):
            K_shared = T.alloc_shared([block_M, dim], dtype)
            dsT_shared = T.alloc_shared([block_M, block_N], dtype)
            # should not store K to local if dim is large
            # K_local = T.alloc_fragment([block_M, dim], dtype)
            # K_local_T = T.alloc_fragment([block_M, dim], dtype)
            # V_local = T.alloc_fragment([block_M, dim], dtype)
            q = T.alloc_shared([block_N, dim], dtype)
            V_shared = T.alloc_shared([block_M, dim], dtype)
            qkT = T.alloc_fragment([block_M, block_N], accum_dtype)
            dsT = T.alloc_fragment([block_M, block_N], accum_dtype)
            qkT_cast = T.alloc_fragment([block_M, block_N], dtype)
            dsT_cast = T.alloc_fragment([block_M, block_N], dtype)
            lse_shared = T.alloc_shared([block_N], accum_dtype)
            delta = T.alloc_shared([block_N], accum_dtype)
            do = T.alloc_shared([block_N, dim], dtype)
            dv = T.alloc_fragment([block_M, dim], accum_dtype)
            dk = T.alloc_fragment([block_M, dim], accum_dtype)
            dq = T.alloc_fragment([block_N, dim], accum_dtype)
            dv_shared = T.alloc_shared([block_M, dim], dtype)
            dk_shared = T.alloc_shared([block_M, dim], dtype)

            T.annotate_layout({
                dQ: make_dq_layout(dQ),
                K_shared: tilelang.layout.make_swizzled_layout(K_shared),
                dv_shared: tilelang.layout.make_swizzled_layout(dv_shared),
                dk_shared: tilelang.layout.make_swizzled_layout(dk_shared),
            })
            T.copy(K[bz, bx, by * block_M:(by + 1) * block_M, :], K_shared)
            T.copy(V[bz, bx, by * block_M:(by + 1) * block_M, :], V_shared)
            T.clear(dv)
            T.clear(dk)

            loop_st = T.floordiv(by * block_M, block_N)
267
268
269
270
            loop_ed = T.min(
                T.ceildiv((by + 1) * block_M + window_size, block_N), T.ceildiv(
                    seq_len, block_N)) if window_size is not None else T.ceildiv(seq_len, block_N)
            for k in T.Pipelined(loop_st, loop_ed, num_stages=num_stages):
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
                T.copy(Q[bz, bx, k * block_N:(k + 1) * block_N, :], q)
                T.clear(qkT)
                T.gemm(K_shared, q, qkT, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
                T.copy(lse[bz, bx, k * block_N:(k + 1) * block_N], lse_shared)
                for i, j in T.Parallel(block_M, block_N):
                    qkT[i, j] = T.exp2(qkT[i, j] * scale - lse_shared[j])
                for i, j in T.Parallel(block_M, block_N):
                    if window_size is not None:
                        qkT[i, j] = T.if_then_else(
                            by * block_M + i <= k * block_N + j and
                            by * block_M + i > k * block_N + j - window_size, qkT[i, j], 0)
                    else:
                        qkT[i, j] = T.if_then_else(by * block_M + i <= k * block_N + j, qkT[i, j],
                                                   0)
                T.copy(dO[bz, bx, k * block_N:(k + 1) * block_N, :], dst=do)
                T.clear(dsT)
                T.gemm(V_shared, do, dsT, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
                T.copy(qkT, qkT_cast)
                T.gemm(qkT_cast, B=do, C=dv, policy=T.GemmWarpPolicy.FullRow)

                T.copy(Delta[bz, bx, k * block_N:(k + 1) * block_N], delta)

                for i, j in T.Parallel(block_M, block_N):
                    dsT_cast[i, j] = qkT[i, j] * (dsT[i, j] - delta[j]) * sm_scale
                T.gemm(dsT_cast, q, dk, policy=T.GemmWarpPolicy.FullRow)

                T.copy(dsT_cast, dsT_shared)
                T.clear(dq)
                T.gemm(dsT_shared, K_shared, dq, transpose_A=True)
300
301
                T.atomic_add(dQ[bz, bx, k * block_N:(k + 1) * block_N, :], dq)

302
303
304
305
306
307
308
309
310
            T.copy(dv, dv_shared)
            T.copy(dk, dk_shared)
            T.copy(dv_shared, dV[bz, bx, by * block_M:(by + 1) * block_M, :])
            T.copy(dk_shared, dK[bz, bx, by * block_M:(by + 1) * block_M, :])

    return flash_bwd


@tilelang.jit(out_idx=-1)
311
def flashattn_bwd_dsink(batch, heads, seq_len, block=128, dtype: str = "float16"):
312
313
314
315
316
317
318
319
    accum_dtype = "float"
    shape = [batch, heads, seq_len]

    @T.prim_func
    def flash_bwd_dsink(
            Sinks: T.Tensor([heads], dtype),  # type: ignore
            Delta: T.Tensor(shape, accum_dtype),  # type: ignore
            lse: T.Tensor(shape, accum_dtype),  # type: ignore
320
            dsinks: T.Tensor(shape, accum_dtype),  # type: ignore
321
322
323
324
325
    ):
        with T.Kernel(heads, T.ceildiv(seq_len, block), batch, threads=128) as (bx, by, bz):
            sink = T.alloc_local([1], dtype)
            lse_fragment = T.alloc_fragment([block], accum_dtype)
            delta_fragment = T.alloc_fragment([block], accum_dtype)
326
            dsink_fragment = T.alloc_fragment([block], accum_dtype)
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

            sink[0] = Sinks[bx]
            T.copy(lse[bz, bx, by * block:(by + 1) * block], lse_fragment)
            T.copy(Delta[bz, bx, by * block:(by + 1) * block], delta_fragment)
            for i in T.Parallel(block):
                dsink_fragment[i] = -T.exp2(Sinks[bx] * 1.44269504 -
                                            lse_fragment[i]) * delta_fragment[i]
            T.copy(dsink_fragment, dsinks[bz, bx, by * block:(by + 1) * block])

    return flash_bwd_dsink


class _attention(torch.autograd.Function):

    @staticmethod
    def forward(ctx, q, k, v, sinks, window_size):
        BATCH, H, N_CTX, D_HEAD = q.shape
344
345
        dtype = "float16" if q.dtype == torch.float16 else "bfloat16"
        kernel = flashattn_fwd(BATCH, H, N_CTX, D_HEAD, window_size, dtype=dtype)
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
        o, lse = kernel(q, k, v, sinks)
        ctx.save_for_backward(q, k, v, sinks, o, lse)
        ctx.window_size = window_size
        return o

    @staticmethod
    def backward(ctx, do):
        q, k, v, sinks, o, lse = ctx.saved_tensors
        BATCH, H, N_CTX, D_HEAD = q.shape

        def maybe_contiguous(x):
            if x.stride(-1) != 1:
                return x.contiguous()
            return x

        do, q, k, v, sinks, o = [maybe_contiguous(x) for x in (do, q, k, v, sinks, o)]
362
363
364
        dtype = "float16" if q.dtype == torch.float16 else "bfloat16"
        kernel_prep = flashattn_bwd_preprocess(BATCH, H, N_CTX, D_HEAD, dtype=dtype)
        kernel_post = flashattn_bwd_postprocess(BATCH, H, N_CTX, D_HEAD, dtype=dtype)
365
        delta = kernel_prep(o, do)
366
        kernel = flashattn_bwd(BATCH, H, N_CTX, D_HEAD, ctx.window_size, dtype=dtype)
367
368
        shape = [BATCH, H, N_CTX, D_HEAD]
        dq = torch.zeros(shape, dtype=torch.float32, device=q.device)  # acc for atomicAdd
369
370
        dk = torch.empty(shape, dtype=q.dtype, device=q.device)
        dv = torch.empty(shape, dtype=q.dtype, device=q.device)
371
372
373
        kernel(q, k, v, do, lse, delta, dq, dk, dv)
        dq = kernel_post(dq)

374
        kernel_dsink = flashattn_bwd_dsink(BATCH, H, N_CTX, dtype=dtype)
375
376
377
378
379
380
381
382
383
384
385
386
387
        dsinks = kernel_dsink(sinks, delta, lse).sum(0).sum(1)
        return dq, dk, dv, dsinks, None


attention = _attention.apply


# Adapted and optimized from
# https://github.com/openai/gpt-oss/blob/main/gpt_oss/triton/attention.py
def ref_program(query: torch.Tensor,
                key: torch.Tensor,
                value: torch.Tensor,
                sinks: torch.Tensor,
388
389
                sliding_window: Optional[int] = None,
                dtype: torch.dtype = torch.float16) -> torch.Tensor:
390
391
392
393
394
395
396
397
398
399
400
401

    query = query.transpose(1, 2).contiguous().unsqueeze(
        3)  # align with the original function's interface
    key = key.transpose(1, 2).contiguous()
    value = value.transpose(1, 2).contiguous()

    batch_size, num_queries, num_key_value_heads, num_key_value_groups, head_dim = query.shape
    batch_size, num_keys, num_key_value_heads, head_dim = key.shape
    start_q = num_keys - num_queries

    sm_scale: float = 1.0 / head_dim**0.5

402
    sinks = sinks.view(1, num_key_value_heads, num_key_value_groups, 1, 1)
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
    key = key.unsqueeze(3)
    value = value.unsqueeze(3)

    pos_keys = torch.arange(num_keys, device=query.device)
    pos_queries = torch.arange(num_queries, device=query.device) + start_q
    mask = pos_keys[None, :] > pos_queries[:, None]
    mask = mask.float().masked_fill(mask, float("-inf"))

    if sliding_window:
        too_old = pos_keys[None, :] < (pos_queries[:, None] - sliding_window + 1)
        mask.masked_fill_(too_old, float("-inf"))

    logits = torch.einsum("bqhmd,bkhmd->bhmqk", query.float(), key.float()) * sm_scale
    logits = logits + mask[None, None, None, :, :]

    logits_max = torch.max(logits, dim=-1, keepdim=True).values
    logits_or_sinks_max = torch.maximum(sinks, logits_max)
    sinks = torch.exp(sinks - logits_or_sinks_max)
    unnormalized_scores = torch.exp(logits - logits_or_sinks_max)
    normalizer = unnormalized_scores.sum(dim=-1, keepdim=True) + sinks
    scores = unnormalized_scores / normalizer

    output = torch.einsum("bhmqk,bkhmd->bqhmd", scores, value.float())

    output = output.reshape(batch_size, num_queries, num_key_value_heads * num_key_value_groups,
428
                            head_dim).to(dtype)
429
430
431
432
433
434
435
    return output.transpose(1, 2).contiguous()


def main(BATCH: int = 1,
         H: int = 1,
         N_CTX: int = 512,
         D_HEAD: int = 128,
436
         window_size: Optional[int] = None,
437
438
         dtype: str = "float16"):
    torch_dtype = {"float16": torch.float16, "bfloat16": torch.bfloat16}[dtype]
439
440
441
442
443
444
445
446
447
448
    if window_size is not None:
        print('Using sliding window attention.')
        assert window_size <= N_CTX
        flops_per_matmul = 2.0 * BATCH * H * min(
            window_size, N_CTX // 2) * N_CTX * D_HEAD  # just a rough estimation
    else:
        print('Using full attention.')
        flops_per_matmul = 2.0 * BATCH * H * N_CTX * N_CTX * D_HEAD * 0.5
    total_flops = 5 * flops_per_matmul

449
450
451
452
    Q = (torch.randn(BATCH, H, N_CTX, D_HEAD, dtype=torch_dtype, device="cuda").requires_grad_())
    K = torch.randn_like(Q).requires_grad_()
    V = torch.randn_like(Q).requires_grad_()
    sinks = torch.randn(H, dtype=torch_dtype, device=Q.device).requires_grad_()
453
454
455
456
457
458
459
460
461
    dO = torch.randn_like(Q)

    O = attention(Q, K, V, sinks, window_size)
    O.backward(dO, retain_graph=True)
    dQ, Q.grad = Q.grad.clone(), None
    dK, K.grad = K.grad.clone(), None
    dV, V.grad = V.grad.clone(), None
    dsinks, sinks.grad = sinks.grad.clone(), None

462
    O_ref = ref_program(Q, K, V, sinks, window_size, dtype=torch_dtype)
463
464
465
466
467
468
469
    O_ref.backward(dO, retain_graph=True)
    dQ_ref, Q.grad = Q.grad.clone(), None
    dK_ref, K.grad = K.grad.clone(), None
    dV_ref, V.grad = V.grad.clone(), None
    dsinks_ref, sinks.grad = sinks.grad.clone(), None

    # Checks
470
471
472
473
474
475
476
477
478
479
480
481
482
483
    rtol, atol = {
        "float16": (1e-2, 1e-2),
        "bfloat16": (2e-2, 2e-2),
    }[dtype]
    assert torch.allclose(O, O_ref, rtol=rtol, atol=atol), f'O max err: {(O-O_ref).abs().max()}'
    assert torch.allclose(
        dV, dV_ref, rtol=rtol, atol=atol), f'dV max err: {(dV-dV_ref).abs().max()}'
    assert torch.allclose(
        dK, dK_ref, rtol=rtol, atol=atol), f'dK max err: {(dK-dK_ref).abs().max()}'
    assert torch.allclose(
        dQ, dQ_ref, rtol=rtol, atol=atol), f'dq max err: {(dQ-dQ_ref).abs().max()}'
    assert torch.allclose(
        dsinks, dsinks_ref, rtol=rtol,
        atol=atol), f'dsinks max err: {(dsinks-dsinks_ref).abs().max()}'
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504

    print("All checks passed for tilelang kernels.✅")

    # Only benchmark backward here
    def torch_bwd():
        O_ref.backward(dO, retain_graph=True)

    def tl_bwd():
        O.backward(dO, retain_graph=True)

    latency = do_bench(torch_bwd, warmup=500)
    print("torch: {:.2f} ms".format(latency))
    print("torch: {:.2f} TFlops".format(total_flops / latency * 1e-9))
    latency = do_bench(tl_bwd, warmup=500)
    print("tilelang: {:.2f} ms".format(latency))
    print("tilelang: {:.2f} TFlops".format(total_flops / latency * 1e-9))


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch', type=int, default=1, help='Batch size')
505
506
    parser.add_argument('--h', type=int, default=64, help='Number of heads')
    parser.add_argument('--n_ctx', type=int, default=4096, help='Context size')
507
508
509
510
511
512
    parser.add_argument('--d_head', type=int, default=128, help='Head dimension')
    parser.add_argument(
        '--window_size',
        type=int,
        default=None,
        help='window size (default: None, which means full attention)')
513
514
    parser.add_argument(
        '--dtype', type=str, default="float16", help="dtype, can be float16 or bfloat16")
515
    args = parser.parse_args()
516
    main(args.batch, args.h, args.n_ctx, args.d_head, args.window_size, args.dtype)